
1

Turbo NOC: a framework for the design of
Network On Chip based turbo decoder architectures

Maurizio Martina, Member IEEE, Guido Masera, Senior Member IEEE

Abstract—This work proposes a general framework for the
design and simulation of network on chip based turbo decoder
architectures. Several parameters in the design space are inves-
tigated, namely the network topology, the parallelism degree,
the rate at which messages are sent by processing nodes over the
network and the routing strategy. The main results of this analysis
are: i) the most suited topologies to achieve high throughput with
a limited complexity overhead are generalized de-Bruijn and
generalized Kautz topologies; ii) depending on the throughput
requirements different parallelism degrees, message injection
rates and routing algorithms can be used to minimize the network
area overhead.

Index Terms—Turbo Decoder, Network on Chip, VLSI

I. INTRODUCTION

In the last years wireless communication systems coped
with the problem of delivering reliable information while
granting high throughput. This problem has often been faced
resorting to channel codes able to correct errors even at low
signal to noise ratios. As pointed out in Table I in [1], several
standards for wireless communications adopt binary or double
binary turbo codes [2], [3] and exploit their excellent error
correction capability. However, due to the high computational
complexity required to decode turbo codes, optimized architec-
tures (e.g. [4], [5], [6], [7], [8]) have been usually employed.
Moreover, several works addressed the parallelization of turbo
decoder architectures to achieve higher throughput [9], [10]. In
particular, many works concentrate on avoiding, or reducing,
the collision phenomenon that arises with parallel architectures
(e.g. [11], [12], [13], [14]).

Although throughput and area have been the dominant
metrics driving the optimization of turbo decoders, recently,
the need for flexible systems able to support different op-
erative modes, or even different standards, has changed the
perspective. In particular, the so called software defined radio
(SDR) paradigm made flexibility a fundamental property [15]
of future receivers, which will be requested to support a wide
range of heterogeneous standards. Some recent works (e.g.
[1], [16], [17]) deal with the implementation of Application-
Specific Instruction-set Processor (ASIP) architectures for
turbo decoders. In order to obtain architectures that achieve
both high throughput and flexibility multi-ASIP is an effective
solution. Thus, together with flexible and high throughput
processing elements, a multi-ASIP architecture must feature
also a flexible and high throughput interconnection backbone.
To that purpose, the Network-On-Chip (NOC) approach has

The authors are with Dipartimento di Elettronica - Politecnico di Torino
- Italy. Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

been proposed to interconnect processing elements in turbo
decoder architectures designed to support multiple standards
[18], [19], [20], [21], [22], [23]. Current approaches to multi-
standard turbo decoders pragmatically aim at implementing
a “just enough flexibility”, by supporting interleavers and
throughput requirements specified in some of the current
standards. On the contrary, this paper addresses a “full flexi-
bility”, capable of supporting high throughput implementation
of any interleaver. In fact, even if parallel collision-free turbo
decoder architectures exist, it is difficult to obtain a flexible
architecture that is able to manage in a collision-free manner
different turbo codes. In fact, some codes lead to parallel
collision-free architectures only for specific values of the
parallelism degree. As an example with WiMax turbo codes
the collision-free feature can be obtained with proper selection
of the decoder parallelism degree as a function of the data-
frame size [24]. As a consequence, given a parallelism degree
and a set of turbo codes, the NOC approach is a suitable
solution to support the required flexibility. In addition, NOC
based turbo decoder architectures have the intrinsic feature
of adaptively reducing the communication bandwidth by the
inhibition of unnecessary extrinsic information exchange. This
can be obtained by exploiting bit-level reliability-based criteria
where unnecessary iterations for reliable bits are avoided [25].

In [18], [19], [20] ring, chordal ring and random graph
topologies are investigated whereas in [21] previous works
are extended to mesh and toroidal topologies. Furthermore,
in [22] butterfly and Benes topologies are studied, and in
[23] binary de-Bruijn topologies are considered. However,
none of these works presents a unified framework to design
a NOC based turbo decoder, showing possible complex-
ity/performance trade-offs. This work aims at filling this gap
by providing a comprehensive study of NOC based turbo de-
coders, conducted by means of a dedicated NOC simulator and
a list of obtained results, showing the complexity/performance
trade-offs offered by different topologies, routing algorithms,
node and ASIP architectures. Moreover, from previous studies
it is not completely clear if the area overhead of NOC
based turbo decoders is acceptable. This work tries to further
investigate this aspect by giving real post synthesis results for
a 130 nm standard cell technology.

The paper is structured as follows: in section II the re-
quirements and characteristics of a parallel turbo decoder
architecture are analyzed, whereas in section III NOC based
approach is introduced. Section IV summarizes the topologies
considered in previous works and introduces generalized de-
Bruijn and generalized Kautz topologies as promising solu-
tions for NOC based turbo decoder architectures. In section
V three main routing algorithms are introduced, whereas in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11418439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

section VI the Turbo NOC framework is described. Section VII
describes the architecture of the different routing algorithms
considered in this work, section VIII presents the experimental
results and section IX draws some conclusions.

II. SYSTEM REQUIREMENT ANALYSIS

A parallel turbo decoder can be modeled as P processing
elements that need to read from and write to P memories.
Each processing element, often referred to as soft-in-soft-out
(SISO) module, performs the BCJR algorithm [26], whereas
the memories are used for exchanging the extrinsic information
λ among the SISOs. The decoding process is iterative and
usually each SISO performs sequentially the BCJR algorithm
for the two constituent codes used at the encoder side; for
further details on the SISO module the reader can refer to [27].
As a consequence, each iteration is made of two half iterations
referred to as interleaving and de-interleaving. During one half
iteration the extrinsic information produced by SISO i at time
j (λi,j) is sent to the memory k at the location t, where
k = k(i, j) and t = t(i, j) are functions of i and j derived
from the permutation law (Π or interleaver) employed at the
encoder side. Thus, the time required to complete the decoding
is directly related to the number of clock cycles necessary
to complete a half iteration. Without loss of generality, we
can express the number of cycles required to complete a half
iteration (hi) as

Nhi
cyc =

N

P ·R + IL (1)

where N is the total number of trellis steps in a data frame,
N/P is the number of trellis steps processed by each SISO,
R is the SISO output rate, namely the number of trellis
steps processed by a SISO in a clock cycle, and IL is the
interconnection structure latency. Thus, the decoder throughput
expressed as the number of decoded bits over the time required
to complete the decoding process is

T =
d ·N · fclk
2I ·Nhi

cyc

=
d ·N · fclk

2I · (N
P ·R + IL

) (2)

where fclk is the clock frequency, I is the number of iterations,
d = 1 for binary codes and d = 2 for double binary codes.
When the interconnection structure latency is negligible with
respect to the number of cycles required by the SISO, we
obtain

T ≈ d · P ·R
2I

· fclk (3)

Thus, to achieve a target throughput T̂ and satisfactory error
rate performance, a proper number Î of iterations should be
used. The minimum P (Pm) to satisfy T̂ with Î iterations can
be estimated from (3) for some ASIP architectures available
in the literature. If we consider Î = 5, as in [1], [17], P
ranges between 5 and 37 to achieve T̂ = 200 Mb/s (see Table
I). It is worth pointing out that the C = (R · d)−1 values in
Table I represent the average numbers of cycles required by
the SISO to update the soft information of one bit (see Table
VI in [1] and Table I in [17]). Moreover, C strongly depends
on the internal architecture of the SISO and in general tends to
increase with the code complexity. As a consequence, several

conditions can further increase P , namely 1) interconnection
structures with larger IL; 2) higher (R ·d)−1 values; 3) higher
T̂ ; 4) higher Î; 5) lower clock frequency. Thus, we consider
as relevant for investigation a slightly wider range for P : P ∈
{8, 16, 32, 64}.

Table I
PARALLELISM DEGREE REQUIRED TO OBTAIN T̂ = 200 MB/S FOR Î = 5

WITH SOME ASIP ARCHITECTURES AVAILABLE IN THE LITERATURE

Architecture Technology fclk C = (R · d)−1 Pm

[nm] [MHz]
[1] 65 400 2.35 6
[17] 90 400 1.75 5
[28] 90 335 6.5 20
[28] 180 180 6.5 37

III. NETWORK BASED APPROACH

The NOC approach [29] has been proposed as a general
methodology to interconnect heterogeneous intellectual prop-
erties (IP) in complex systems on chip (inter-IP interconnec-
tion). Recent works deal with methodologies to design appli-
cation specific NOCs (e.g. [30]) where the NOC is tailored
around a particular application or group of applications. In
this scenario, turbo decoder architectures are a common IP
required in physical layer chips for modern communication
standards. In this work, as in some previous papers, e.g. [18],
[21], [23] we concentrate on the problem of interconnecting
the main building blocks of a parallel turbo decoder, namely
we focus on the intra-IP interconnection problem [31], and
we do not deal with the general problem of connecting the
turbo decoder IP to other receiver modules through an inter-IP
interconnection network. To that purpose, it is worth pointing
out that statistical characterization of communication patterns,
which is one of the most relevant aspects in the design of
application specific NOCs, is not required in turbo decoders,
as communication patterns depend on Π. As a consequence,
given a set turbo codes with the corresponding Π laws, the
intra-IP communication patterns are deterministic. Thus, the
challenge of NOC based turbo decoder architectures is to find
one or more sets of parameters that match throughput con-
straints for all supported standards with a reduced complexity
overhead. This set of parameters includes R, P , the topology
and the routing algorithm. Two interesting results, developed
for a generic application in [32], can be used as general
guidelines to design NOC based turbo decoder architectures. i)
For short messages and maximum workload (R = 1) NOC is
an effective solution compared to bus based implementations
when P grows. ii) NOC is still an effective solution compared
to a bus based implementation even when R < 1, given
that P > 25. Moreover, as highlighted in section II and
in [17], to achieve a target throughput of several hundreds
of Mb/s a realistic value for P is of some tens. Thus, as
shown in [21] interconnection structures that permit concurrent
interleaving are mandatory for this scenario, making NOC a
viable solution.

A NOC based turbo decoder architecture relies on P nodes
connected through a proper topology where the extrinsic
information is sent over the network according to a certain

3

read enable load

conf.
crossbar

read enable load

conf.
crossbar

read enable load

conf.
crossbar

Routing

Location
Memory

Memory

(b)

Routing
Algorithm

Memory
Identifier Location

Memory

(c)

Routing
Algorithm

Memory
Identifier Location

Memory

(a)

input
[0, M − 1]

SISO i

output
[0, M − 1]

input
[0, M − 1]

SISO i

output
[0, M − 1]

k(i, j)

input
[0, M − 1]

SISO i

output
[0, M − 1]

k(i, j)

t(i, j)

λi,j
MEM i

t′(i, j)

λ′

i,j λi,j
MEM i

λ′

i,j λi,j
MEM i

t′(i, j)t′(i, j)

λ′

i,j

Figure 1. Node block scheme: (a) FA architecture, destination identifier and memory location are sent over the network; (b) AP architecture, routing algorithm
is precalculated and stored in a routing memory; (c) PP architecture, hybrid solution

routing algorithm. We assume that each node has a certain
number of input and output ports (M). As highlighted in [21],
node architectures based on input-queuing lead to a fairly low
complexity. As a consequence we assume that each node has
a FIFO for each input, a crossbar to connect each input FIFO
to a proper output and an output register, as shown in Fig. 1.
Furthermore, each node has a local SISO (SISO i) that sends
extrinsic information over the network through the M − 1
labeled input port and a local memory (MEM i) that receives
extrinsic information from the network through the M − 1
labeled output port.

Three possible node architectures, shown in Fig. 1, have
been considered in this work, namely the Fully Adaptive node
architecture (FA) and two simplified versions, All Precalcu-
lated node architecture (AP) and Partially Precalculated node
architecture (PP).

a) Fully adaptive node architecture: In each half iter-
ation a SISO sends N/P messages where every message is
made of a payload containing the extrinsic information λi,j

and the location of the memory where the extrinsic information
will be written (t(i, j)), and a header containing the identifier
of the destination node (k(i, j)). As a consequence, the node
should contain a memory to store k(i, j) (Identifier Memory),
a memory to store t(i, j) (Location Memory) and a routing
algorithm to properly route messages through the network (see
Fig. 1 (a)).

b) All-precalculated node architecture: Since the permu-
tation law defined by the interleaver is known a-priori, the
path followed by a message during an interleaving (or de-
interleaving) half iteration can be precalculated and stored as
a routing information into a routing memory for each node.
This approach reduces the data width of FIFOs, crossbars and
registers as neither k(i, j) nor t(i, j) are sent over the network.
The location where received messages (λ′

i,j) will be stored
(t′(i, j)) can be also precalculated and stored into a Location
Memory (see Fig. 1 (b)).

c) Partially-precalculated node architecture: Since the
routing memory foot-print can be relevant, a hybrid solution
is obtained by precalculating and storing only t′(i, j), whereas
the routing is managed by a routing algorithm (see Fig. 1 (c)).

This solution does not require a Routing Memory and employs
a smaller payload with respect to the FA node architecture.
On the other hand, the FA node architecture directly supports
adaptive bandwidth reduction techniques, whereas, neither the
AP nor the PP node architectures do. As an example the FA
node architecture can be employed to implement the bit-level
reliability-based criterion proposed in [25], where unnecessary
iterations for reliable bits are avoided. In such a case, the
extrinsic information related to reliable bits is not sent on the
network leading to bandwidth reduction. As a consequence,
this bandwidth reduction leads to increase the throughput of
the NOC based turbo decoder.

IV. TOPOLOGIES

As highlighted in [21] and [23] the choice of topologies and
routing algorithms impacts both on throughput and complexity.
As a consequence, given a certain parallelism degree P ,
topologies with a small node degree (D = M − 1) as rings
(D = 2) keep the network complexity overhead limited.
On the other hand, topologies with a higher node degree as
toroidal meshes (D = 4) can increase the throughput. Since
interleavers tend to spread the extrinsic information almost
uniformly among the P memories, we consider fixed degree
topologies where every node has the same degree D. Among
fixed degree topologies we included rings and toroidal mesh
networks as in [18] and [21]. Moreover, de-Bruijn topologies
are known to show shorter worst case distance among nodes
than toroidal meshes: therefore, they are good candidates to
reduce the latency of the network in turbo decoder architec-
tures, as investigated in [23]. A de-Bruijn topology is made
of nodes labeled by an array of n elements, each element
is taken from an alphabet A with m symbols. Each node
is connected to the nodes whose labels are obtained by left-
shifting the node-label array and by placing in the rightmost
position a symbol from A. As a consequence, each node is
connected to m nodes (D = m) and the number of nodes in
the network is P = mn. Thus, in general, de-Bruijn topologies
for given P and D values not always exist. This limitation can
be overcome by using generalized de-Bruijn topologies [33],

4

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

start

clock

W

∆ τ τ θ τ

W W

λi,jλi,j

Figure 3. SISO architecture parameters: graphical representation of the timing
for a generic SISO architecture that sends the extrinsic information according
to the backward recursion order (Recursion order: BRO)

where there is a connection from node i to node j if

j = (i ·D + k) mod P k = 0, 1, . . . , D − 1 (4)

A further limitation of de-Bruijn and generalized de-Bruijn
topologies are self loops that are present in some nodes, e.g.
node 0 (“0000”) in Fig. 2.

This limitation is overcome by Kautz topologies where
nodes are labeled as in de-Bruijn topologies but avoiding
sequences with equal symbols in consecutive positions of the
node-label array (Kautz sequences). Then, node connections
are obtained as for de-Bruijn topologies, where the symbol
placed in the rightmost position of the node-label array is taken
from A, subject to the constraint that the obtained node-label
array is a Kautz sequence. As a consequence, each node is
connected to m − 1 nodes (D = m − 1) and the number of
nodes in the network is P = m · (m − 1)n−1. Thus, as for
de-Bruijn topologies, Kautz topologies for assigned P and D
values not always exist. This problem is eliminated by using
generalized Kautz topologies [34], where there is a connection
from node i to node j if

j = (−i ·D − k) mod P k = 1, . . . , D (5)

Unfortunately, some generalized Kautz topologies have self
loops: as an example with P = 16 and D = 2 node 10
(“1010”) has a self loop (see Fig. 2). However, said nx

sl(P,D)
the number of self loops introduced by a generalized de-
Bruijn (B) or generalized Kautz (K) topology, we have that
nK
sl(P,D) ≤ nB

sl(P,D) (see Fig. 2). As will be discussed
in section V self loops can be managed in different ways
depending on the routing algorithm.

Moreover, we included in our investigation honeycomb
networks that, as suggested in [35], are alternatives to toroidal
meshes that reduce nodes degree to D = 3. Thus, we have
that rings, honeycombs and toroidal meshes are represented as
undirected graphs, whereas de-Bruijn (generalized de-Bruijn)
and Kautz (generalized Kautz) correspond to directed graphs.
As an example in Fig. 2 we show the aforementioned topolo-
gies for P = 16.

V. ROUTING ALGORITHMS

Since in turbo decoder architectures the achieved throughput
is a key objective, we should try to deliver messages following
the shortest available path. Furthermore the NOC must guar-
antee that all messages are delivered to the destination, namely

dropping of messages to avoid dead-locks is not allowed as it
could impair the decoder correction capability. As highlighted
in [23] shortest-path based routing algorithms are suited to
achieve high throughput and grant message delivery. In the
following we will consider both single-shortest-path (SSP) and
all-local-shortest-path (ASP) based routing algorithms. In SSP
algorithms only one shortest-path from each node i to each
node k is considered. On the other hand, ASP algorithms rely
on the fact that in a topology two nodes i and k may be
connected by more shortest-paths. At each node i, the actual
routing choice toward node k must be made by selecting one
destination node directly connected to i and belonging to a set
N i,k defined as the set of all nodes adjacent to i and placed
on a shortest path between i and k. As an example, in the
toroidal mesh topology in Fig. 2 there are six distinct shortest
paths that connect node 0 (“0000”) to node 6 (“0110”). Two of
these paths go through node 4 (“0100”), two of them through
node 1 (“0001”) and two through node 3 (“0011”). For the
connection between nodes 0 and 6, SSP algorithm selects a
unique path and the choice of the first intermediate connection
among nodes 1, 3 and 4 depends the graph visiting order.
On the contrary, ASP algorithm explores all shortest paths
between 0 and 6 and this leads to consider all three connections
from node 0 to nodes 1, 3 and 4 (N 0,6 = {1, 3, 4}), see bold
lines in Fig. 2.

A further choice in the design of the NOC is how input
FIFOs have to be served. Three distinct strategies have been
considered in this work and indicated as SSP Round-Robin
(SSP-RR), SSP FIFO-length (SSP-FL) and ASP FIFO-length
with traffic-spreading (ASP-FT). These alternatives are briefly
described in the following, while further details on routing
algorithms for NOC can be found in [36]. The SSP-RR
approach is based on a circular serving policy coupled to the
SSP approach. FIFO-length strategies are weighted RR with
weights equal to the number of elements stored into each input
FIFO. The SSP-FL approach serves the input FIFOs based on
the number of elements contained in each input FIFO: the
longest FIFO is served first and the shortest one is served
last. The ASP-FT approach is based on the input FIFO length
serving policy, as for SSP-FL, but it is more complex and can
be described as follows. Let’s define Ii,l

j as the set of input
ports in a node l ∈ N i,k that can receive a message from node
i at time j. At time j the number of elements contained in
the input FIFO associated to port p ∈ Ii,l

j with l ∈ N i,k is
Ll
j,p. According to Algorithm 1, the ASP-FT routing algorithm

chooses l̂ ∈ N i,k and p̂ ∈ Ii,l
j so that

Ll̂
j,p̂ = Lmin = min

p,l
{Ll

j,p} (6)

The couples l̂, p̂ that satisfy (6) belong to the set J i,l̂
j,p̂. To

choose only one couple in J i,l̂
j,p̂ we operate a traffic spreading

based selection, namely our objective is to spread the traffic
as much as possible over the network. To that purpose we use
a set of counters (Q), where each counter Qi,l̂

j,p̂ is incremented
each time a message is sent from node i to node l̂ through
input port p̂. Then, we select the couple l̃, p̃ ∈ J i,l̂

j,p̂ that is

5

generalized Kautz D=4generalized Kautz D=3generalized Kautz D=2

generalized de−Bruijn D=4generalized de−Bruijn D=3generalized de−Bruijn D=2

toroidal meshhoneycombring

0001

1001

1010

1011

1100

1101

1110

1111
0000

0001

0010

0011

0100

0101

0110

0111
1000

1100

1000 0100 1001 1101 1110

0000 1010 0101 1111

01111011011000100001

0011

1100

1000 0100 1001 1101 1110

111101011010

0010 0110 1011 0111

0011

0000

1000

1100

0100 1001 1101 1110

1010

0001 0010 0110

0101

1011

0011

0111

1111 0000

1000 0100 1001 1101

1100

1110

11110101

1011 01110110

0011

0001

1010

0010

0000

1000

0001 0010 0110 1011 0111

0011

1010

0100 1001 1101 1110

0101 1111

1100

0000

0100

1000

1100 1101

1001

0101

0001 0010

0110

1010

1110 1111

1011

0111

00110000 0001 0010 0011

0111011001010100

1000 1001 1010 1011

1111111011011100

1100

1000 0100 1001 1101 1110

0000 1010 0101 1111

011110110010 01100001

0011

0000

Figure 2. Example of the considered topologies for P = 16, bold lines refer to the example detailed in section V

associated to the least used path

Qi,l̃
j,p̃ = Qmin = min

p̂,l̂
{Qi,l̂

j,p̂} (7)

It is worth pointing out that, shortest-path based routing
algorithms do not prevent output ports contention, that is a
situation where two or more inputs need to send data to the
same output port. Said In

j,b the set of inputs in node n that
at time j need to send data to output port b, the contention
problem can be faced by properly choosing an input a ∈ In

j,b

allowed to send its data to output port b. The remaining inputs
belonging to In

j,b − {a} can be managed in different ways.
In this work we consider the following two approaches: i)
storing a′ ∈ In

j,b − {a} into the corresponding input FIFO so
that we delay a colliding message, in the following we will
refer to this approach as delay-colliding-message (DCM); ii)
if possible, sending a′ ∈ In

j,b − {a} to another output port
b′ 6= b, send-colliding-message (SCM). The DCM approach
aims at reducing the number of hops to deliver a message to
its destination, whereas the SCM approach aims at reducing
the maximum depth of the input FIFOs. It is worth pointing
out that topologies with self loops cause a waste of resources
with DCM. In fact, since we are considering dead-lock free

Algorithm 1 ASP-FT routing algorithm

Require: Qi,l
j,p ← Qi,l

j−1,p and Qi,l
0,p ← 0

1: Lmin ← ∞
2: Qmin ← ∞
3: for all l ∈ N i,k do
4: build Ii,l

j

5: for all p ∈ Ii,l
j do

6: get Ll
j,p

7: if Ll
j,p ≤ Lmin then

8: if Qi,l
j,p < Qmin then

9: Qmin ← Qi,l
j,p

10: Lmin ← Ll
j,p

11: l̃ ← l
12: p̃ ← p
13: end if
14: end if
15: end for
16: end for
17: Qi,l̃

j,p̃ = Qi,l̃
j,p̃ + 1

6

sorting
network

(b)

reservation
block

reservation
block

reservation
block

reg reg reg

(a)

(c)

LUT
priority
decoder

M − 2

S0S1SM−1 SM−2 SM−3

L
n
j,0 L

n
j,1 L

n
j,2 L

n
j,M−2

0 1 2 M − 1

L
n
j,M−1

S0 S1 SM−1
‘0’

adx0

adx1

adxM−1

ladx0

ladx1

ladxM−1

FIFO empty
1

FIFO empty
0

FIFO emptyM−1

dstM−1

dst0

dst1

0 1 M − 1

‘0’ ‘0’

rmask

rmask

reserve0

reserve1

reserveM−1

port
0

port
1

portM−1

dport
1

dportM−1

S0

dport
0 S1

SM−1

S1S0 SM−1
starting rmask

SCM/DCM

FIFO empty
0

FIFO empty
1

FIFO emptyM−1

renM−1

leM−1

ren0

ren1

le0

le1

Figure 4. Routing algorithm architecture: (a) RR block scheme, (b) FL block scheme, (c) SSP block scheme

routing algorithms, DCM does not use a self loop as it is
not on a shortest path. On the other hand, SCM can use a
self loop, as a possible destination for a colliding message.
However, by sending a message to a self loop we reduce the
number of elements in one of the input FIFOs but we increase
the number of elements in the input FIFO of the self loop.

VI. TURBO NOC SIMULATOR

The Turbo NOC simulator [37] is a cycle accurate, SystemC
[38] based NOC simulator, specifically tailored for turbo de-
coder architectures. It estimates the throughput and complexity
of a parallel NOC based turbo decoder architecture. It requires
as inputs the following elements: the topology description
in the form of an adjacence matrix, the permutation law Π
used at the encoder and represented as a sequence of integer
values, the routing algorithm (SSP-RR, SSP-FL, ASP-FT), the
selected approach to handle contention (DCM/SCM) and the
description of the key SISO characteristics. An example of
the SISO characteristics is given in Fig. 3, where the upper
part represents a frame of extrinsic informations (λi,j) that is
sliced in two windows, each of which contains W values. The
bottom part of Fig. 3 describes the timing of the SISO output:
when a start signal is asserted, the SISO outputs the first
extrinsic information after a certain latency ∆, that depends
on the forward and backward recursion scheduling [39], on
the trellis initialization strategy [40] and on the parallelism
level of the SISO architecture [41]. Then, depending on SISO
internal scheduling, the λi,j values are output in a certain
order. In Fig. 3 we assume that λi,j values are output in a
last-in-first-out order (from light gray to black) according to
the backward recursion order. The number of clock cycles
between two consecutive λi,j is τ . Similarly, the number of
clock cycles between the last output λ of a window (line-filled
cell) and the first λ of the successive window (light gray cell)
is θ. Stemming from Fig. 3, the required parameters to describe
the SISO architecture are:

1) the window size (W) [42],

2) the SISO latency (∆) expressed in clock cycles;
3) the Recursion Order (RO) used to send extrinsic in-

formations on the network, namely Forward Recursion
Order (FRO) or Backward Recursion Order (BRO),

4) the number of clock cycles between two consecutive
outputs λ within a window (τ),

5) the number of clock cycles between the last output λ of
a window and the first λ of the successive window (θ).

The simulator acts in two phases, a static phase (instantiation
and binding) and a dynamic phase (cycle accurate simulation).
During the static phase, the topology description defines P ,
D and all possible paths from one node to the other. The
simulator represents the topology as a graph and calculates all
the local shortest paths repeating the Floyd-Warshall algorithm
[43] on pruned versions of the graph until no more local
paths exist between a source node i and its adjacent nodes; it
then stores each result of the Floyd-Warshall algorithm as an
array. If a SSP routing algorithm is selected, only the first
shortest path array is employed, otherwise all the shortest
paths are considered. Moreover, P nodes are instantiated and
binded according to the assigned topology and each SISO
memory is loaded with N/P messages, based on the assigned
permutation. The actual decoding process executed by SISO
elements is not included in the tool, which only simulates
the exchange of extrinsic informations. However, the SISO
architecture parameters are employed to initialize a set of
counters that are used to send the extrinsic information over the
network with the same timing as in the real SISO architecture.
The node is described by means of a hardware-description-
language-like (hdl-like) model. When the static phase is com-
pleted, the simulation starts resorting to the SystemC kernel
simulator and performs a cycle accurate hdl-like simulation.
The results provided by the Turbo NOC simulator can be
divided in two categories: cycle by cycle results and global
results. The cycle by cycle results are: i) for each node, the
status of each FIFO, ii) for each node the FIFO read enable
and the crossbar configuration signals, iii) for each SISO the

7

0

1

0

1

0

1

0

1

cmp

cmp

cmp

cmp

cmp

(c)

0

1

one−hot
decoder

one−hot
decoder

one−hot
decoder

(b)

(a)

one−hot
decoder cmp

1 0

010101

en0

en1

en2

enM−2

enM−1

0

1

1

2
1

M − 1
M − 2

0
1

1

2
2
0

2
2

M − 2
M − 2
M − 2

0
M − 2

M − 1
M − 1
M − 1

M − 1
0

0

0
1
2

M − 2
M − 1

0
1
2

M − 1
M − 2

0
1
2

M − 2
M − 1

0
1
2

M − 1
M − 1

port
0

port
1

port
2

port
M−2

port
M−1

lren0

lren1

lren2

lrenM−2

lrenM−1

ladx0

ladx1

ladx2

ladxM−2

ladxM−1

M − 1

M − 1

M − 1

M − 1

M − 1

port
i

S0

reserve0

SM−1

reserveM−1

S1

reserve1

SCM/DCM

ren1ren0 renM−1

lrenM−1lren1lren0

FIFO empty
M−1

FIFO empty
1

FIFO empty
0

en1 enM−1en0

dport
1

dport
0

dport
M−1

Si

output rmask

reservei

input rmask

Figure 5. Routing algorithm architecture details: (a) reservation block, (b) read-enable generation block, (c) destination-port generation block

t′(i, j) sequence. The global results are: i) for each FIFO in
each node the maximum FIFO size, ii) for each node the
minimum, maximum and average latency (in clock cycles) of
each received message and the total number of clock cycles
to deliver all the messages. It is worth pointing out that, since
self loops are not used with DCM, the maximum size of
the corresponding input FIFOs is zero. In this case the tool
automatically reduces the degree of those nodes with the effect
of saving complexity.

VII. ROUTING ALGORITHM ARCHITECTURE

In order to keep the NOC complexity as small as possible,
SSP-RR and SSP-FL routing algorithms have been imple-
mented with FA and PP node architectures, whereas the ASP-
FT algorithm has been implemented as a routing memory with
the AP node architecture.

A. SSP-RR and SSP-FL architectures

The SSP-RR and SSP-FL architectures, thoroughly shown
in Fig. 4 and 5, are made of two main parts. The first part
sorts the input FIFOs based on the selected priority method
(round-robin or FIFO length) and generates M signals, S0, . . . ,
SM−1, where S0 is the label of the input that is served first and
SM−1 is the label of the input that is served last. The second
part serves the input FIFOs according to the order specified
by the S0, . . . , SM−1 sequence and generates the read-enable
(reni) signals for the FIFOs, the load enable (lei) signals
for the output registers and the configuration commands for
the crossbar (adxi), where adxi represents the label of the
destination node specified by the first message in FIFO i.
As shown in Fig. 4 (a), in the SSP-RR architecture a rotate
register generates the Si signals. On the other hand, (see Fig.

4 (b)), in the SSP-FL architecture the Si signals are obtained
with a sorting network. In node n the sorting network takes
as an input the number of elements contained at time j in
each input FIFO (Ln

j,p with p ∈ {0, . . . ,M − 1}) and outputs
S0 = arg

{
maxp{Ln

j,p}
}

, . . . , SM−1 = arg
{
minp{Ln

j,p}
}

.
Both SSP-RR and SSP-FL architectures have been designed
as parametric units to support different M values.

The generation of the reni, adxi and lei signals is enabled
by the FIFO empty signals of the input FIFOs and requires the
following units: a look-up-table (LUT), M reservation blocks
and a priority decoder (Fig. 4 (c)). The LUT contains the
shortest-path information.

In the SSP approach for each node i the N i,k set contains
only one node, and Ii,l

j contains only one port. There is only
an output port on node i that connects node i with node k on
a shortest path. Thus, every LUT contains P locations and the
LUT in node i at location k contains the label of the output
port to connect node i to node k. As a consequence, each LUT
is a P ×dlog2(M)e table that converts M destinations (dsti)
to the corresponding ports (dporti).

The reservation blocks update an M -position binary mask to
avoid collisions on output ports, whereas the priority decoder
implements the selected priority and FIFO management poli-
cies by properly generating the the reni and ladxi signals.
Since the lei and adxi signals must be asserted the clock
cycle after the reni and ladxi, they are delayed by means
of registers. In particular, the lei and adxi are obtained by
delaying the reni and ladxi of one clock cycle.

1) Reservation block: Each reservation block (Fig. 5 (a))
receives the dporti signals, according to the S0 . . .SM−1

sequence, generates a reservation signal (reservei) and spec-
ifies the output port to be reserved (porti). The reservation
is obtained by updating the rmask, which contains a ‘1’

8

in the position of a reserved output port and a ‘0’ in the
position of a free output port. Each reservation block generates
porti = dportSi , that is converted by a one-hot decoder into
a mask with a ‘1’ in position porti. The reservation mask
is updated (output rmask) by comparing this mask with the
input rmask: if the input rmask contains a ‘0’ in position
porti the reservei goes to ‘1’.

2) Priority decoder: The priority decoder is made of two
blocks: the read-enable generation block (Fig. 5 (b)) and the
destination-port generation block (Fig. 5 (c)).

a) read-enable generation block: The read-enable gen-
eration block is based on few logic gates that act differently
depeding on the approach selected to manage the input FIFOs
(SCM/DCM): i) in the DCM approach, reni = reserveSi
when FIFO i is not empty (FIFO emptyi=‘0’) is obtained by
combining Si one-hot representation with the corresponding
reserve signal. ii) in the SCM approach, reni = eni when
FIFO i is not empty (FIFO emptyi=‘0’) is based on eni that is
a set of M signals produced by the destination-port generation
block, where eni =‘0’ when lreni =‘0’ and ladxi = M −1,
namely the output port with label M − 1 is used only for
messages whose destination is the node itself (Fig. 5 (c)).

b) destination-port generation block: This is an array of
multiplexers, where each multiplexer in position i, i imple-
ments ladxi = porti when lreni =‘1’. On the other hand,
ladxi must take the value of an un-reserved output port when
lreni =‘0’. This is obtained by means of the permutation
network implemented by the multiplexers in position j, i with
j 6= i whose outputs (muxj,i) are

muxj,0 =

{
0 if port0 = j
j otherwise

(8)

and for i > 0

muxj,i =

{
muxi,i−1 if porti = j
muxj,k otherwise

(9)

where

k =

{
i− 2 if j = i− 1
i− 1 otherwise

(10)

and if k < 0, then muxj,k = 0.

signals

crossbar

signals
ren ccw

01 0101

Routing Memory

0

dec

le0

ren0

ccw

FIFO empty
1

FIFO empty
0

FIFO empty
M−1

radx

renM−1ren1

le1 leM−1

adx0

adx1

adxM−1

init

Figure 6. Routing memory architecture

B. ASP-FT architecture

The ASP-FT algorithm is simply implemented by means
of a routing memory. As a consequence, DCM and SCM
approaches are integrated by filling the routing memory with
the appropriate configuration words. Each word is the con-
catenation of the ren0, . . .renM−1 signals with the adx0,
. . . , adxM−1 signals. In order to reduce the word width,
the adx0, . . . , adxM−1 signals, which can be represented on
M × dlog2(M)e bits, are coded into a crossbar configuration
word (ccw). Since for an M -port crossbar the possible config-
urations are M !, ccw is represented on dlog2(M !)e bits. The
corresponding decoder is hardwired into the crossbar. Thus, as
shown in Fig. 6 the main component in the routing memory
architecture is a RAM. The RAM address (radx) is generated
by an adder and a register. The adder is incremented when at
least one input FIFO is not empty (FIFO emptyi =‘0’) and
it is initialized to zero when the half iteration starts (init).
Moreover, the reni are forced to ‘0’ when FIFOs are empty.

C. Architecture implementation

To achieve high throughput the routing algorithm should
be able to serve the input FIFOs in one clock cycle. This
requirement, which is an intrinsic feature of the routing
memory architecture used for the ASP-FT, implies that the
architectures for the SSP-RR and SSP-FL routing algorithms
are combinational circuits. As it can be inferred from Fig.
4 and 5 the speed of SSP-RR and SSP-FL architectures
depends mainly on M , in fact, M impacts on the size of
several parts of the routing algorithm architectures, namely
the sorting network, the shortest-path information LUT, the
reservation mask, the priority decoder and on the number of
reservation blocks. Given the topologies presented in section
IV, we described the SSP-RR and SSP-FL architectures as
parametric blocks and we performed the logical synthesis on
a 130 nm standard cell technology for M ∈ {3, 4, 5}. Post
synthesis results confirm that a clock frequency of more than
200 MHz is achieved with a complexity that ranges from about
1000 µm2 to about 6000 µm2.

VIII. SIMULATIONS AND RESULTS

The Turbo NOC simulator has been used to simulate both
interleaving and de-interleaving with four significant permu-
tation laws, namely:

1) WiMax interleaver with N=2400 and W=38
2) UMTS interleaver with N=5114 and W=40
3) A prunable S-random interleaver [44] with N=16384

and W=37
4) A circular shifting interleaver [45] with N=24576 and

W=39
We tested the following topologies:

1) ring (R)
2) toroidal mesh (T)
3) honeycomb (H)
4) generalized de-Bruijn (B)
5) generalized Kautz (K)

9

Table II
THROUGHPUT [MB/S]/AREA [MM2] ACHIEVED FOR THE WIMAX INTERLEAVER (N=2400) WITH DIFFERENT TOPOLOGIES, P , R AND ROUTING

ALGORITHMS (DCM APPROACH)

D=2, ring D=2, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 115.50/1.64 132.30/3.85 147.06/5.71 152.28/6.91 104.35/2.05 140.85/3.48 195.44/5.17 270.27/7.17
SSP-FL (PP) 112.89/1.56 134.38/3.18 147.78/4.41 139.86/5.43 108.99/1.85 149.07/3.21 209.06/4.65 287.77/6.35
ASP-FT (AP) 130.15/1.40 144.75/2.87 152.87/3.97 142.35/5.02 108.99/1.73 149.07/2.90 209.06/4.07 287.77/5.41

R=0.50
SSP-RR (PP) 86.15/0.43 122.32/1.61 133.48/3.96 137.77/5.45 86.21/0.44 131.15/1.33 172.91/3.19 229.89/5.29
SSP-FL (PP) 86.15/0.42 123.71/1.37 132.89/3.67 130.15/5.17 86.15/0.41 138.25/1.06 188.68/2.62 241.94/4.59
ASP-FT (AP) 86.02/0.49 134.53/1.29 137.30/3.35 130.72/4.80 86.15/0.46 138.25/1.05 188.68/2.38 241.94/3.99

R=0.33
SSP-RR (PP) 57.80/0.41 101.10/0.74 122.08/2.96 125.92/5.01 57.86/0.39 102.48/0.75 155.44/1.82 195.76/3.97
SSP-FL (PP) 57.78/0.39 100.84/0.72 121.58/2.67 120.97/4.87 57.80/0.38 102.21/0.67 161.51/1.43 207.25/3.28
ASP-FT (AP) 57.83/0.46 100.84/0.81 122.70/2.52 121.70/4.56 57.80/0.44 102.21/0.74 161.51/1.40 207.25/2.94

D=3, honeycomb D=3, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 113.21/1.69 184.05/2.29 181.27/5.16 323.45/6.47 156.45/0.83 203.74/2.06 314.96/3.60 428.57/5.84
SSP-FL (PP) 114.83/1.67 187.79/2.22 179.64/4.37 314.96/5.99 166.67/0.67 229.89/1.93 332.41/3.41 451.13/5.49
ASP-FT (AP) 127.93/1.51 247.42/1.64 242.91/3.62 385.85/4.93 166.67/0.67 250.52/1.58 339.94/2.98 456.27/4.64

R=0.50
SSP-RR (PP) 85.96/0.45 151.32/0.91 160.64/3.52 267.26/4.69 86.52/0.45 152.67/0.86 242.91/1.81 331.49/3.76
SSP-FL (PP) 85.90/0.43 151.52/0.84 163.71/3.10 261.44/4.20 86.52/0.44 152.48/0.82 241.94/1.66 338.03/3.37
ASP-FT (AP) 85.90/0.49 151.32/0.90 213.52/2.08 305.34/3.48 86.52/0.53 152.28/0.88 244.40/1.58 337.08/2.98

R=0.33
SSP-RR (PP) 57.72/0.40 102.48/0.80 144.75/2.27 223.88/3.49 58.00/0.44 103.18/0.78 167.13/1.56 243.90/3.15
SSP-FL (PP) 57.72/0.40 102.48/0.79 148.88/2.01 226.42/3.21 58.00/0.44 103.09/0.78 168.07/1.50 240.48/2.96
ASP-FT (AP) 57.75/0.46 102.65/0.86 162.38/1.58 233.92/2.87 58.00/0.50 103.09/0.83 168.07/1.48 242.91/2.70

D=4, toroidal mesh D=4, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 123.84/1.17 171.67/2.10 187.21/4.24 310.08/6.24 140.19/0.94 268.46/1.56 334.26/3.31 517.24/5.29
SSP-FL (PP) 129.87/1.14 167.83/2.00 200.33/3.67 323.45/5.77 155.24/0.82 281.69/1.30 347.83/3.13 550.46/4.92
ASP-FT (AP) 165.29/0.69 282.35/1.30 357.14/2.79 497.93/4.52 167.13/0.67 281.69/1.24 397.35/2.49 550.46/4.28

R=0.50
SSP-RR (PP) 86.15/0.46 147.78/1.03 165.29/2.75 260.30/4.58 86.52/0.47 153.65/0.89 248.45/1.91 359.28/3.64
SSP-FL (PP) 86.08/0.45 151.52/0.95 178.31/2.51 270.27/4.25 86.52/0.46 153.85/0.88 247.93/1.81 360.36/3.50
ASP-FT (AP) 86.21/0.54 152.28/1.05 242.42/1.85 334.26/3.46 86.52/0.57 153.85/0.96 248.96/1.77 360.36/3.27

R=0.33
SSP-RR (PP) 57.80/0.44 102.92/0.93 154.64/1.97 223.46/3.81 58.00/0.46 103.54/0.88 169.01/1.75 248.96/3.46
SSP-FL (PP) 57.80/0.44 102.92/0.91 163.49/1.79 226.42/3.57 58.00/0.45 103.54/0.86 169.25/1.69 248.45/3.34
ASP-FT (AP) 57.83/0.50 102.92/0.98 166.90/1.79 238.57/3.25 58.00/0.53 103.54/0.92 169.25/1.68 248.45/3.15

Table III
THROUGHPUT [MB/S]/AREA [MM2] ACHIEVED FOR THE CIRCULAR SHIFTING INTERLEAVER (N=24576) WITH DIFFERENT TOPOLOGIES, P , R AND

ROUTING ALGORITHMS WITH DCM APPROACH. LIGHT-GRAY, MID-GRAY AND DARK-GRAY CELLS INDICATE THE HIGHEST THROUGHPUT, THE HIGHEST
AREA AND THE LOWEST AREA POINTS FOR EACH D VALUE RESPECTIVELY

D=2, ring D=2, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 62.56/6.58 72.23/15.73 81.22/24.45 87.04/30.37 56.62/8.43 77.26/14.10 116.01/20.56 169.96/26.72
SSP-FL (PP) 62.57/6.84 73.89/13.90 82.98/18.67 88.25/22.11 59.52/8.09 83.52/13.50 125.31/18.55 183.79/23.53
ASP-FT (AP) 71.48/5.93 81.57/11.29 88.17/15.12 91.14/19.36 59.52/6.94 83.52/10.74 125.31/13.90 183.79/16.74

R=0.50
SSP-RR (PP) 49.12/1.80 72.36/6.00 80.26/15.71 86.11/21.02 49.13/1.79 77.37/4.10 114.99/10.17 165.12/16.37
SSP-FL (PP) 49.12/1.78 73.42/5.10 82.28/14.68 87.29/20.48 49.13/1.78 86.74/2.98 129.59/8.00 186.75/13.78
ASP-FT (AP) 49.12/2.50 82.40/4.93 87.48/12.55 90.23/18.42 49.13/2.39 86.74/3.43 129.59/7.03 186.75/10.80

R=0.33
SSP-RR (PP) 32.78/1.76 63.67/2.09 79.52/11.40 85.06/19.10 32.78/1.76 63.83/2.06 111.61/4.13 162.20/9.53
SSP-FL (PP) 32.78/1.76 63.68/2.04 81.51/9.65 86.27/18.43 32.77/1.75 63.81/2.01 123.57/2.66 186.58/6.51
ASP-FT (AP) 32.78/2.51 63.67/3.37 86.71/9.32 88.90/17.17 32.77/2.44 63.81/2.99 123.57/3.71 186.58/6.45

D=3, honeycomb D=3, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 63.28/6.51 107.23/8.07 103.96/20.19 219.19/21.14 87.61/2.86 118.27/6.64 210.05/10.39 332.65/16.23
SSP-FL (PP) 64.03/6.67 109.73/8.31 106.61/16.64 214.53/20.29 97.37/2.06 135.54/6.08 220.22/10.86 350.29/16.37
ASP-FT (AP) 72.48/5.74 152.42/5.28 160.67/11.92 313.79/13.45 97.37/2.29 153.26/4.55 239.53/8.07 375.55/11.66

R=0.50
SSP-RR (PP) 49.12/1.80 95.52/2.19 102.95/12.05 213.78/10.75 49.16/1.81 95.63/2.15 185.62/2.91 322.18/5.24
SSP-FL (PP) 49.12/1.79 95.48/2.13 106.06/10.62 208.55/9.56 49.16/1.81 95.69/2.10 185.68/2.76 346.34/4.32
ASP-FT (AP) 49.12/2.50 95.60/3.05 163.71/4.91 312.99/6.14 49.16/2.63 95.69/3.02 185.62/3.54 348.10/4.60

R=0.33
SSP-RR (PP) 32.78/1.77 63.84/2.08 102.14/5.83 205.69/5.13 32.79/1.79 63.89/2.08 124.30/2.68 235.31/3.96
SSP-FL (PP) 32.78/1.76 63.84/2.06 108.17/4.43 216.03/4.54 32.79/1.79 63.89/2.07 124.27/2.62 235.58/3.78
ASP-FT (AP) 32.78/2.50 63.85/2.99 123.62/4.18 233.35/5.14 32.79/2.47 63.89/2.95 124.30/3.62 235.58/4.68

D=4, toroidal mesh D=4, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

R=1.00
SSP-RR (PP) 70.18/4.23 97.20/6.89 110.05/13.77 202.77/16.59 77.99/3.34 174.15/3.71 215.50/8.33 493.89/10.22
SSP-FL (PP) 73.67/4.04 96.02/6.58 117.84/11.43 214.68/15.00 86.09/3.21 184.17/2.97 232.38/8.38 516.74/9.82
ASP-FT (AP) 96.57/2.36 184.12/3.13 275.76/6.43 471.89/9.19 97.11/2.35 184.17/3.06 298.83/5.09 516.74/7.61

R=0.50
SSP-RR (PP) 49.14/1.82 95.26/2.32 109.34/7.13 198.32/7.77 49.16/1.82 95.75/2.19 185.62/2.95 350.48/4.47
SSP-FL (PP) 49.14/1.80 95.48/2.22 119.74/6.10 213.85/7.03 49.16/1.82 95.75/2.17 185.96/2.89 350.89/4.28
ASP-FT (AP) 49.14/2.66 95.61/3.34 185.17/4.03 347.12/5.17 49.16/2.72 95.75/3.15 185.90/3.83 350.89/4.96

R=0.33
SSP-RR (PP) 32.78/1.79 63.85/2.17 110.01/3.59 196.55/5.02 32.79/1.81 63.91/2.15 124.37/2.82 236.04/4.17
SSP-FL (PP) 32.78/1.78 63.85/2.15 123.10/2.97 216.80/4.56 32.79/1.80 63.92/2.14 124.40/2.78 235.94/4.06
ASP-FT (AP) 32.78/2.42 63.85/3.03 124.00/3.95 234.15/5.26 32.79/2.51 63.92/3.02 124.40/3.72 235.94/4.96

for P ∈ {8, 16, 32, 64}, with SSP-RR, SSP-FL and ASP-FT
routing algorithms and including DCM and SCM approaches

for FIFO management. The SISO architecture parameters were
set as follows: ∆ = W/R, θ = τ = R−1 and backward

10

recursion order (RO=BRO). The choice of the window size
has been obtained as follows. Usually, in optimized turbo
decoder architectures W is chosen such that N/(P ·W) ∈ N
to maximize the decoder throughput and simplify SISOs
synchronization [24]. In some cases this condition can be
easily satisfied (e.g. N=2400, P=8 and W=30), whereas in
other cases it is not possible (e.g. N=5114, P=8 leads to
N/P /∈ N). Given this situation we decided to fix a value
of W for each N so that N/(P · W) /∈ N. This choice
avoids “lucky cases” with N/(P · W) ∈ N and makes the
comparison fair. Moreover, we tried to choose the W values
as close as possible one to the other to avoid results that are
too influenced by the W value itself. For each case, the Turbo
NOC simulator provided the total number of cycles required to
perform a complete iteration (interleaving and de-interleaving),
the depth of each FIFO in the network, the content of each
routing memory (see Fig. 1 (b)) and the t′(i, j) sequence to
be stored into the location memory (see Fig. 1 (b) and (c)).
As a consequence, for each case we can estimate the achieved
throughput for a certain clock frequency with a given number
of iterations. Moreover, to characterize the complexity of each
solution we give the synthesis results of all simulated networks
for a 130 nm standard cell technology. Memories have been
generated by means of a 130 nm memory generator. The area
results concern all the nodes in the network where each node
includes the blocks depicted in Fig. 1 except the SISO and the
memory used to store the extrinsic information (shaded gray
blocks in Fig. 1). The complexity characterization shown in
this work does not consider post place and route area overhead.
The actual routing overhead is expected to be quite limited for
regular topologies, such as meshes and toroids, which can be
implemented by means of a modular layout. For example in
[46] and [47] it is shown that for regular topologies, at least
at the 130 nm technology node, the area occupation of logic
cells in the design gives a useful indication about the actual
complexity of the NOC. Routing overhead in less regular
topologies is somewhat more difficult to estimate before place
and route. However, results are available in the literature show-
ing that a low area layout can be generated for generalized
de-Bruijn networks. For example in [48] and [49] an optimal
layout algorithm is run on generalized de-Bruijn topologies
leading to a layout comparable and in some cases smaller than
the one required by toroidal meshes. More in general, since the
layout area of a network x can be expressed as Ω(|B(x)|2min)
[50], where |B(x)|min is the minimum bisection width of
the network, this model can be used to roughly compare
different topologies. For example, |B(T)|min = 2

√
P and

|B(B)|min = Ω(P/ logP) for toroidal mesh and for de-Bruijn
topologies respectively: this shows that the routing overhead
of de-Bruijn network is similar to that of toroidal meshes, at
least up to 64 nodes.

As a significant case of study we consider each extrinsic
information value represented on 8 bits. Thus, we represented
λ on 8 bits for all the simulations, except the ones related to the
WiMax permutation law. In fact, since the WiMax turbo code
is double binary, its extrinsic information is an array made
of three log-likelihood ratios, as a consequence a message is
represented on 24 bits. Moreover, we consider fclk = 200

MHz and Î = 8; thus, from (3) we can infer that to sustain a
target throughput of T̂ = 200 Mb/s, we need at least d·P ·R =
16, namely at least P · R = 16 for binary codes and at least
P · R = 8 for double binary codes. However, due to the IL
term in (2), higher values of the P · R product are also of
interest.

The analysis of the experimental results obtained with
the Turbo NOC simulator shows some interesting general
properties.

1) SSP solutions adopting the FA node architecture are the
most demanding implementations in terms of area. Since
the PP node architecture achieves the same throughput
as the FA solution with a lower area, in the following
only the PP node architecture will be addressed.

2) The DCM FIFO management method performs better
than the SCM one both in terms of throughput and
complexity. As a consequence, in the following only
results that are referred to the DCM approach will be
presented.

3) Generalized de-Bruijn and generalized Kautz topolo-
gies achieve nearly the same results both in terms
of throughput and complexity. In the following only
results obtained with generalized Kautz topologies will
be presented.

4) Results tend to be clustered into two families, namely
short interleavers (WiMax interleaver with N=2400 and
UMTS interleaver with N=5114) and long interleavers
(prunable S-random interleaver with N=16384 and cir-
cular shifting interleaver with N=24576). For the sake
of clarity, in the following, only results obtained for
the WiMax interleaver (N=2400) and circular shifting
interleaver (N=24576) will be presented.

The most significant experimental results are summarized in
Table II and III that refer to the WiMax interleaver with N =
2400 and to the circular shifting interleaver with N = 24576
respectively. Each cell of the two tables gives the throughput
in Mb/s and the area in mm2 obtained for different P and
R values, routing algorithms and architectures for the DCM
approach. In Table III light-gray, mid-gray and dark-gray cells
indicate the highest throughput, the highest area and the lowest
area points for each D value respectively.

The most important conclusions that can be derived from
results in Table II and III are:

1) In most cases, topologies with D=4 achieve higher
throughput with lower complexity overhead than topolo-
gies with D=2 when R → 1. On the other hand, when
R < 1 increasing D from 2 to 3 always leads to a higher
throughput and a smaller area, whereas increasing D
from 3 to 4 leads to higher throughput but also to higher
area.

2) The ASP-FT routing algorithm is the best performing
solution both in terms of throughput and area when R =
1.

3) The routing memory overhead of the ASP-FT algorithm
(see Fig. 1 (b)) becomes relevant as R decreases and SSP
solutions become the best solutions mainly for P = 8
and P = 16.

11

(a) WiMax, N = 2400

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
100

150

200

250

300

350

400

450

500

550

600

A [mm2]

T
 [M

b/
s]

K4

K2

T

R

H

K3

K2

T

R

H

K3

K4

K2

T

R

HK3

K3

K2

T

R
H

K4

K4

P = 64

P = 32

P = 16

P = 8

(b) circular shifting interleaver, N = 24576

2 4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

400

450

500

550

A [mm2]

T
 [M

b/
s]

K4

K2

T
RH

K3

T

K2

K4

R

HK3

K4

K2

T

R

H

K3

K4

K2

T

R

H

K3

P = 64

P = 32

P = 16

P = 8

Figure 7. Throughput/area comparison of different topologies for the case R = 1, ASP-FT routing algorithm, DCM approach

(a) WiMax, N = 2400, R = 1, P = 64

4 4.5 5 5.5 6 6.5 7 7.5
100

150

200

250

300

350

400

450

500

550

600

A [mm2]

T
 [M

b/
s]

K4, SSP−RR (PP)

K2, SSP−RR (PP)

T, SSP−RR (PP)

R, SSP−RR (PP)

H, SSP−RR (PP)

K3, SSP−RR (PP)

K4, SSP−FL (PP)

K2, SSP−RR (PP)

T, SSP−FL (PP)

R, SSP−FL (PP)

H, SSP−FL (PP)

K3, SSP−FL (PP)

K4, ASP−FT (AP)

K2, ASP−FT (AP)

T, ASP−FT (AP)

R, ASP−FT (AP)

H, ASP−FT (AP)

K3, ASP−FT (AP)

(b) WiMax, N = 2400, R = 0.33, P = 16

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
100.5

101

101.5

102

102.5

103

103.5

104

A [mm2]

T
 [M

b/
s]

K4, ASP−FT (AP)

K2, ASP−FT (AP)

T, ASP−FT (AP)

R, ASP−FT (AP)

H, ASP−FT (AP)

K3, ASP−FT (AP)

K4, SSP−FL (PP)

K2, SSP−FL (PP)

T, SSP−FL (PP)

R, SSP−FL (PP)

H, SSP−FL (PP)

K3, SSP−FL (PP)

K4, SSP−RR (PP)

K2, SSP−RR (PP)

T, SSP−RR (PP)

R, SSP−RR (PP)

H, SSP−RR (PP)

K3, SSP−RR (PP)

(c) circular shifting interleaver, N = 24576, R = 1, P = 64

5 10 15 20 25 30 35
50

100

150

200

250

300

350

400

450

500

550

A [mm2]

T
 [M

b/
s]

K4, ASP−FT (AP)

K2, ASP−FT (AP)

T, ASP−FT (AP)

R, ASP−FT (AP)

H, ASP−FT (AP)

K3, ASP−FT (AP)

K4, SSP−FL (PP)

K2, SSP−FL (PP)

T, SSP−FL (PP)

R, SSP−FL (PP)

H, SSP−FL (PP)

K3, SSP−FL (PP)

K4, SSP−RR (PP)

K2, SSP−RR (PP)

T, SSP−RR (PP)

R, SSP−RR (PP)

H, SSP−RR (PP)

K3, SSP−RR (PP)

(d) circular shifting interleaver, N = 24576, R = 0.33, P = 16

2 2.5 3 3.5
63.65

63.7

63.75

63.8

63.85

63.9

63.95

A [mm2]

T
 [M

b/
s]

K4, ASP−FT (AP)

K2, ASP−FT (AP)

T, ASP−FT (AP)

R, ASP−FT (AP)

H, ASP−FT (AP)

K3, ASP−FT (AP)

K4, SSP−FL (PP)

K2, SSP−FL (PP)

T, SSP−FL (PP)

R, SSP−FL (PP)

H, SSP−FL (PP)

K3, SSP−FL (PP)

K4, SSP−RR (PP)

K2, SSP−RR (PP)

T, SSP−RR (PP)

R, SSP−RR (PP)

H, SSP−RR (PP)

K3, SSP−RR (PP)

Figure 8. Throughput/area comparison of different topologies and routing algorithm with DCM approach: WiMax interleaver, N = 2400 for R = 1, P = 64
(a) and R = 0.33, P = 16 (b); circular shifting interleaver, N = 24576 for R = 1, P = 64 (c) and R = 0.33, P = 16 (d)

12

Table IV
HARDWARE RESOURCES BREAKDOWN FOR THE CIRCULAR SHIFTING INTERLEAVER WITH N=24576, DCM APPROACH: SOME SIGNIFICANT POINTS

D top. P R routing alg. Tot. FIFOs Tot. CB Tot. reg. RA/M IM+LM Tot.
area [mm2] area [mm2] area [mm2] area [mm2] area [mm2] area [mm2]

2 R 64 1 ASP-FT (AP) 11.45 (59.15%) 0.03 (0.15%) 0.08 (0.41%) 6.35 (32.80%) 1.45 (7.49%) 19.36 (100%)
2 R 64 1 SSP-RR (PP) 27.46 (90.43%) 0.05 (0.16%) 0.14 (0.46%) 0.11 (0.36%) 2.61 (8.59%) 30.37 (100%)
2 R 8 0.33 SSP-FL/RR (PP) 0.05 (2.84%) 0.01 (0.57%) 0.01 (0.57%) 0.01 (0.57%) 1.68 (95.45%) 1.76 (100%)
2 K 64 0.5 ASP-FT (AP) 6.53 (60.46%) 0.03 (0.28%) 0.08 (0.74%) 2.71 (25.09%) 1.45 (13.43%) 10.80 (100%)
2 K 64 1 SSP-RR (PP) 23.81 (89.11%) 0.05 (0.19%) 0.14 (0.52%) 0.11 (0.41%) 2.61 (9.77%) 26.72 (100%)
2 K 8 0.33 SSP-FL (PP) 0.05 (2.86%) 0 (0%)(1) 0.01 (0.57%) 0.01 (0.57%) 1.68 (96.00%) 1.75 (100%)
3 H 64 1 ASP-FT (AP) 9.25 (68.77%) 0.09 (0.67%) 0.11 (0.82%) 2.55 (18.96%) 1.45 (10.78%) 13.45 (100%)
3 H 64 1 SSP-RR (PP) 18.02 (85.24%) 0.10 (0.47%) 0.18 (0.85%) 0.23 (1.09%) 2.61 (12.35%) 21.14 (100%)
3 H 8 0.33 SSP-FL (PP) 0.05 (2.84%) 0.01 (0.57%) 0.01 (0.57%) 0.01 (0.57%) 1.68 (95.45%) 1.76 (100%)
3 K 64 1 ASP-FT (AP) 7.86 (67.41%) 0.09 (0.77%) 0.11 (0.94%) 2.15 (18.44%) 1.45 (12.44%) 11.66 (100%)
3 K 64 1 SSP-FL (PP) 13.15 (80.33%) 0.10 (0.61%) 0.18 (1.10%) 0.33 (2.02%) 2.61 (15.94%) 16.37 (100%)
3 K 8 0.33 SSP-FL (PP) 0.06 (3.35%) 0.01 (0.56%) 0.02 (1.12%) 0.02 (1.12%) 1.68 (93.85%) 1.79 (100%)
4 T 64 1 ASP-FT (AP) 5.14 (55.94%) 0.23 (2.5%) 0.13 (1.41%) 2.24 (24.37%) 1.45 (15.78%) 9.19 (100%)
4 T 64 1 SSP-RR (PP) 13.21 (79.63%) 0.17 (1.02%) 0.23 (1.39%) 0.37 (2.23%) 2.61 (15.73%) 16.59 (100%)
4 T 8 0.33 SSP-FL (PP) 0.06 (3.35%) 0.01 (0.56%) 0.02 (1.12%) 0.02 (1.12%) 1.67 (93.85%) 1.78 (100%)
4 K 64 1 ASP-FT (AP) 3.78 (49.67%) 0.22 (2.89%) 0.13 (1.71%) 2.03 (26.68%) 1.45 (19.05%) 7.61 (100%)
4 K 64 1 SSP-RR (PP) 6.86 (67.12%) 0.16 (1.57%) 0.23 (2.25%) 0.36 (3.52%) 2.61 (25.54%) 10.22 (100%)
4 K 8 0.33 SSP-FL (PP) 0.06 (3.33%) 0.10 (0.56%) 0.02 (1.11%) 0.03 (1.67%) 1.68 (93.33%) 1.80 (100%)

(1) The area and the percentage are not really zero, but they are negligible compared with the IM and LM contribution to the total area.

4) In most cases, generalized Kautz topologies are the best
performing topologies.

As a significant example, in Fig. 7, we show the experimental
results obtained with R = 1 and ASP-FT routing algorithm
for the WiMax interleaver with N = 2400 (a) and the circular
shifting interleaver with N = 24576 (b). Each point represents
the throughtput and the area obtained for a certain topology
with a certain parallelism degree P . Results referred to the
same P value are bounded into the same box and a label is
assigned to each point to highlight the corresponding topology,
namely topologies are identified as R-ring, H-honeycomb, T-
toroidal mesh, K-generalized Kautz with the corresponding D
value (K2, K3, K4).

As it can be observed, generalized Kautz topologies with
D = 4 (K4) are always the best solutions to achieve
high throughput with minimum area overhead. Moreover,
we observe that increasing D has the effect of reducing
network congestion, which has two positive consequences:
higher throughput and smaller size of input FIFOs. However,
the saved area benefit is partially mitigated by the increased
complexity of the routing algorithm, as highlighted in the first
part of Table V for PP node architectures: for example, K
topology requires 23.81 mm2 for FIFOs and 0.11 mm2 for
routing logic/memory when D = 2, whereas areas of 6.86
mm2 and 0.36 mm2 are occupied when D = 4. On the
contrary, if an AP architecture is used for switching nodes,
the routing memory size progressively becomes smaller with
increasing D, due to the higher number of packets that can be
switched at each clock cycle. For example, in the second part
of Table V (AP node architecture), the area occupied by the
routing memory (RA/M) reduces with increasing D.

In Fig. 8 significant results extracted from Table II and III
are shown in graphical form. In particular, for R = 1 the ASP-
FT routing algorithm is the best solution, whereas for R < 1
SSP routing algorithms, implemented as PP node architectures,
tend to achieve the same performance as the ASP-FT routing
algorithm with lower complexity overhead (see Fig. 8 (a) and
(b) for the WiMax interleaver, N = 2400 and Fig. 8 (c) and

Table V
AREA OCCUPIED BY INPUT FIFOS AND ROUTING ALGORITHM/MEMORY
(RA/M) FOR DIFFERENT TOPOLOGIES AND ROUTING ALGORITHMS WITH
P = 64, CIRCULAR SHIFTING INTERLEAVER (N = 24576), R = 1 AND

DCM APPROACH

Node arch. routing alg. D top. Tot. FIFOs RA/M
area [mm2] area [mm2]

PP SSP-RR

2 R 27.46 0.11
2 K 23.81 0.11
3 H 18.02 0.23
3 K 13.01 0.23
4 T 13.21 0.37
4 K 6.86 0.36

AP ASP-FT

2 R 11.45 6.35
2 K 12.38 2.79
3 H 9.25 2.55
3 K 7.86 2.15
4 T 5.14 2.24
4 K 3.78 2.03

(d) for the circular shifting interleaver, N = 24576).
An interesting phenomenon that arises increasing the inter-

leaver size is the performance saturation that can be observed
in the Table III for D = 2 topologies, namely the throughput
tends to saturate and increasing R has the effect of augmenting
the area with a negligible increase or even with a decrease of
throughput. As an example, the generalized Kautz topology
with P = 64 and ASP-FT routing algorithm achieves more
than 180 Mb/s with R = 1, R = 0.5, R = 0.33. However,
the solution with the smallest area is the one obtained with
R = 0.33.

The throughput flattening of low D topologies can be
explained by observing that high values of R tend to saturate
the network. Furthermore, high values of R lengthen the
input FIFOs as highlighted in Table IV, where the total area
of the network is given as the breakdown of the building
blocks, namely the input FIFOs, the crossbars (CB), the output
registers, the routing algorithm/memory (RA/M), the identifier
memory (IM) and the location memory (LM) is given for
some significant cases: the highest throughput (light-gray), the
highest area (mid-gray), and lowest area (dark-gray) points for

13

each D value in Table III.

IX. CONCLUSIONS

In this work a general framework to design network on
chip based turbo decoder architectures has been presented.
The proposed framework can be adapted to explore different
topologies, degrees of parallelism, message injection rates and
routing algorithms. Experimental results show that generalized
de-Bruijn and generalized Kautz topologies achieve nearly
the same results both in terms of throughput and complexity.
Moreover, as highlighted in Table II and III generalized Kautz
topologies achieve high throughput with a limited complexity
overhead. In particular, in most cases, topologies with D=4
achieve higher throughput with lower complexity overhead
than topologies with D=2 when R → 1. On the other hand,
when R < 1 increasing D from 2 to 3 always leads to a
higher throughput and a smaller area, whereas increasing D
from 3 to 4 leads to higher throughput but also to higher
area. Finally, depending on the target throughput requirements
different parallelism degrees, message injection rates and
routing algorithms can be used to minimize the network area
overhead.

ACKNOWLEDGMENT

This work is partially supported by the Italian National Pro-
gram FIRB, contract n. RBAP06L4S5 and by the Newcom++
network of excellence, funded by the European Community.

REFERENCES

[1] T. Vogt and N. Wehn, “Reconfigurable ASIP for convolutional and turbo
decoding in an SDR environment,” IEEE Transactions on VLSI, vol. 16,
no. 10, pp. 1309–1320, Oct 2008.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error
correcting coding and decoding: Turbo codes,” in IEEE International
Conference on Communications, 1993, pp. 1064–1070.

[3] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan, “The advan-
tages of non-binary turbo codes,” in IEEE Information Theory Workshop,
2001, pp. 61–63.

[4] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design
and VLSI architecture for low-latency MAP turbo decoders,” IEEE
Transactions on VLSI, vol. 13, no. 4, pp. 427–438, Apr 2005.

[5] J. H. Kim and I. C. Park, “Double-binary circular turbo decoding based
on border metric encoding,” IEEE Transactions on Circuits and Systems
II, vol. 55, no. 1, pp. 79–83, Jan 2008.

[6] M. Martina, M. Nicola, and G. Masera, “A flexible UMTS-WiMax turbo
decoder architecture,” IEEE Transactions on Circuits and Systems II,
vol. 55, no. 4, pp. 369–373, Apr 2008.

[7] J. H. Kim and I. C. Park, “Bit-level extrinsic information exchange
method for double-binary turbo codes,” IEEE Transactions on Circuits
and Systems II, vol. 56, no. 1, pp. 81–85, Jan 2009.

[8] C. H. Lin, C. Y. Chen, A. Y. Wu, and T. H. Tsai, “Low-power memory-
reduced traceback MAP decoding for double-binary convolutional turbo
decoder,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 5,
pp. 1005–1016, May 2009.

[9] G. Masera, Turbo Code applications: a journey from a paper to
realization. Springer, 2005, ch. 14 - “VLSI for turbo codes”.

[10] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of
concatenated convolutional codes: Implementation issues,” Proceedings
of the IEEE, vol. 95, no. 6, pp. 1201–1227, Jun 2007.

[11] A. Giulietti, L. V. der Perre, and M. Strum, “Parallel turbo coding
interleavers: avoiding collisions in accesses to storage elements,” IET
Electronics Letters, vol. 38, no. 5, pp. 232–234, Feb 2002.

[12] J. Kwak and K. Lee, “Design of dividable interleaver for parallel
decoding in turbo codes,” IET Electronics Letters, vol. 38, no. 22, pp.
1362–1364, Oct 2002.

[13] M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-speed turbo-
decoding through concurrent interleaving,” in IEEE International Sym-
posium on Circuits and Systems, 2002, pp. 897–900.

[14] A. Tarable and S. Benedetto, “Mapping interleaving laws to parallel
turbo decoder architectures,” IEEE Communications Letters, vol. 8,
no. 3, pp. 162–164, Mar 2004.

[15] A. Polydoros, “Algorithmic aspects of radio flexibility,” in IEEE Inter-
national Symposium on Personal, Indoor and Mobile Communications,
2008, pp. 1–5.

[16] B. Bougard, R. Priewasser, L. V. der Perre, and M. Huemer, “Algorithm-
architecture co-design of a multi-standard FEC decoder ASIP,” in ICT
Mobile Summit Conference, 2008.

[17] O. Muller, A. Baghdadi, and M. Jezequel, “From parallelism levels to
a multi-ASIP architecture for turbo decoding,” IEEE Transactions on
VLSI, vol. 17, no. 1, pp. 92–102, Jan 2009.

[18] M. J. Thul, F. Gilbert, and N. Wehn, “Optimized concurrent interleaving
architecture for high-throughput turbodecoding,” in IEEE International
Conference on Electronics, Circuits and Systems, 2002, pp. 1099–1102.

[19] ——, “Concurrent interleaving architectures for high-throughput chan-
nel coding,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2003, pp. 613–616.

[20] F. Speziali and J. Zory, “Scalable and area efficient concurrent interleaver
for high throughput turbo-decoders,” in IEEE Euromicro Symposium on
Digital System Design, 2004, pp. 334–341.

[21] C. Neeb, M. J. Thul, and N. Wehn, “Network-on-chip-centric approach
to interleaving in high throughput channel decoders,” in IEEE Interna-
tional Symposium on Circuits and Systems, 2005, pp. 1766–1769.

[22] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and
Benes-based on-chip communication networks for multiprocessor turbo
decoding,” in Design, Automation and Test in Europe Conference and
Exhibition, 2007, pp. 654–659.

[23] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn in-
terconnection network for a flexible LDPC/turbo decoder,” in IEEE
International Symposium on Circuits and Systems, 2008, pp. 97–100.

[24] M. Martina, M. Nicola, and G. Masera, “Hardware design of a low
complexity, parallel interleaver for wimax duo-binary turbo decoding,”
IEEE Communications Letters, vol. 12, no. 11, pp. 846–848, Nov 2008.

[25] O. Muller, A. Baghdadi, and M. Jezequel, “Bandwidth reduction of
extrinsic information exchange in turbo decoding,” IET Electronics
Letters, vol. 42, no. 19, pp. 1104–1105, Sep 2006.

[26] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Transactions on
Information Theory, vol. 20, no. 3, pp. 284–287, Mar 1974.

[27] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-
output modules for the construction and distributed iterative decoding of
code networks,” European Transactions on Telecommunications, vol. 9,
no. 2, pp. 155–172, Mar/Apr 1998.

[28] O. Muller, A. Baghdadi, and M. Jezequel, “ASIP-based multiprocessor
SoC design for simple and double binary turbo decoding,” in Design,
Automation and Test in Europe Conference and Exhibition, 2006, pp.
1330–1335.

[29] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan 2002.

[30] L. Benini, “Application specific NoC design,” in Design, Automation
and Test in Europe Conference and Exhibition, 2006, pp. 1330–1335.

[31] F. Vacca, H. Moussa, A. Baghdadi, and G. Masera, “Flexible archi-
tectures for LDPC decoders based on network on chip paradigm,” in
Euromicro Conference on Digital System Design, 2009, pp. 582–589.

[32] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin, “A study
on communication issues for systems-on-chip,” in IEEE Symposium on
Integrated Circuits and Systems Design, 2002, pp. 121–126.

[33] M. Imase and M. Itoh, “Design to minimize diameter on building-block
network,” IEEE Transactions on Computers, vol. 30, no. 6, pp. 439–442,
Jun 1981.

[34] ——, “A design for directed graphs with minimum diameter,” IEEE
Transactions on Computers, vol. 32, no. 8, pp. 782–784, Aug 1983.

[35] B. Parhami and D. M. Kwai, “A unified formulation of honeycomb
and diamond networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, no. 1, pp. 74–80, Jan 2001.

[36] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[37] M. Martina, “Turbo NOC: Network On Chip based turbo decoder
architectures,” downloadable at www.vlsilab.polito.it/∼martina.

[38] “http://www.systemc.org.”
[39] Y. Zhang and K. K. Parhi, “Parallel turbo decoding,” in IEEE Interna-

tional Symposium on Circuits and Systems, 2004, pp. 509–512.

14

[40] A. Abbasfar and K. Yao, “An efficient and practical architecture for high
speed turbo decoders,” in IEEE Vehicular Technology Conference, 2003,
pp. 337–341.

[41] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing
levels for convolutional turbo decoding,” in IEEE International Confer-
ence on Information and Communication Technologies: from Theory to
Applications, 2006, pp. 2353–2358.

[42] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Algorithm for
continuous decoding of turbo codes,” IET Electronics Letters, vol. 32,
no. 4, pp. 314–315, Feb 1996.

[43] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Appli-
cations, 2nd edition. London, UK: Springer-Verlag, 2008.

[44] L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel
turbo decoder architectures,” IEEE Transactions on Communications,
vol. 53, no. 11, pp. 1833–1840, Nov 2005.

[45] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” TDA Progress Report, vol. 42-
122, pp. 56–65, Aug 1995.

[46] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L. Benini, “A layout-
aware analysis of networks-on-chip and traditional inteconnects for
MPSoCs,” IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, vol. 26, no. 3, pp. 421–434, Mar 2007.

[47] P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo, and
L. Benini, “Area and power modeling for networks-on-chip with layout
awareness,” VLSI Design, 2007, special issue on Networks on Chip,
Article ID 50285, 12 pages.

[48] M. Hosseinabady, M. R. Kakoee, J. Mathew, and D. K. Pradhan,
“Reliable network-on-chip based on generalized de Bruijn graph,” in
IEEE International High Level Design Validation and Test Workshop,
2007, pp. 3–10.

[49] ——, “De Bruijn graph as a low latency scalable architecture for energy
efficient massive NoCs,” in Design, Automation and Test in Europe
Conference and Exhibition, 2008, pp. 1370–1373.

[50] M. R. Samatham and D. K. Pradhan, “The De Bruijn multiprocessor
network: A versatile parallel processing and sorting network for VLSI,”
IEEE Transactions on Computers, vol. 38, no. 4, pp. 567–581, Apr 1989.

PLACE
PHOTO
HERE

Maurizio Martina was born in Pinerolo, Italy, in
1975. He received the M.Sc. and Ph.D. in electrical
engineering from Politecnico di Torino, Italy, in
2000 and 2004 respectively. He is currently a Post-
doctoral Researcher at the VLSI Lab, Politecnico di
Torino. His research activities include VLSI design
and implementation of architectures for digital signal
processing and comunications.

PLACE
PHOTO
HERE

Guido Masera received the Dr.Eng. degree (summa
cum laude) in 1986, and the Ph.D. degree in elec-
trical engineering from Politecnico di Torino, Italy,
in 1992. Since 1986 to 1988 he was with CSELT
(Centro Studi e Laboratori in Telecomunicazioni,
Torino, Italy) as a researcher involved in the stan-
dardization activities for the GSM system. Since
1992 he has been Assistant Professor and then
Associate Professor at the Electronic Department,
where he is a member of the VLSI-Lab group.
His research interests include several aspects in the

design of digital integrated circuits and systems, with special emphasis on
high-performance architecture development (especially for wireless commu-
nications and multimedia applications) and on-chip interconnect modeling and
optimization. He has coauthored more than 160 journal and conference papers
in the areas of ASIC-SoC development, architectural synthesis, VLSI circuit
modeling and optimization. In the frame of National and European research
projects, he has been co-designer of several ASIC and FPGA implementations
in the fields of Artificial Intelligence, Computer Networks, Digital Signal
Processing, Transmission and Coding.

