15 research outputs found

    The Multi-Input Multi-Output (MIMO) Channel Modeling, Simulation and Applications

    Get PDF
    This thesis mainly focus on the Multi-Input Multi-Output (MIMO) channel modeling, simulation and applications. There are several ways to design a MIMO channel. Most of the examples are given in Chapter 2, where we can design channels based on the environments and also based on other conditions. One of the new MIMO channel designs based on physical and virtual channel design is discussed in Unitary-Independent- Unitary (UIU) channel modeling. For completeness, the different types of capacity are discussed in details. The capacity is very important in wireless communication. By understanding the details behind different capacity, we can improve our transmission efficiently and effectively. The level crossing rate and average duration are discussed.One of the most important topics in MIMO wireless communication is estimation. Without having the right estimation in channel prediction, the performance will not be correct. The channel estimation error on the performance of the Alamouti code was discussed. The design of the transmitter, the channel and the receiver for this system model is shown. The two different types of decoding scheme were shown - the linear combining scheme and the Maximum likelihood (ML) decoder. Once the reader understands the estimation of the MIMO channel, the estimation based on different antenna correlation is discussed. Next, the model for Mobile-to-Mobile (M2M) MIMO communication link is proposed. The old M2M Sum-of-Sinusoids simulation model and the new two ring models are discussed. As the last step, the fading channel modeling using AR model is derived and the effect of ill-conditioning of the Yule-Walker equation is also shown. A number of applications is presented to show how the performance can be evaluated using the proposed model and techniques

    Performance Evaluation and Analysis of Mimo Schemes in LTE Networks Environment

    Get PDF
    RÉSUMÉ Dans cette thĂšse, nous proposons d'Ă©valuer et d’analyser les performances des configurations radio Ă  antennes multiples Ă  l'Ă©mission et/ou la rĂ©ception (MIMO) dans l’environnement des rĂ©seaux LTE (Long Term Evolution). Plus spĂ©cifiquement, on s’intĂ©resse Ă  la couche physique de l'interface radio OFDM-MIMO de ces rĂ©seaux. AprĂšs une introduction rapide aux rĂ©seaux LTE et aux techniques MIMO, on prĂ©sente dans une premiĂšre Ă©tape, une analyse thĂ©orique du taux d'erreur binaire en fonction du rapport signal sur bruit des deux principaux codes spatio-temporels de la norme LTE, Ă  savoir le codage SFBC 21 (Space Frequency Block Coding) et le codage FSTD 42 (Frequency Switch Transmit Diversity). On dĂ©veloppe les Ă©quations analytiques du taux d'erreur binaire de ces codes dans un canal Ă  Ă©vanouissement de Rayleigh sans corrĂ©lation spatiale qui sont par la suite comparĂ©es Ă  des valeurs obtenues par simulations Monte-Carlo. Dans une deuxiĂšme Ă©tape, on considĂšre l’évaluation de la capacitĂ© du canal rĂ©sultant de l’utilisation de ces mĂȘmes codes dans un canal Ă  Ă©vanouissement de Rayleigh. Pour fin de comparaison, on propose par la suite d’évaluer par simulation leur dĂ©bit effectif. Les rĂ©sultats montrent que la capacitĂ© peut effectivement ĂȘtre presque atteinte en pratique. Le deuxiĂšme volet de cette thĂšse considĂšre les performances des systĂšmes MIMO utilisant la sĂ©lection d’antennes. Nous utilisons la thĂ©orie d'ordre statistique pour dĂ©velopper des Ă©quations analytiques relatives au taux d’erreur binaire des systĂšmes avec sĂ©lection d'antennes du cotĂ© rĂ©cepteur dans un canal d'Ă©vanouissement de Rayleigh sans corrĂ©lation spatiale. Afin de valider numĂ©riquement les rĂ©sultats de notre analyse, un algorithme Ă  sĂ©lection d’antenne au rĂ©cepteur a Ă©tĂ© dĂ©veloppĂ© et utilisĂ© en simulation. Dans un dernier temps, on Ă©value l'effet de la corrĂ©lation spatiale entre les antennes. L’étude est faite Ă  partir de simulations et d’un modĂšle de corrĂ©lation spatiale basĂ© sur le produit Kronecker de deux matrices de corrĂ©lation relatives respectivement Ă  l'Ă©mission et Ă  la rĂ©ception.----------ABSTRACT This thesis considers both an analysis and a numerical evaluation of the performance of MIMO radio systems in the LTE network environment. More specifically we consider the physical layer of the OFDM-MIMO based radio interface. As a first step we present a theoretical analysis of the bit error rate of the two space-time codes adopted by the LTE norm, namely the SFBC 21 and FSTD 42 codes, as a function of the signal upon noise ratio. Analytical expressions are given for transmission over a Rayleigh channel without spatial correlation which are then compared with Monte-Carlo simulations. As a second step, we consider the capacity of the channel obtained by using these codes on a Rayleigh fading channel. Results show that simulated throughput almost reaches the capacity limit. As a different topic, this thesis considers also MIMO systems based on antenna selection. By using order statistics we develop analytical expressions for the error rate on a Rayleigh channel without antenna correlation. In order to validate our numerical results, an algorithm implementing antenna selection at the receiver has been developed and used in the simulations. As a last step the effect of antenna correlation is investigated through the use of simulations and a model of spatial antenna correlation based on the Kronecker product of two correlation matrices related to the transmitting and receiving elements of the MIMO scheme

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Channel estimation for SISO and MIMO OFDM communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin
    corecore