1,413 research outputs found

    SCAMPI: Service platform for soCial Aware Mobile and Pervasive computIng

    Get PDF
    Allowing mobile users to find and access resources available in the surrounding environment opportunistically via their smart devices could enable them to create and use a rich set of services. Such services can go well beyond what is possible for a mobile phone acting alone. In essense, access to diverse resources such as raw computational power, social networking relationships, or sensor readings across a set of different devices calls for distributed task execution. In this paper, we discuss the SCAMPI architecture designed to support distributed task execution in opportunistic pervasive networks. The key elements of the architecture include leveraging human social behavior for efficient opportunistic interaction between a variety of sensors, personal communication devices and resources embedded in the local environment. The SCAMPI architecture abstracts resources asservice components following a service-oriented model. This enables composing rich applications that utilize a collection of service components available in the environment

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer

    Using Tuangou to reduce IP transit costs

    Get PDF
    A majority of ISPs (Internet Service Providers) support connectivity to the entire Internet by transiting their traffic via other providers. Although the transit prices per Mbps decline steadily, the overall transit costs of these ISPs remain high or even increase, due to the traffic growth. The discontent of the ISPs with the high transit costs has yielded notable innovations such as peering, content distribution networks, multicast, and peer-to-peer localization. While the above solutions tackle the problem by reducing the transit traffic, this paper explores a novel approach that reduces the transit costs without altering the traffic. In the proposed CIPT (Cooperative IP Transit), multiple ISPs cooperate to jointly purchase IP (Internet Protocol) transit in bulk. The aggregate transit costs decrease due to the economies-of-scale effect of typical subadditive pricing as well as burstable billing: not all ISPs transit their peak traffic during the same period. To distribute the aggregate savings among the CIPT partners, we propose Shapley-value sharing of the CIPT transit costs. Using public data about IP traffic of 264 ISPs and transit prices, we quantitatively evaluate CIPT and show that significant savings can be achieved, both in relative and absolute terms. We also discuss the organizational embodiment, relationship with transit providers, traffic confidentiality, and other aspects of CIPT

    Forever Young: Aging Control For Smartphones In Hybrid Networks

    Get PDF
    The demand for Internet services that require frequent updates through small messages, such as microblogging, has tremendously grown in the past few years. Although the use of such applications by domestic users is usually free, their access from mobile devices is subject to fees and consumes energy from limited batteries. If a user activates his mobile device and is in range of a service provider, a content update is received at the expense of monetary and energy costs. Thus, users face a tradeoff between such costs and their messages aging. The goal of this paper is to show how to cope with such a tradeoff, by devising \emph{aging control policies}. An aging control policy consists of deciding, based on the current utility of the last message received, whether to activate the mobile device, and if so, which technology to use (WiFi or 3G). We present a model that yields the optimal aging control policy. Our model is based on a Markov Decision Process in which states correspond to message ages. Using our model, we show the existence of an optimal strategy in the class of threshold strategies, wherein users activate their mobile devices if the age of their messages surpasses a given threshold and remain inactive otherwise. We then consider strategic content providers (publishers) that offer \emph{bonus packages} to users, so as to incent them to download updates of advertisement campaigns. We provide simple algorithms for publishers to determine optimal bonus levels, leveraging the fact that users adopt their optimal aging control strategies. The accuracy of our model is validated against traces from the UMass DieselNet bus network.Comment: See also http://www-net.cs.umass.edu/~sadoc/agecontrol

    Approaches to Incorporating Robustness into Airline Scheduling

    Get PDF
    The airline scheduling process used by major airlines today aims to develop opti- mal schedules which maximize revenue. However, these schedules are often far from \optimal" once deployed in the real world because they do not accurately take into account possible weather, air tra c control (ATC), and other disruptions that can occur during operation. The resulting ight delays and cancellations can cause sig- ni cant revenue loss, not to mention service disruptions and customer dissatisfaction. A novel approach to addressing this problem is to design schedules that are robust to schedule disruptions and can be degraded at any airport location or in any region with minimal impact on the entire schedule. This research project suggests new methods for creating more robust airline schedules which can be easily recovered in the face of irregular operations. We show how to create multiple optimal solutions to the Aircraft Routing problem and suggest how to evaluate robustness of those solutions. Other potential methods for increasing robustness of airline schedules are reviewed.NASA grant NAG1-218

    Reducing Operation Cost of LPWAN Roadside Sensors Using Cross Technology Communication

    Full text link
    Low-Power Wide-Area Network (LPWAN) is an emerging communication standard for Internet of Things (IoT) that has strong potential to support connectivity of a large number of roadside sensors with an extremely long communication range. However, the high operation cost to manage such a large-scale roadside sensor network remains as a significant challenge. In this paper, we propose LOC-LPWAN, a novel optimization framework that is designed to reduce the operation cost using the cross technology communication (CTC). LOC-LPWAN allows roadside sensors to offload sensor data to passing vehicles that in turn forward the data to a LPWAN server using CTC aiming to reduce the data subscription cost. LOC-LPWAN finds the optimal communication schedule between sensors and vehicles to maximize the throughput given an available budget of the user. Furthermore, LOC-LPWAN optimizes the fairness among sensors by allowing sensors to transmit similar amounts of data and preventing certain sensors from dominating the opportunity for data transmissions. LOC-LPWAN also provides an option that allows all sensor to transmit data within a specific delay bound. Extensive numerical analysis performed with real-world taxi data consisting of 40 vehicles with 24-hour trajectories demonstrate that LOC-LPWAN improves the throughput by 72.6%, enhances the fairness by 65.7%, and reduces the delay by 28.8% compared with a greedy algorithm given the same budget
    corecore