945 research outputs found

    Optimal routing in the De Bruijn networks

    Get PDF
    In this paper, we consider the problem of optimal routing in an interconnection network, called the De Bruijn network, where the sites are linked in the form of a De Bruijn graph. We provide the distance functions for the undirected as well as the directed De Bruijn graphs. The optimal routing problem is then reduced to that of pattern matching. We use Morris and Pratt's failure function and Weiner's prefix tree to develop algorithms that find the shortest paths in the uni-directional and in the bi-directional De Bruijn networks, respectively. These algorithms are linear in time and in space (in the diameter of the graph)

    Efficient tilings of de Bruijn and Kautz graphs

    Full text link
    Kautz and de Bruijn graphs have a high degree of connectivity which makes them ideal candidates for massively parallel computer network topologies. In order to realize a practical computer architecture based on these graphs, it is useful to have a means of constructing a large-scale system from smaller, simpler modules. In this paper we consider the mathematical problem of uniformly tiling a de Bruijn or Kautz graph. This can be viewed as a generalization of the graph bisection problem. We focus on the problem of graph tilings by a set of identical subgraphs. Tiles should contain a maximal number of internal edges so as to minimize the number of edges connecting distinct tiles. We find necessary and sufficient conditions for the construction of tilings. We derive a simple lower bound on the number of edges which must leave each tile, and construct a class of tilings whose number of edges leaving each tile agrees asymptotically in form with the lower bound to within a constant factor. These tilings make possible the construction of large-scale computing systems based on de Bruijn and Kautz graph topologies.Comment: 29 pages, 11 figure

    On the Cost of Participating in a Peer-to-Peer Network

    Full text link
    In this paper, we model the cost incurred by each peer participating in a peer-to-peer network. Such a cost model allows to gauge potential disincentives for peers to collaborate, and provides a measure of the ``total cost'' of a network, which is a possible benchmark to distinguish between proposals. We characterize the cost imposed on a node as a function of the experienced load and the node connectivity, and show how our model applies to a few proposed routing geometries for distributed hash tables (DHTs). We further outline a number of open questions this research has raised.Comment: 17 pages, 4 figures. Short version to be published in the Proceedings of the Third International Workshop on Peer-to-Peer Systems (IPTPS'04). San Diego, CA. February 200

    Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    Get PDF
    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.Comment: submitted to IEEE Trans. on Circuits and Systems I (submission date 27 may 2009
    corecore