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Abstract

The airline scheduling process used by major airlines today aims to develop opti-
mal schedules which maximize revenue. However, these schedules are often far from
\optimal" once deployed in the real world because they do not accurately take into
account possible weather, air tra�c control (ATC), and other disruptions that can
occur during operation. The resulting ight delays and cancellations can cause sig-
ni�cant revenue loss, not to mention service disruptions and customer dissatisfaction.
A novel approach to addressing this problem is to design schedules that are robust to
schedule disruptions and can be degraded at any airport location or in any region with
minimal impact on the entire schedule. This research project suggests new methods
for creating more robust airline schedules which can be easily recovered in the face
of irregular operations. We show how to create multiple optimal solutions to the
Aircraft Routing problem and suggest how to evaluate robustness of those solutions.
Other potential methods for increasing robustness of airline schedules are reviewed.
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Chapter 1

Introduction

1.1 The Problem

The airline industry has seen strong growth in passenger tra�c over the last few

years, supported by a strong economy, airline deregulation, and an increasingly mobile

population. This growth has come at a price, however, as current airline operations

systems have not been able to keep up. The resulting ight delays and cancellations

have made headlines this past year as irate travelers, frustrated airline executives,

and even Congress have searched for ways to improve airline performance.

Presently airlines use scheduling systems that create optimal (i.e. revenue maxi-

mizing) schedules based on no disruptions or irregularities in operations. These sched-

ules, however, are often far from \optimal" once deployed in the real world because

they do not take into consideration many of the possible weather and air tra�c control

(ATC) delays that occur during operation, except through the addition of increased

time bu�ers in both block times and turn times. In the face of weather/ATC delays

airlines are unable to reschedule ights e�ciently. For a lot of airlines lack of robust

real-time decision making tools means that rescheduling of ights in the aftermath of

irregularities has been a manual process performed by operation controllers.

Constantly increasing tra�c volume and lack of e�cient decision support systems

for coping with operational irregularities have resulted in an increasing number of

customer complaints and a signi�cant revenue drop for airlines. The volume of com-
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plaints in 1998 represents a 26% increase over 1997 [3]. For a major U.S. domestic

carrier the �nancial impact of daily irregularities in operations can exceed $400 mil-

lion per year in lost revenue, crew overtime pay, and passenger hospitality costs [7].

In fact, severe weather conditions and the associated loss of airport capacity, coupled

with increased passenger tra�c have caused the typical major U.S. airline to lose an

estimated ten percent of its expected revenue based on the optimal schedule achieved

during the strategic phase of the airline scheduling process.

Clearly, then, the so-called \optimal" schedules used today by commercial airlines

are far from optimal in practice. One approach to resolving this dilemma is to develop

real-time algorithms to re-optimize the schedule after irregularities occur. Another

approach is to build robustness into the schedule when it is being developed so that

schedule adaptations can be more easily made.

1.2 Thesis Overview

This thesis seeks to

1. develop methods for incorporating operational considerations into the schedule

planning process

2. determine whether optimal (i.e. revenue maximizing) airline scheduling solu-

tions can be made more robust

3. evaluate the trade-o� between optimality and robustness

Chapter 2 describes the basics of airline operations and reviews some previous

e�orts in managing irregularities.

Chapter 3 describes the ight string model for aircraft maintenance routing, which

serves as the base model for a more robust routing model introduced in the later

chapters.

Chapter 4 de�nes the concept of robustness, discusses ways to build more robust

airline schedules, and suggests methods for incorporating a measure of robustness into

11



the scheduling process. The chapter also explains the trade-o� between optimality

and robustness.

Chapter 5 discusses a new aircraft routing model, based on the ight string model,

which attempts to create more robust routing schedules. The model, details of its

implementation, and tools used to solve the model are also reviewed.

Chapter 6 outlines the results of this research project, explains how the model

was tested, what we expected to �nd and what we ended up �nding as a result of

our work. We also discuss some of the limitations of the tools used to implement the

model and point out how results could have been di�erent if we had access to other,

more powerful tools.

Chapter 7 discusses possible directions for future research in the �eld. We sum-

marize several ideas that were considered as part of this research work, but were not

implemented due to insu�cient time and/or resources, as well as a number of ideas

that were born in the process. We believe that developing these ideas in the future

may lead to improved airline schedules and will therefore cause increase in revenue

for airlines.

Appendix A de�nes several mathematical terms and tools used by operations

researchers to design airline scheduling systems.
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Chapter 2

Background

This chapter discusses the basics of airline operations in general, as well as steps

that airlines currently take to manage irregular operations in particular. In both

cases the focus of discussion is the scheduling aspect. After reviewing previous e�orts

in operations research that may prove useful in building a robust airline scheduling

system, two speci�c approaches to account for irregularities in planned airline opera-

tions are compared. One approach, discussed in section 2.3.1, is to develop real-time

algorithms to re-optimize the schedule after irregularities occur. Another, discussed

in section 2.3.2, is to build robustness into the schedule when it is being developed

by analyzing historical data and using it to predict the likelihood of certain irregular

events occurring in future operations.

2.1 The Basics of Airline Operations

2.1.1 Overview

Airline schedule planning is a complex process that takes into consideration a number

of di�erent factors: equipment maintenance, crews, facilities, marketing, as well as

seasonal considerations. Alexander Wells, a researcher in the �eld of airline opera-

tions, describes the airline schedule planning process as an attempt to \put together

a jigsaw puzzle, constructed in three dimensions, while the shape of key pieces is
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constantly changing." [12]

Airlines rely on a variety of computer technologies in conjunction with operations

research (OR) and arti�cial intelligence (AI) based decision support systems. Airlines

that make �rst use of new technologies end up developing signi�cant competitive ad-

vantages over the rest of the industry through increased productivity, reduced costs,

and improved pro�tability. Recent advances in operations research, speci�cally math-

ematical programming, as well as in raw computing power, have made it possible for

airlines to solve problems that were considered intractable several years ago [7].

In addition to technological advances, new opportunities for improvement have

opened due to the deregulation of US domestic market. For example, one important

consequence of deregulation was the development of so called hub and spoke networks.

Hub airports are used by airlines to transfer passengers traveling from one community

to another in the area surrounding the airport. They also serve as transfer points

between local communities and international or other domestic destinations. Hub

and spoke networks have provided airlines with an opportunity to better manage

their limited resources such as aircraft and crew members. At the same time, use

of hubs has made aircraft routing and crew scheduling more complex because of an

increased number of possible feasible solutions.

2.1.2 The Schedule Planning Process

The airline schedule planning process can be represented by a sequence of distinct

steps (see Figure 2-1), where the output of a given step is fed as an input into

subsequent steps. The scheduling process begins with schedule construction, a process

concerned with generating a feasible plan for which cities to y to and at what times.

After the schedule is �xed, the airline has to decide what aircraft type (767 or 737,

for example) will be assigned to each ight, a process known as eet planning. Fleet

planning is followed by aircraft maintenance routing { assigning a speci�c aircraft

(tail number) in the airline's eet to each ight. This assignment basically represents

aircraft routing taking into consideration that each aircraft has to be able to undergo

planned periodic maintenance at certain stations and at a certain frequency. Both
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Figure 2-1: Steps of the Scheduling Process

eet assignment and maintenance routing manage the airline's equipment. Crew

scheduling, on the other hand, involves deciding who ies the equipment, i.e. assigning

speci�c crew (pilots and cabin crew) to the schedule. Revenue (Yield) Management

maximizes revenue by selectively accepting and rejecting reservation requests based

on their relative value [2].

Historically each of the above steps of the scheduling process was treated as an

independent problem. However, in the recent years there has been an attempt to com-

bine some of these phases of the scheduling process, a process frequently referred to as

hybrid airline scheduling. A joint formulation and optimization framework can result

in higher revenues. However, limitations of currently available computer hardware

and optimization algorithms prevent the problem from being solved without breaking

it up into sequential stages and solving each of them separately. As technology and
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computational power improve, hybrid airline scheduling will become more and more

common.

With all of this e�ort given to planning an e�cient schedule, one should not

forget that implementing that schedule is an equally important task. This phase

is known as Operations phase. The factors that make airline operations di�cult

include bad weather conditions, ATC delays, crew unavailability, and mechanical

problems. Irregular operations are operations a�ected by any of these factors, and it

is the responsibility of the airline's operations controllers to run operations as close

to plan as possible, even in light of irregularities. Flights are interlinked very tightly

in a schedule, and a small change in the arrival or departure times of a ight can

have a large e�ect on later ights throughout the system. If a particular aircraft

is experiencing a mechanical breakdown, it might be better to cancel some other

ight and switch the aircraft to minimize revenue losses. If a ight is delayed, it

may be necessary to purposely delay connecting ights to make sure that the delayed

passengers can get to their destination. Unfortunately, the process shown in Figure 2-

1 provides no feedback mechanism. Once a schedule has been designed and is in

operation, changes are usually made locally and often manually. Such changes may

improve a small part of the schedule, but often result in even larger disruptions in

the rest of the schedule.

There is an increasing need to provide a feedback mechanism between the schedule

design process and operations. The schedule design process should take into consider-

ation possible disruptions in operations to ensure that changes to the schedule during

operations are minimal, and that opportunities for e�cient changes in fact exist.

Irregular airline operations are discussed in more detail in section 2.2. Detailed

explanations of each of the steps of the airline scheduling process are presented below.

2.1.3 Schedule Construction and Coordination

A scheduling system must take into consideration a variety of factors. The goal is

to come up with a schedule that meets the desirable objectives while satisfying all

the limiting constraints. For example, to guarantee maximum pro�t it is desirable to
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keep aircraft in the air as much as possible. However, at the same time, enough time

must be provided on the ground for maintenance and servicing of aircraft.

Barnhart [2] de�nes a schedule as a \list comprising four things: origin city, des-

tination city, time of departure (which also roughly determines the time of arrival)

and ight frequency." Flight frequency is de�ned as the days of the week when this

particular ight is o�ered { i.e., Monday through Friday, or week-ends only.

No airline schedule is static, of course. For example, schedules are a�ected by

seasonal changes. There are other aspects that make schedules highly unpredictable

over the long term. The schedule a�ects every operational decision and has a big

impact on the pro�tability of an airline. It de�nes the airline's market and therefore

de�nes the airline's strengths as well as future plans. While every airline wants to

defend its traditional pro�t-making markets where it has a large market share, it may

also want to improve its market share somewhere else by increasing the frequency to a

competitor's hub. However, in the short run { over a few months at least { schedules

can be kept relatively stable.

A schedule is usually generated several months before deployment date. A number

of factors are taken into consideration, including but not limited to the following [12]:

1. Size and Composition of the Airline's Fleet. The frequency of service and the

number of markets that the airline can maintain are restricted by the types of

aircraft in the airline's eet. Not all types of aircraft can y between all pairs of

cities. A 737, for example, can not y between Boston and Honolulu nonstop.

2. Slot-constrained Airports. Some airports, including Chicago O'Hare and JFK,

are slot-constrained. It can be very expensive for an airline to acquire additional

slots at such airports.

3. Bilateral agreements. International ights are guided by bilateral agreements

which specify which airlines can y where.

4. Tra�c Flow. Tra�c ow varies from city to city, depending on geography, route

structure, and alternative service. Some cities, because of favorable geography,
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get high tra�c ow. However, even for a particular city tra�c ow might vary

from time to time { if the city gets a lot of its tra�c because it is a connecting

point between two major destinations, an increase in the number of nonstop

ights between those destinations will lead to a decrease in tra�c ow for the

city in between.

5. Schedule Salability. In the airline industry schedule salability is highly sensitive

to even minor changes in departure/arrival times. With strong competition

imposed by other airlines, a 15 minute di�erence in departure time can lead to

millions of dollars in lost revenue. Salability also varies by route and direction

of ight on the same route, as well as airport of departure/destination. Factors

like accessibility and favorable location can make an airport more popular than

other airports that serve the same city.

6. Time Zones. The time zone e�ect has to do with the fact that one gains three

hours on westbound ights and loses three hours going eastbound. Passengers

normally do not like arriving at their destination after 11pm which means that

someone traveling from San Francisco to Boston will want to leave no later than

3pm. Many people will prefer a \red-eye" ight to one that gets them to their

destination after midnight.

7. Noise Considerations. Departures and arrivals are rarely scheduled between

11pm and 7am due to high opposition from airport communities.

8. Station Personnel. The peaking of personnel and ground equipment need to

be minimized. If two ights can be scheduled in such a way that only one jet

ground crew is needed to service the planes, then the airline can save the work

of 10-12 people that would be required if another ground crew were necessary.

9. Equipment Turnaround Time. At the end of every trip certain operations must

be performed { refueling, cabin cleaning, catering services. There are established

standards for turn time required of aircraft depending on the type of aircraft
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and ight length. Again, extra time should be allowed to accommodate late

arrivals/departures.

10. Load Factor Leverage. Costs of operating a schedule vary only slightly as load

factor changes. However, even a slight change in load factor will result in direct

proportional change in revenue. Thus, it is even more important to consider

possible load factor changes when making even small adjustments to an existing

schedule.

Unfortunately, at the present time no airline uses a model that captures all of the

above factors. This is partially the case because formulating many of these factors

mathematically can be di�cult. For example, it is di�cult to design and solve a

model that captures competitors' moves and strategies.

2.1.4 Fleet Assignment

The eet assignment process seeks to assign an aircraft type to each ight segment

in a given ight schedule. This selection is based on factors such as revenue and

operating cost, as well as operational constraints.

Some of the obvious operational constraints in eet assignment are airport runway

lengths and aircraft fuel capacity { the router must ensure that the types of aircraft

scheduled to use a certain airport can use the runways as well as have enough fuel

capacity to get to the next destination. Also, weather patterns can be an important

consideration. Cold weather patterns in a northern city can make it inadvisable to

overnight aircraft in that city { early morning departures might become impractical

due to the need to remove the snow and ice from the aircraft. Other factors include

ground operations and facility limitations. Ground service can not be arranged in a

random fashion. Limitations exist on gate positions, ground equipment, passenger

service facilities, and personnel. The goal of ground service is to accommodate as

many ights as possible as e�ciently as possible, given physical limitations and aiming

for maximum utilization of personnel and equipment. For example, the schedule

planner must make sure that there are enough gate positions for the number of planes
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on the ground simultaneously, including possible early and late departures. Su�cient

time has to be provided for passenger and baggage transfer. Also, enough ticket-

counter space must be provided for e�cient passenger check-in.

Presently there are several distinct ways that airlines schedule ights. Among

the most popular ones are skip-stop scheduling, local service, nonstops, and cross-

connections (hub and spoke). A brief description of each of them is presented below

[12]:

1. Skip-stop Schedules Skip-stop schedules are schedules that provide service to a

number of stations A1, A2, . . . , An, by scheduling ights A1� > A3� > A5� >

An and A2� > A4� > A6� > An�1 (as a hypothetical example). In this type

of schedule one or more of intermediate stops are \skipped" and service to those

stations is provided by another ight. This way fast service is provided between

intermediate stations (A1 and A3, for example). On the other hand, no service

is provided between consecutive cities (A1 and A2, for example).

2. Local Service This type of service is performed by short-range aircraft providing

service between all consecutive points on a segment. Connections to long-range

aircraft are provided at some of the intermediate stations.

3. Nonstops Nonstops provide fast service between end points. However, they do

not service intermediate cities.

4. Cross-connections (Hub and Spoke Networks) One important consequence of

deregulation in airline industry was the creation of hub and spoke networks,

which has become perhaps the most popular type of airline scheduling. In this

type of scheduling several points of departure are fed into a single hub airport,

from which connecting ights carry passengers to other destinations. The main

advantage of cross-connections is the enormous \multiplier" e�ect as to the

number of city pairs an airline can serve (see �gure 2-2). Later on we will see

that hubs can also be very useful in designing a robust airline schedule. On

the other hand, hub networks introduce congestion of tra�c and the need to

transfer planes.
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Figure 2-2: Hub and Spoke Networks

Typically the eet assignment problem is solved as an integer programming model

that assigns multiple aircraft types to a ight schedule. A number of other methods,

based on the integer programming model along with other advanced techniques, have

been introduced in the last few years. Currently researchers are attempting to com-

bine the business processes of schedule construction and eet assignment { problems

that have traditionally been considered independent. Also, a hot research subject in

the eet assignment area has been schedule recovery in the event of irregular opera-

tions.

2.1.5 Aircraft Maintenance Routing

The most essential prerequisite for any airline operations is, of course, safety. Safety

should never be sacri�ced to meet any other goals. It is essential therefore to provide

each type of aircraft in the eet with a separate maintenance-routing plan. All routing

plans must be coordinated to provide the best overall service. Certain stations are

equipped with facilities and personnel to provide periodic mechanical checks which

range all the way from simple and frequent maintenance such as en route service (to be

performed at each stop) to complex and rare maintenance like airplane overhaul (to be

performed every 6,000 ight hours, for example). Other types of maintenance checks

include preight check (at trip termination) and engine removal and installation.

Di�erent kinds of stations are responsible for di�erent types of maintenance checks,

and the aircraft router must ensure that the airplane gets to its scheduled station
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before its time expires. Unfortunately keeping up the maintenance schedule is not

possible without making constant adjustments. For example, if the aircraft happens

to have a mechanical breakdown in Denver en route to San Francisco where it is

scheduled for a maintenance check, the router then has to substitute another aircraft

for the airplane in question. A tied-up airplane is now o� the planned schedule

designed to allow the carrier to accomplish all required inspections. Furthermore,

now there is a danger of a maintenance station overload { once the tied-up airplane

�nally gets to its maintenance station, it will have to compete with other airplanes

for a spot. It is therefore apparent that maintenance people have to work in close

contact with the scheduling planners { a slight change in the way one of these groups

does things will likely a�ect the other.

The aircraft routing problem is usually solved after the eet assignment has been

completed. Candidate ight segments are linked to speci�c aircraft tail numbers

within a given sub-eet of the airline. Traditionally aircraft maintenance routing

has been done manually, but in the recent years researchers have made attempts

to automate the process. Another area of research has to do with daily demand

uctuations. The latter frequently require changes in existing schedule, and those

changes, in turn, result in modi�cation of maintenance routing.

2.1.6 Crew Scheduling

After fuel costs, crew costs are the second largest component of direct operating costs

for an airline. The crew scheduling process consists of several important elements

such as crew pairing generation, crew rostering, and crew recovery. The crew pairing

problem determines how to construct a set of pairings to cover all given ight segments

at a minimum cost. An operational constraint in crew pairing is that ight crews

are governed by working limitations found both in the Federal Aviation Regulations

(FAR) and employment agreements. For example, ight-crew members must have had

at least 16 hours of rest since the completion of their last assigned ight. Also, ight

crews may not exceed a maximum of 40 ight hours during any seven consecutive days.

Release from all duty for 24 hours must be granted to each ight-crew member during
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any seven-consecutive-day period. The crew rostering problem considers activities like

vacations and training to construct monthly work schedules for each employee. The

goal of the crew recovery problem is to rebuild broken crew pairings using the existing

pairings as well as reserve crews. Most methods for solving the crew scheduling

problem involve integer programming solution techniques (branch and bound, for

example), frequently combined with column generation. A lot of research has been

done in crew scheduling. However, not a lot of work has been done on schedule

recovery in the event of irregular airline operations. Current research in the area is

focused on developing robust methods to create crew schedules that are less a�ected

by irregularities.

2.1.7 Yield Management

The goal of yield management is to maximize revenue by selectively accepting and

rejecting reservation requests based on their relative value. This is usually done in

several di�erent ways, including overbooking, fare mix, group control, and tra�c

ow control. Overbooking is a term used to describe the process of accepting more

reservation requests than the number of seats on the plane. Overbooking compensates

for the e�ects of events like cancellations and no-shows. Discount allocation or fare

mix is a technique used to protect seats for late booking higher valued passengers by

limiting the number of seats allocated to lower valued passengers booking early.

In the early stages of yield management utilization revenue maximization was

accomplished through a leg-based inventory control. That basic process later evolved

into a segment-based scheme, and currently carriers use an origin-destination based

approach. Littlewood [11] developed a method to predict demand for each fare class

by ight leg by looking at historical booking data. Williamson [13] describes the use

of mathematical programming and network ow theory in the origin-destination seat

inventory control problem.
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2.2 Irregular Airline Operations

Clarke points out that for a typical airline, approximately ten percent of its scheduled

revenue is lost due to irregularities in airline operations, with a large percentage being

caused by severe weather conditions and associated loss of airport capacity [7]. An

airline's ability to reschedule ights in a fast and e�cient manner can be crucial

when trying to withstand the competition from other airlines. However, not a lot

of research has been done in the area of schedule recovery. Until a few years ago

schedule recovery was being done manually and in many cases it still is. However,

advances in mathematical programming and computer processing speed have enabled

researchers to look for ways to perform schedule recovery automatically, at least in

part.

When irregularities occur in an airline's operations, the primary goal of the airline

is to get back on the original schedule as soon as possible, while minimizing ight

cancellations and passenger travel delays. The Airline Operations Control Center

plays a crucial role in this process.

2.2.1 Airline Operations Control Centers

The Airline Operations Control Center is responsible for the tactical stage of the

carrier's scheduling { executing the schedule developed during the strategic stage,

updating the schedule to accommodate minor operational deviations, and rerouting

for irregular operations. An AOCC normally operates 24 hours a day, and its size

varies depending on the size of the airline. Each AOCC works in close contact with

the Maintenance Operations Control Center (MOCC) and various Stations Opera-

tions Control Centers (SOCC) which in turn are responsible for airline maintenance

activities and station resources, respectively. Within the AOCC there are three func-

tional groups, each having a separate role in the schedule execution process. These

groups are: 1) the Airline Operation Controllers, 2) On-line Support, and 3) O�-

line Support. The operation controllers are the only group within the AOCC that

has the power to resolve any problems that come up during daily airline operations.
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They are also the group that maintains the \Current Operational Schedules" (COS),

the most up-to-date version of the airline system resource schedule that includes de-

lays and cancellations, irregular routings for aircraft and crews, as well as additional

ights. The on-line support group is responsible for functions like ight and crew

dispatch. During regular operations dispatchers are responsible for the successful

release of a ight given maintenance and airport restrictions, as well as availability

of required operational support (fuel, gates, airport facilities) at airports of depar-

ture and destination. Finally, the o�-line services provide supporting resources for all

AOCC personnel by maintaining the navigational database, meteorology, and ight

technical services.

In the event of irregular operations, the dispatcher informs the operations con-

troller of the problem, and the controller's role is to devise operational schedules as

quickly as possible. The result of this work is a new COS, a plan to be followed to

return to the schedule developed during the strategic stage of planning, called the

Nominal Schedule of Services (NSS) [6].

2.2.2 Irregular Airline Operations

Any airline's NSS is prone to unexpected daily changes due to factors such as severe

weather conditions and ATC delays. Clarke [6] summarizes major causes of ight

delays at major hub airports:

1. Weather Wind, fog, thunderstorm, low cloud ceiling (these conditions account

for 93% of all ight delays at major hub airports)

2. Equipment Air tra�c radar/computer outage, aircraft failure

3. Runway Unavailability because of construction, surface repair, disabled aircraft

4. Volume Aircraft movement rate exceeds capacity of the airport at a given time

Any aircraft routing is bound to be a�ected by delays, as most routings are opti-

mally determined during the strategic phase of planning, without any consideration
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for unexpected irregularities. This \optimality" provides very little slack time in the

ight sequence, which means that any delay/cancellation early in the day is likely to

a�ect the schedule for the rest of the day unless the airline can take e�ective steps

to correct the problem and get back to its NSS. Most carriers have developed proce-

dures to follow in the event of unexpected disruptions in operations. However, most

of these procedures are implemented manually, with little or no reliance on automated

decision support systems. Given how much data the operations controllers have to

deal with, it only follows that they are generally forced to take a localized approach

in dealing with irregularities. This in turn frequently results in less e�cient decisions

{ ight cancellations for example, that later turn out to be unnecessary.

2.3 Previous Work on Irregular Operations

The following is a review of some research that has been done in the attempt to

deal with irregular airline operations. Some of the most interesting studies done in

the area are the Airline Schedule Recovery Problem and a study done at Southwest

airlines.

2.3.1 The Airline Schedule Recovery Problem

Clarke [4, 5] discusses the Airline Schedule Recovery Problem (ASRP) which addresses

how airlines can e�ciently reassign operational aircraft to scheduled ights in the

aftermath of irregularities. The model incorporates various aspects of the airline's

tactical process. For example, aircraft routing/rotation and eet scheduling are done

simultaneously. ASRP is a model for solving the aircraft rescheduling problem that is

best described as a hybrid of the traditionally de�ned eet assignment problem and

the aircraft routing/rotation problem. Furthermore, the mathematical formulation of

ASRP allows possible ight delays and cancellations to be considered simultaneously.

The author uses concepts from Linear Programming and Network Flow Theory to

develop a number of algorithms (both heuristic and optimization-based) for solving

the ASRP problem. The solution methodologies were validated by performing a case
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study based on a set of operational data provided by two major carriers. The results

of using each of the algorithms on the given data were compared to each other and

also to the actual operations associated with the historical data (normal operations).

Then irregularities, such as constraints on aircraft departures and aircraft movement,

were simulated and used to compare performance of three di�erent algorithms when

applied to the original data combined with the simulated constraints. The results

demonstrate that it is possible to develop e�cient procedures for ight rescheduling.

2.3.2 Analyzing Robustness of a Prospective Schedule

Another interesting study related to schedule robustness was conducted at Southwest

Airlines [9]. The idea was to develop a tool to analyze robustness of a prospective

schedule. Such a tool can potentially be very useful to schedulers as it would allow

them to analyze the on-time performance of a prospective schedule based on historical

data for block time and turn times as well as explicit business rules (in cases where

historical data does not apply). The data used consisted of actual departure and

arrival times, cancellations, delay codes, and passenger data (e.g. baggage load,

enplanements). To account for seasonal e�ects of block times and turn times, all of

the historical data used in a simulation is based on the same season of the year as

the proposed schedule. The historical data is processed by sorting it into appropriate

buckets and then feeding it into a statistical package to create distribution functions

for all possible scenarios. The distributions are then used in the simulation. The

simulation tool is still in the process of being developed and its power is limited by

the fact that Southwest is a point-to-point carrier with an average turn-time of 20

minutes. The simulation focus for a point-to-point airline will di�er from that for a

typical hub and spoke carrier. However, the approach taken by Southwest presents

an interesting direction for airline scheduling research. If it is possible to develop

tools for evaluating robustness of a prospective schedule, airline schedulers can use

those tools to incorporate methods for handling irregularities into the strategic stage

of planning.

The Southwest study is unique in that it developed a tool to "measure" the ro-
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bustness of a schedule believed to be optimal under normal operational conditions.

However, it did not create a framework or method for building robustness into the

schedule a-priori.
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Chapter 3

The Flight String Model for

Aircraft Maintenance Routing

This chapter discusses the Flight String Model for Aircraft Routing [1]. The strength

of this particular approach is in its ability to capture complicated constraints such as

maintenance requirements and aircraft utilization restrictions.

3.1 Overview

The output of the eet assignment problem is used as input into the aircraft rout-

ing problem. Given an assignment of ights to eets, the airline must determine a

sequence of ights, or routes, to be own by individual aircraft such that assigned

ights are included in exactly one route, each aircraft visits maintenance stations at

regular intervals (usually about once in three days), and there is always an aircraft

available for a ight's departure. The goal of the aircraft routing problem is to �nd

a minimum-cost set of such aircraft routings. The costs to be minimized include the

maintenance costs as well as the negative through revenues associated with through

ights.

A string is a sequence of connected ights that begins and ends at a maintenance

station (not necessarily the same one), satis�es ow balance, and is maintenance

feasible, i.e. does not exceed maximum ight time before maintenance (while airlines
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usually require a maintenance check every 40-45 hours of ying, the maximum time

between checks is restricted to three to four calendar days). In addition, strings must

satisfy the minimum turn time requirement { enough time has to be allocated between

any two ights to provide service of aircraft. An augmented string is a string with a

minimum maintenance time attached at the end of the string.

The model includes two types of variables, augmented string variables xs and

ground variables y.

3.2 Notations

3.2.1 Decision Variables

xs is an augmented string variable: it equals 1 if s 2 S is selected as part of the

solution set, 0 otherwise.

y(e1;e2) are ground variables, used to count the number of aircraft on the ground at

a maintenance station between every two adjacent events (described below) at that

station.

To ensure ow balance at maintenance stations, each station is associated with a

set of events { the set of ights arriving at and departing from that airport. For any

arriving ight i 2 F , where F is the set of ights, its event time is its arrival time plus

minimum maintenance time. For any departing ight, its event time is its departure

time. At each maintenance station, all events are sorted and numbered in increasing

order of time. In case a tie between an arriving and a departing ights occurs, the

arriving ight is given priority. Ties involving only departing or only arriving ights

are broken arbitrarily. Let ei;a(ei;d) be the event number corresponding to the arrival

(departure) of ight i. Also, let e+i;a(e
+
i;d) be the next event at a station after the

arrival (departure) of i. Similarly, e�i;a(e
�

i;d) is the event at a station preceding the

arrival (departure) of i.

The number of ground variables has an upper bound de�ned by the number of

ights terminating or starting at a maintenance station.
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3.2.2 Parameters

cs maintenance cost of string s

ais equals 1 if ight i 2 F is in augmented string s and equals 0 otherwise.

N number of available aircraft

tn the \count time"

rs number of times (possibly greater than 1) augmented string s crosses

the count line.

pj number of times (0 or 1) ground arc j 2 G crosses the count line.

3.2.3 Sets

F the set of all ight legs i

S the set of all maintenance feasible strings s. The size of this set is

exponential in the number of ights.

S�i the set of augmented strings ending with ight i and maintenance

S+
i the set of augmented strings beginning with ight i

G the set of all ground arcs y

3.3 Aircraft Routing String Model Formulation

The model can be described in the following way:

3.3.1 Objective Function

Min
X
s2S

csxs (3.1)

The objective is to minimize the total cost of the selected strings.

3.3.2 Constraints

Flight Coverage:

Each ight must be assigned to exactly one routing.
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X
s2S

aisxs = 1 8i 2 F (3.2)

Flow Balance:

The number of aircraft arriving at a station must equal the number of aircraft

departing. For every departing ight there is an aircraft available.

X

s2S+
i

xs � y(e�
i;d

;ei;d)
+ y(ei;d;e+i;d)

= 0 8i 2 F (3.3)

�
X

s2S�
i

xs � y(e�
i;a

;ei;a)
+ y(ei;a;e+i;a)

= 0 8i 2 F (3.4)

Aircraft Count:

The number of aircraft used cannot exceed the number available. This constraint

ensures that the total number of aircraft in the air and on the ground does not

exceed the size of eet. It is enough to ensure that the count constraint is satis�ed

at one particular point of time { the ow balance constraints ensure that if the count

constraint is satis�ed at some point of time, it is also satis�ed at any other point of

time.

X
s2S

rsxs +
X
j2G

pjyj � N (3.5)

Other Constraints:

The number or aircraft on the ground at any time has to be non-negative.

yj � 0 8j 2 G (3.6)

The number of aircraft assigned to a string has to be 0 or 1.

xs 2 f0; 1g; 8s 2 S (3.7)

Notice that the solution to the aircraft routing problem does not explicitly specify

connections between selected strings. However, the ow balance constraints guarantee
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that such connections exist.

3.4 String-Based Model Solution

Due to the fact that the number of potential strings is exponential in the number of

ights, the String Model uses column generation to reduce the number of columns

(strings) used in the solution process.

3.4.1 Linear Program Solution

Column generation is a technique used to solve large linear program (LP) problems.

When the number of variables in LP is too large to enumerate the constraint matrix

explicitly, the column generation algorithm starts by selecting an initial set of vari-

ables for which the LP is then solved and dual costs associated with each constraint

are determined. Those dual costs are then used to compute reduced costs associated

with other, nonbasic variables. In a minimization problem, the variables with neg-

ative reduced costs are the variables which correspond to strings that may improve

the solution. The columns (strings) with negative reduced costs are therefore added

to the original set of strings used in the restricted problem. Adding variables to the

constraint matrix is what is referred to as the column generation process. The linear

program with a restricted set of columns is called the restricted master problem.

The restricted master problem is solved repeatedly, with a new set of columns

added at every iteration. This process is repeated until no more variables have neg-

ative reduced cost, at which point optimality of the solution is achieved. When all

reduced costs are nonnegative, it is guaranteed that no new column can improve the

current optimal solution. Thus, column generation is a way to �nd an optimal LP

solution without examining all problem variables. When the number of potential

variables is very large, column generation can generate an optimal solution by solving

LP with a very limited number of columns, leaving millions of other, non-optimal

columns out of the LP. In the case of aircraft routing, as we have already pointed

out, the number of string variables is exponential in the number of ights. Column

33



generation, therefore, comes in as a very handy technique in this case.

The column generation algorithm can be described as a two-step process:

Step 1. Solving the Restricted Master Problem:

Find an optimal solution to the current restricted master problem, with only a

subset of string variables included.

Step 2. Solving the Pricing Subproblem and Updating the Restricted Master Prob-

lem:

Generate columns with negative reduced cost. If no more columns are generated,

an optimal solution has been found, and the LP has been solved. Otherwise, update

the Restricted Master Problem by adding new columns and go back to step 1.

The LP is solved by using optimization software packages such as CPLEX, which

in turn use linear programming algorithms such as SIMPLEX.

3.4.2 Pricing Subproblem for the String Model

The pricing subproblem for the string model can be described in the following way:

RCs = cs �
X
i2F

ais�i � �bm + �en � rs�; (3.8)

where RCs is the reduced cost associated with string s, �i is the dual variable

corresponding to the cover constraint for ight i, �bm and �en are the dual variables

associated with the ow balance constraints for strings beginning with ight m and

ending with ight n, and � is the dual variable corresponding to the count constraint.

34



Chapter 4

Robust Airline Scheduling

4.1 The Concept of Robustness. Fault Tolerant

Recovery Paths

An airline schedule is said to be robust if it provides enough exibility that parts

of the schedule can be recovered in the event of irregularities in operations. In the

event of severe weather conditions, for example, this exibility allows an airline to

easily recover its schedule by switching aircraft around and moving passengers to

alternative itineraries. Similarly, if an aircraft originally assigned to a routing which

covers high-demand ights happens to break down, a highly robust schedule may

provide an option to reassign another aircraft to this routing and to get it back on its

original routing before the next maintenance check. In general, a more recoverable

schedule could help avoid signi�cant revenue losses which would otherwise result from

ight delays and cancellations.

In this research project we attempted to incorporate a measure of robustness

into airline scheduling design. More speci�cally, we concentrated on the aircraft

maintenance routing stage of the scheduling process. Instead of developing schedule

reoptimization tools that can be used in the event of irregular airline operations, we

focused on building fault tolerant recovery paths into the original schedule developed

during the strategic phase of planning.
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Schedule 1:

A1: A{>B||{>C|>D||{>G||||>F
A2: A||>H|->C||{>M||>K|||>F

||||||||||||||||||||>Time

Schedule 2:

A1: A{>B||{>C|>D|||->E|||->F
A2: A||>H||->E||>C|||||->F

||||||||||||||||||||>Time

Figure 4-1: Example 1: Robust Schedules

4.2 Examples. Sequences. Points. Overlaps

Aircraft routing schedules can be thought of in terms of ights, sequences, points and

overlaps. This section de�nes these terms and describes how they can be used to help

measure robustness.

4.2.1 Example

Let us consider two hypothetical airline schedule examples in which aircraft 1 and 2

(A1 and A2) are assigned to two di�erent routes (see Figure 4-1).

It can be observed that the �rst schedule is more robust than the second one as it

allows for more exibility in the face of irregular operations or demand uctuations.

For example, if A1 experiences a mechanical problem at point C, it could be replaced

with A2. Or if the demand on segments (C;M), (M;K) and (K;F ) were to suddenly

show a temporary increase, while the demand on segments (C;D), (D;G) and (G;F )

decreases, there is an option of switching A1 and A2 to bring higher pro�t (provided

that CAPA1
is greater than CAPA2

, where CAPA is capacity of aircraft A).

Notice that the two routes in Schedule 1 also meet at point F at about the

same time. In the case of a mechanical failure, the functioning aircraft, which was

reassigned to the other route, can still get back on its original route before the next

maintenance check. The same is true for both aircraft if switching took place because
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SFO BOS

Arrive: 6amDepart: 10pm

f

Figure 4-2: Flight

of uctuations in the demand for the two routes.

4.2.2 Points. Sequences. Overlaps

Flights

A ight (see Figure 4-2) is de�ned by its origin, destination, departure and arrival

times (given in minutes of the day starting from midnight). Thus, the ight in

�gure 4-2 would have the following parameters:

Org(f) = SFO,

Dest(f) = BOS,

Dep(f) = 1320,

Arr(f) = 360.

Sequences

A sequence is de�ned by a sequence of ights f (see Figure 4-3). In a sequence, any

ight's destination is the same as the next ight's origin. For example, Dest(f0) =

SFO = Org(f1). For any sequence s and ight f 2 s, Index(f) is de�ned to be the

index of ight f in sequence s. Also, for any index i, F light(i) is the ight at index

i in the sequence. Thus, Index(f0) = 0 and F light(0) = f0. In addition, we say that

sequence s has length n (length(s) = n) if there are n ights in sequence s. Sequence

s in Figure 4-3 has length 5, and F light(2) = f2.

Points
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SEA: Depart 10am

SFO

Arrive: 12:01 pm
Depart: 1:30pm

AUS

Arrive: 6:30pm
Depart: 7:45pm

MCO

Arrive: 10:40pm

Depart: 6am

IAD Arrive: 8:10 am
Depart: 10:15am

BOS Arrive: 11:51am

f0

f1

f2

f3

f4

Figure 4-3: Sequence

A point Ps;k is the interval of time that an aircraft assigned to routing s spends at

an airport between the arrival of ight k and departure of ight k + 1. Thus, points

are de�ned by time and airport. More precisely, for any sequence s let us de�ne:

Airport(Ps;k) the airport of point Ps;k

Arr(Ps;k) the arrival time at point Ps;k

Dep(Ps;k) the departure time from point Ps;k

Ps;0 corresponds to the point immediately preceding the �rst ight in a sequence.

The last point Ps;n, where n = length(s), corresponds to the point immediately

following the last ight in s.

Let n = length(s). Then

Arr(Ps;k) =

8><
>:
Arr(F light(k � 1)) 8k 2 [1; n]

Dep(F light(0)) k = 0

Similarly,

Dep(Ps;k) =

8><
>:
Dep(F light(k)) 8k 2 [0; n� 1]

Arr(F light(k � 1)) k = n
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And lastly,

Airport(Pk) =

8><
>:
Org(F light(k)) k < n

Dest(F light(n)) k = n

In our example, then,

Arr(P0) = 600 Dep(P0) = 600 Airport(P0) = SEA

Arr(P2) = 1110 Dep(P2) = 1185 Airport(P2) = AUS

Arr(P5) = 711 Dep(P5) = 711 Airport(P5) = BOS

To de�ne an order for points in a sequence, let Ps;i > Ps;j if i > j. Thus,

Ps;2 > Ps;1.

Robustness Related Concepts

De�nition 1: Sequences s1 and s2 meet at points Ps1;i and Ps2;j within T=deltaT

on departure (or arrival) if Airport(Ps1;i) = Airport(Ps2;j) and

abs(Dep(Ps1;i) � Dep(Ps2;j)) � deltaT (abs(Arr(Ps1;i) � Arr(Ps2;j)) � deltaT for

arrival).

Figure 4-4 shows a network of eight ights, ight information, and potential ight

sequences. One can observe that sequences s0 and s1 meet at points s0;1 and s1;1

within T=15 on departure. They also meet at points s0;3 and s1;3 within T=10 on

arrival.

De�nition 2: Overlaps are another very important sequence related concept,

which will serve as the base for de�ning a measure of robustness. An overlap within

T=deltaT occurs at point Ps1;i if there exist points Ps1;i
0 : i

0

> i; Ps2;j; Ps2;j
0 : j

0

> j,

such that s1 and s2 meet at Ps1;i and Ps2;j within a time interval deltaT on departure,

and also s1 and s2 meet at Ps1;i
0 and Ps2;j

0 within deltaT on arrival.

Again, in Figure 4-4 we can see that sequence s0 has an overlap within T=15 at

point Ps0;1, because s0 and s1 meet at points Ps0;1 and Ps1;3. Similarly, sequence s1
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Flight Network

 0

1

2

3

4

5

6

7

f0

f1

f2

f3

f4

f5

f6

f7

f8

Flight Information

Flight Number Departure Time Arrival Time Origin Destination
0 180 270 0 2
1 150 285 1 2
2 350 480 2 4
3 340 450 2 3
4 300 460 5 3
5 540 771 4 7
6 531 763 3 7
7 548 714 3 6

Possible Sequences

s0 : f0� > f2� > f5� > f8
s1 : f1� > f3� > f6� > f8
s2 : f4� > f7
s3 : f1� > f3� > f7
s4 : f4� > f6� > f8

Figure 4-4: Sequences, Overlaps, and Robustness
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has an overlap within T=15 at point Ps1;1.

De�nition 3: A sequence s is considered robust within T = deltaT at point Ps;i

if there exists an overlap within deltaT at point Ps;i. Hence, sequence s0 (Figure 4-4)

is robust at point Ps0;1.

Moreover, a sequence is considered absolutely robust within deltaT if for every

point on the sequence there exists an overlap within deltaT. (It is important to point

out, however, that no sequence has an overlap at its ending point, because an overlap

on a sequence is de�ned by two points, and the ending point is the last point on a

sequence).

The number of potential overlaps for any sequence s can be computed as
P

s2S length(s), where S is the set of all sequences in the solution. In general, one

of the ways to increase robustness of an airline schedule is to provide ways for more

aircraft routes to intersect at di�erent points, so that aircraft can be easily switched

if needed (subject to operational and maintenance constraints). More speci�cally, the

goal is to minimize P � A, where P is the number of potential overlaps and A is the

number of actual overlaps.

De�nition 4: A more precise way to measure robustness is to compute the

percentage of points in the system that have overlaps, i.e. (A=P ) � 100%, which we

will refer to as the coe�cient of robustness coeffr. The higher coeffr, the more

robust a schedule is.

Returning to �gure 4-4, suppose a routing solution consists of sequences s0, s1,

and s2. Then the number of potential overlaps is 8. The actual number of overlaps

is 2, since sequence s0 has an overlap at point 1, sequence s1 has an overlap at point

Ps1;1, and sequence s2 has no overlaps (even though it meets sequence s1 at point

Ps2;1). Therefore, the coe�cient of robustness coeffr = 1002
8
(%) = 25(%).

Notice that if our routing solution consisted of sequences s0, s3, and s4 instead,

then there would be no overlaps in the system, and, hence, the coe�cient of robustness

would be 0%!
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4.3 Tradeo� Between Robustness and Optimality

It is important to note that there is a trade-o� between robustness and optimality in a

schedule. One should expect that a highly robust airline schedule will not correspond

to the maximum of the objective function in the LP model (which is how optimality

is de�ned in this case). However, that in itself does not mean that robust schedules

will result in lower pro�t than optimal schedules. An optimal schedule that does

not take into consideration the airline's performance in the aftermath of irregular

operations might not be as pro�table in the end as a less optimal but a more robust

schedule. Cancelled ights translate into revenue loss, and delayed ights result in

loss of passenger goodwill which in turn also translates into revenue loss.

It is also true that there is frequently more than one optimal solution to an air-

line scheduling problem. For example, there may be several unique solutions to the

aircraft maintenance routing problem, which all have the same cost. It is possible

that some of these solutions are more robust than others. In this case, selecting a

more robust solution may result in more e�cient and pro�table airline operations,

and will therefore help ensure that the cost of operations is as close to the \optimal"

as possible.

Our goal was to incorporate robustness into the airline scheduling process at

the strategic stage of planning, to explore the above described trade-o� between

robustness and optimality, and to learn whether there is any correlation between the

two. The result of this work is a new model that incorporates operational measures

that provide robustness.

4.4 Building More Robust Schedules

As already mentioned above, the key to making airline schedules more robust lies in

providing fault tolerant recovery paths. Fault tolerant recovery paths can be built

into the system by incorporating the following factors into the aircraft routing model

during the strategic phase of planning:
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4.4.1 Optimized Turn Times

A common approach to scheduling ights at hub airports is �rst-in �rst-out (FIFO).

In many instances, however, delays from incoming aircraft can disrupt hub operations

either through missed passenger connections or missed equipment/crew connections.

Historical data provides a means of determining which incoming ights are delayed

because of issues at origin airports. This data can be used to develop probability

density functions for arrival times and thus determine the expected value for actual

correction times. For example, if we know that a certain airport (e.g. ORD) is likely

to be a�ected by snow storms the �rst couple weeks of January, we might allow for

longer connection times during that period of time.

4.4.2 Flexible Subroute Switching

If two routings meet at more than one node within a certain time window, an aircraft

can be switched from one routing to the other and then returned to its original routing

at a subsequent meeting node. Thus, if a ight is severely delayed or cancelled and the

relative demand for the routing is favorable, route switching can provide robustness by

allowing a ight with high demand to be own when it otherwise would not be own.

The idea is similar to the one used in demand driven dispatch (used by Continental

Airlines, for example, on certain markets).

4.4.3 Passenger Routing Redundancy

A schedule can be made more robust by ensuring alternative routing for passengers

a�ected by potential ight delays and cancellations. Providing alternative routing can

become a very complex task if one has to look at all possible Origin/Destination pairs

used by a major airline. A good place to start is to implement passenger redundancy

at least for the airline's most important markets (hubs, for example). In fact, if

overlaps are what de�nes how robust a schedule is, we may want to assign various

degrees of robustness to a sequence point depending on whether it is a hub or not.

Also, even if two points are both hubs/not hubs, di�erent degrees of robustness can be
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associated with those points depending on how important it is to have fault tolerant

recovery paths based at those speci�c points.

4.5 Methods for Incorporating Robustness into

Aircraft Routing. Subroute Switching

In this work we concentrated mostly on subroute switching for aircraft maintenance

routing. This work, however, can be expanded to be used in other areas of airline

scheduling such as crew scheduling. Also, most of the model developed is applicable

to passenger routing redundancy.

4.5.1 Incorporating a Measure of Robustness into the Ob-

jective Function

One way to account for robustness while generating a routing schedule is by incor-

porating a measure of robustness into the objective function used in the LP/IP. To

review, the following is the objective function used in the linear program for the string

model, described in the previous chapter:

Min
P

s2S csxs

The above minimization problem can, of course, be presented as a maximization

problem as well:

Max
X
s2S

psxs (4.1)

where ps is revenue obtained from including string s in the solution.

If we can �nd a way to measure robustness of a string rss, then the problem can

be turned into a linear program which maximizes revenue and robustness at the same

time:

44



Max
X
s2S

(ps + rss)xs (4.2)

Unfortunately, in the course of our research we discovered a number of problems

which made implementing this approach impossible. Robustness is de�ned by the

overlaps in the system. Therefore, robustness of a string rss (see equation 4.2) de-

pends not only on the string s itself, but also on other strings in the solution. Since

we do not know which strings will end up in the solution generated by the LP, rss is

actually not a constant in the LP.

In our robustness model (described in detail in chapter 5), we tried to incorporate

robustness into the LP/IP objective function (using OPL, described in chapter 5) the

following way:

minimize

// cost of the solution:

// pair[i] is a variable deciding if sequence i is in the solution

// pairCst[i] is the cost of sequence i

sum (i in Columns) pairCst[i]*pair[i] +

//potential overlaps

// routeFlt[i].up+1 is the number of points in sequence i

sum (i in Columns) pair[i]*(routeFlt[i].up+1) -

// actual overlaps

sum (i in Columns: pair[i] > 0)

(sum (j in [overlaps[i].low..overlaps[i].up])

(max (k in [overlaps[i,j].low..overlaps[i,j].up])

pair[overlaps[i,j,k]]))

overlaps is an array which stores all potential overlaps in the system and is updated

every time a new sequence is added. The �rst dimension of overlaps corresponds to the

column number(sequence id), the second dimension corresponds to indices of points

on the sequence, and the third dimension stores ids (numbers) of other sequences that
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overlap with a given sequence at a given point. For example, overlaps[i,j] refers to an

array containing ids of all sequences that overlap with i at point j.

The objective function consists of two parts:

1. Cost of the sequences in the solution The cost of the selected solution

P
i2Columns pairCst[i] � pair[i]

2. \Missing" robustness cost As was mentioned earlier in this chapter, robust-

ness can be measured as P � A, which is the di�erence between the number

of potential overlaps and the number of actual overlaps. Since a measure or

robustness is being incorporated into a minimization problem, we want to min-

imize the number of points that do not have overlaps, which can be described

as A� P . Notice that

(max (k in [overlaps[i,j].low..overlaps[i,j].up])

pair[overlaps[i,j,k]]))

determines whether any of the potential overlaps for sequence i at point j are

actually included in the solution. If none of them are, the expression evaluates

to 0.

The problem with the above described approach is that the objective function

becomes nonlinear, and is thus not suited for solution using a linear program.

4.5.2 Computing Alternative Optimal Solutions and Select-

ing the Most Robust One

Frequently there are a number of unique solutions to the routing/scheduling problem

that have the same cost. If there are alternative optimal solutions, we can compare

them based on robustness and select the most robust one. The strength of this method

lies in the fact that we are guaranteed that the �nal solution is an improvement over

the original \optimal" solution, because the new solution provides as much robustness
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as possible while preserving the same \optimal" cost. This way, we end up with a

solution which is still \optimal", but at the same time additional exibility built into

the schedule helps avoid disruptions in the face of irregular operations.

The focus of our research lies in this particular approach, and the details of the

model and its implementation are discussed in the next chapter.
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Chapter 5

Chapter 5: Building Robustness

into the String Model

5.1 Overview of the Implementation

Our model is based on the string model for aircraft routing, which was discussed

in detail in chapter 3. The modi�ed base model was implemented in Optimization

Programming Language (OPL) [10]. Some of the robustness work was implemented

in OPL as well, but most of it was done in Perl and C++, which operated on the

data obtained from OPL.

5.2 OPL Optimization Programming Language

5.2.1 What it is

OPL is a modeling language created by ILOG for combinatorial optimization, lin-

ear and integer programming. Many mathematical programming and optimization

problems are not only very challenging from the computational and algorithmic stand-

points, but also require substantial development e�ort since modeling such problems

can be nontrivial.

OPL was inspired by other modeling languages like AMPL, and its goal is to
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provide support for modeling mathematical programming problems, as well as giving

access to many optimization algorithms. While the language has the capability to

solve non-optimization problems, its ability to solve such problems is very limited,

and it is certainly designed speci�cally for optimization.

The idea of a modeling language like OPL is to provide a language whose syntax is

similar to the syntax used in textbooks and papers. OPL provides data structures for

mathematical objects like sets as well as computer-language equivalents to algebraic

and logical notations such as unions and intersections. For example,
Pn

i=1 aixi

can be written as

sum {i in [1..n]} a[i]*x[i]

Also, a minimization problem can be easily described in OPL the following way:

minimize

sum(i in Items) value[i] * amount[i]

subject to

forall (r in Resources)

sum (i in Items) use[r,i] * amount[i] <= capacity[r];

Notice that the syntax above looks very similar to what one would use in a text-

book to describe an integer programming problem. If one had to actually model and

implement a problem like this in a standard programming language, it would take

signi�cantly more time and e�ort, because one would have to implement low-level

concepts instead of focusing on modeling the problem.

In addition, OPL provides a way to solve sequences of related models, to make

modi�cations to those models and to solve the modi�ed models, a feature which came

in very handy in our implementation and will be discussed later in this chapter.

While there exist other modeling languages, AMPL for example, OPL is the only

one that performs constraint programming. Constraint programming in OPL allows

optimization problems to be solved by specifying the constraint part and the search
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part. The constraint part consists of a set of constraints to be satis�ed, and the search

part describes how to search for solutions.

5.2.2 Advantages of Using OPL

OPL was chosen to be the tool for implementing our base model for several reasons.

First, the high-level abstraction that OPL provides allows one to focus on developing

the model and its applications as opposed to the low-level details of implementing inte-

ger or linear programming. Second, OPL's ability to perform constraint programming

can be exploited to generate sequences during the column generation process. While

the popular tool CPLEX has proved to be extremely useful in solving mathematical

programming problems, it does not have the ability to do constraint programming.

OPL in fact uses CPLEX libraries to solve LP/IP problems, but at the same time it

o�ers much more functionality.

As mentioned in the previous section, OPL provides a way for models to in-

teract with each other, to be modi�ed, and to be solved with several instances of

data/constraints. OPLScript is a script language for OPL which supports all of these

functionalities. OPLScript treats models as �rst-class objects, which means they can

be developed and updated independently from the scripts that use them. In our prob-

lem, OPLScript allows us to generate new sequences during the pricing subproblem

of column generation, add them to the restricted master problem, and then run the

LP on new input, the updated set of sequences.

The modi�ed base model was developed using ILOG's OPL Studio 3.020 { a

graphical user interface to OPL.

5.3 Implementing the Modi�ed Base Model

5.3.1 Overview

The steps of the solution process for the basic string model are shown in �gure 5-1.

The overall algorithm is controlled by an OPL script called routing.osc. The
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Generate Initial Set
    of Routings

Solve the LP

Obtain the Solution
 to the IP

No New 
    Columns

Add  New Columns to the 
 Restricted Master Problem

New Columns

Generated

Use Constraint Programming
to Generate New Columns
with Negative Reduced Cost

Figure 5-1: Flight String Model for Aircraft Routing. Solution Steps

script starts by generating an initial set of routings. Then the problem alternates

between solving the LP relaxation of the set partitioning problem and solving a

routing generation problem that produces new columns for the master problem. The

solution strategy uses constraint programming as a pricing subproblem algorithm

for linear programming column generation. Each column represents a \routing", a

potential sequence of ights to be own by an aircraft. Thus, the master problem

must �nd a set of routings that covers every ight at a minimum cost, does not use

more airplanes than are available, and maintains aircraft ow balance. This is a

particular kind of set partitioning problem. Once there are no more columns with

negative reduced cost, the columns are �xed and the set partitioning problem is solved

to �nd an integer optimal solution. Finally, the OPL script prints the routings used

by aircraft.
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5.3.2 Generating Initial Set of Routings

The main script solves a constraint programming model (cvrroute.mod) sequentially

for every given ight. The idea is to generate a set of routings that cover each ight

in the network a number of times. The model exploits OPL's constraint program-

ming functionality to search for the longest sequences, i.e. routings which maximize

utilization.

However, to make sure a subset of these sequences actually form a solution when

the LP is solved, a small number of \shortest" routings (with minimum utilization)

are also included. The model cvrroute2.mod is responsible for generating this second,

smaller set of sequences which cover each ight.

Models cvrroute.mod and cvrroute2.mod are almost identical. The main di�erence

is in how the search procedure is de�ned. cvrroute.mod uses

search {

tryall (i in fltRng : isInDomain(fltSeq[i], coverFlt)

ordered by decreasing <i, dsize(fltSeq[i])>)

fltSeq[i] = coverFlt;

generateSize(citySeq);

generateSize(fltSeq);

};

ordering sequences by length in decreasing order, whereas cvrroute2.mod ranks

them in increasing order instead:

search {

tryall (i in fltRng : isInDomain(fltSeq[i], coverFlt)

ordered by increasing <i, dsize(fltSeq[i])>)

fltSeq[i] = coverFlt;

generateSize(citySeq);

generateSize(fltSeq);

};
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The following is an overview of how the constraint part of the above models works.

The constraint part is also used later, during the subpricing problem, to generate

columns with negative reduced cost.

Since the model is solved repeatedly for each ight, the ight being covered has

to be imported into the model:

// Run-time data

Flight coverFlt = ...;

A number of variables are declared in the model:

// Variables

var City citySeq[cityRng]; // sequence of cities

var Flight fltSeq[fltRng]; // sequence of flights

var int+ startTime in 0..Horizon; // start time of the string

var int+ endTime in 0..Horizon; // end time of the string

var int+ endIndex in 1..nSeq; // index of last non-dummy

// flight in the sequence

var Flight startFlight; // first flight in sequence

var Flight endFlight; // last flight in sequence

var int+ r in 0..nDays; // number of times the

// routing crosses the count

// line

var int+ duty in 0..maxDuty; // elapsed time

var int+ flight in 0..maxDuty; // time spent flying

var int+ util in 0..100; // overall utilization

var int+ cost in 0..maintenanceCost; // cost of flying the string

To generate sequences of variable length, the set of ights includes a \dummy"

ight for each airport, a ight whose origin and destination are the same. Each

dummy ight departs at 1439 (last minute of the day) and arrives at 0 (�rst minute
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of the next day). These ights can be used to \�ll up" the end of fltSeq if a sequence

is shorter than nSeq, maximum length allowed.

As potential sequences of ights/cities are generated in the search part of the

model, the constraint part computes values for the above variables:

startFlight = fltSeq[1];

endTime = (Arr[fltSeq[endIndex]] + minDuty) mod Horizon;

endIndex = max (i in fltRng) (citySeq[i-1] <> citySeq[i])*i;

r = sum (i in fltRng)

((i <= endIndex)*(Dep[fltSeq[i]] > Arr[fltSeq[i]])) +

sum (i in fltRng: i>= 2)

((i <= endIndex)*(Arr[fltSeq[i-1]] > Dep[fltSeq[i]])) +

(Arr[fltSeq[endIndex]] + minDuty > Horizon);

duty = r*Horizon + endTime - startTime;

flight = sum (i in fltRng)

((citySeq[i-1] <> citySeq[i])*

(Arr[fltSeq[i]]-Dep[fltSeq[i]]));

util = 100*flight/(maxDuty-minDuty);

A special logical predicate, an equivalent of a simple function, is de�ned to help

ensure that any ight's destination is the next ight's origin.

// Predicate for cities and flights

predicate p(Flight f, City o, City d) return o = Org[f] & d = Dst[f];

The constraint part ensures that a number of constraints described below are

satis�ed:

Link ights and cities using predicate:

forall (i in fltRng)

p(fltSeq[i], citySeq[i-1], citySeq[i]);

Minimum Turn Time:
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// Arr[fltSeq[i-1]] and Dep[fltSeq[i]] are on the same day

forall (i in fltRng : i>= 2)

(i <= endIndex)*(Arr[fltSeq[i-1]] < Dep[fltSeq[i]]) =>

(Arr[fltSeq[i-1]] + minStop +

(hubStop-minStop) * (citySeq[i-1] in Hub)

<= Dep[fltSeq[i]]);

// Dep[fltSeq[i]] is the day after Arr[fltSeq[i-1]

forall (i in fltRng : i>= 2)

(i <= endIndex)*(Arr[fltSeq[i-1]] >= Dep[fltSeq[i]]) =>

(Horizon - Arr[fltSeq[i-1]] + Dep[fltSeq[i]] >=

minStop + (hubStop-minStop) * (citySeq[i-1] in Hub));

Constrain Dummy Flights to End of Sequence:

citySeq[0] <> citySeq[1];

forall (i,j in fltRng : 1 < i < j)

(citySeq[i-1] = citySeq[i]) => (citySeq[j-1] = citySeq[j]);

Limit Elapsed Time:

duty <= maxDuty;

No Flight Can Be Repeated More Than Once:

forall (f in Flight)

(Org[f] <> Dst[f]) => sum(i in fltRng) (fltSeq[i] = f) <= 1;

Start and End Sequence at a Maintenance Station:

// Sequence must start at a maintenance station and end at a

// maintenance station (not necessarily the same one)

citySeq[0] in Maintenance;

citySeq[nSeq] in Maintenance;
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Cover the Speci�ed Flight:

sum (i in fltRng) (fltSeq[i] = coverFlt) = 1;

As sequences are generated, they are stored in the main script, and then later

imported by all internal models which are called from inside the main script.

5.3.3 How Sequences are Stored in OPL model

Two arrays are responsible for storing sequences:

Open Flight routeFlt[int+, int+]

Open int pairIdx[Flight,int+]

As new columns (sequences) are generated, they are added to the routeFlt array,

which is an expandable array whose �rst dimension represents sequence numbers and

second dimension represents ights in each sequence. Thus, the kth ight in sequence

i is stored in routeFlt[i,k].

For e�ciency and complexity reasons, ight sequences are also stored in pairIdx,

an array which stores sequences referenced by ights, i.e. each ight is associated

with sequence numbers which contain that ight.

Notice that if sequences were only stored in routeFlt, then the ight cover con-

straint in the LP/IP would have to be implemented as follows:

// flight cover constraint

forall (f in Flight : Org[f] <> Dst[f])

cvr[f]:

sum (i in Columns)

(sum (j in [routeFlt[i].low..routeFlt[i].up])

pair[i]*(routeFlt[i,j] = f))

= 1;

Storing sequences in pairIdx helps avoid the above double summation complexity

by transforming the ight constraint into the following much simpler form:
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// flight cover constraint

forall (f in Flight : Org[f] <> Dst[f])

cvr[f]:

sum (i in [pairIdx[f].low..pairIdx[f].up])

pair[pairIdx[f,i]]

= 1;

It is important to point out that avoiding complexity in the LP/IP of this model

is essential. Not only do we gain e�ciency, but making IP/LP simple in OPL actu-

ally helps avoid some of the memory problems introduced that are by OPL Studio

otherwise (see Section 5.3.6).

5.3.4 Restricted Master Problem. Solving the LP

After the initial set of routings has been obtained, OPLScript calls the LP model

(linroute.mod) which is responsible for solving the restricted master problem.

The following variables and constraints are declared in the model:

var float+ pair[Columns] in 0..1; // Amount for each routing

var float+ ground[Maintenance] in

0..numAircraft; // Number of planes on the

// ground overnight

constraint cvr[Flight]; // Cover each flight

constraint flow_balance[Flight]; // Flow Balance

constraint maintenance_flow[City]; // Number arriving =

// Number departing

constraint aircraft_count; // Use no more aircraft than

// are available

The variables declared above are equivalent to xs and y used in the string model

(see section 3.1). The objective function looks similar to the one described in 3.3.1:

minimize
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sum (i in Columns) pairCst[i]*pair[i]

Also, the ight cover and aircraft count constraints are de�ned in the model

similarly to the equivalent constraints described in 3.3.2:

// flight cover constraint (for each non-dummy flight):

forall (f in Flight : Org[f] <> Dst[f])

cvr[f]:

sum (i in [pairIdx[f].low..pairIdx[f].up])

pair[pairIdx[f,i]] = 1;

// aircraft count

aircraft_count:

sum (city in Maintenance) ground[city] +

sum(i in Columns) pair[i]*crossCount[i] <= numAircraft;

Notice, however, that the ow balance constraints di�er from the ones in the

original string model. Instead of de�ning a ground variable y for every ground arc,

we only de�ne a ground variable for the overnight arc at each station. Then, the ow

balance constraints transform into the following:

// Number of sequences ending at a maintenance station has to

// be equal to the number of sequences starting:

forall (c in City: c in Maintenance)

maintenance_flow[c]:

sum(i in Columns) pair[i]*((Org[startFlight[i]] = c) -

(Dst[endFlight[i]] = c)) = 0;

// For every sequence starting at a maintenance station, there is

// an airplane available at departure:

forall (f in Flight: Org[f] in Maintenance)

flow_balance[f]:
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ground[Org[f]] +

sum(i in Columns) pair[i]*(Dst[endFlight[i]] = Org[f])*

(((Arr[endFlight[i]] + minDuty) mod Horizon) < Dep[f]) -

sum(i in Columns) pair[i]*(Org[startFlight[i]] = Org[f])*

(Dep[startFlight[i]] < Dep[f]) -

sum(i in Columns) pair[i]*(startFlight[i] = f) >= 0;

In the last constraint, the number of aircraft available at a maintenance station at

a ight's departure from that station is determined by the number of aircraft present

at the airport in the beginning of the day plus the number of strings that arrive before

the ight's departure, minus the number of strings that depart the airport prior to

the ight's departure.

5.3.5 The Pricing Subproblem

In the column generation phase, the constraint program is used twice. First, model

optroute.mod is used to determine the cost of an optimal routing with respect to the

current set of dual values. In other words, we look for a routing which has the most

negative reduced cost. Then, entroute.mod is used to search for all routings that

have reduced cost of at most 2/3 of the optimal routing (minCost). This gives us a

large set of entering columns and eliminates one of the major weaknesses of column

generation: a large number of iterations needed to improve the objective value in the

master problem.

After the RMP is solved by the LP, the main script updates the two models used

for the pricing subproblem with new dual costs:

forall (f in Flight : cp.Org[f] <> cp.Dst[f]) {

op.fltCst[f] := ftoi(nearest(lp.cvr[f].dual));

ep.fltCst[f] := ftoi(nearest(lp.cvr[f].dual));

}

forall (c in cp.Maintenance) {

ep.maintCst[c] := ftoi(nearest(lp.maintenance_flow[c].dual));
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op.maintCst[c] := ftoi(nearest(lp.maintenance_flow[c].dual));

}

forall (f in Flight: cp.Org[f] in cp.Maintenance) {

op.flowCst[f] := ftoi(nearest(lp.flow_balance[f].dual));

ep.flowCst[f] := ftoi(nearest(lp.flow_balance[f].dual));

}

op.countCst := ftoi(nearest(lp.aircraft_count.dual));

ep.countCst := ftoi(nearest(lp.aircraft_count.dual));

Both models are based on the constraint programming model used to generate the

initial set of columns. However, optroute.mod solves a maximization problem, and

entroute sets a lower bound on the objective function.

The objective function computes the reduced cost of a column (routing) using the

above dual costs:

// Define objective function

obj = sum (i in fltRng) fltCst[fltSeq[i]] +

maintCst[Org[startFlight]] -

maintCst[Dst[endFlight]] +

sum(f in Flight) (Dst[endFlight] = Org[f])*

(endTime < Dep[f])*flowCst[f] -

sum(f in Flight) (Org[startFlight] = Org[f])*

(startTime < Dep[f])*flowCst[f] -

sum(f in Flight) (startFlight = f)*flowCst[f] +

countCst - cost;

It should be pointed out that the above equation actually computes a positive

value, so it should be maximized, not minimized.

The goal of optroute.mod is to maximize the objective function:

maximize

obj
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entroute.mod, on the other hand, uses the solve functionality of constraint pro-

gramming to �nd all routings which have a reduced cost of at least minCost:

solve {

obj >= minCost;

}

5.3.6 Problems with OPL

As it has already been mentioned above, OPL is a language designed speci�cally

for optimization problems. While it also provides some functionality similar to that

o�ered by more standard programming languages, this functionality is very limited.

These limitations force a particular storage model for sequences. Unlike a more

complete language like C++, we can not create objects that represent sequences nor

can we easily perform any non-optimization related work on these sequences, since

OPL does not allow functions to be de�ned.

Moreover, OPL Studio does not allow explicit memory management. Either by

mistake or by design memory frequently does not get released after a model within

an OPLScript is solved.

Since robustness is directly related to sequence overlaps, determining how robust

a given solution is requires searching through a large number of sequences. Given

the limitations in OPL functionality, however, it is impossible to perform this kind

of computation and memory intensive work inside OPL. Unfortunately, OPL also

does not allow external programs to be accessed from within OPL itself. Most of

the robustness related work, therefore, has to be done outside of OPL, completely

separately from the base model implemented in OPL.

5.4 Making the String Model Robust

The solution process for the Robust String Model is presented in �gure 5-2.
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Yes

 

Solve the Basic String Model (OPL)

No 

Yes

Remove Duplicates
 (Perl)

Compute Robustness of
  Each Unique Solution

Select the Most Robust
Solution

No

No More IP solutions?

Does the Number of Alternative Solutions
Exceed maxSolNumber?

Add Another Constraint into the IP:
   pair[k1]+pair[k2]+...+pair[kN] < N

where {k1, k2,..., kN} is the  New 
IP Solution  

Solve the IP with a Newly
Added Constraint

Figure 5-2: Building Robustness into the String Model. Solution Steps
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5.4.1 Obtaining Alternative Solutions by Adding Constraints

After an optimal IP solution is obtained, the OPLScript which is in charge of the

overall program control iterates through the IP model and obtains a number of alter-

native optimal solutions which have the same cost as the original optimal solution.

This process is accomplished by incorporating a new constraint into the IP at every

iteration. It can be described as the following:

X
i2prev sol

pair[si] <
X

i2prev sol

1 (5.1)

where si is column i, prev sol is the set of columns (i's), and

pair[sk] =

8><
>:

1 sk 2 IP

0 otherwise

Basically, the above described constraints ensure that none of the already gener-

ated solutions are generated again by requiring that no set of sequences representing

an existing solution is a subset of a new solution.

The main script routing.osc keeps track of all of the IP solutions that are generated

at each solution generation by storing them in an expandable array:

Open int solColIdx[int+, int+];

solColIdx is an array whose �rst dimension represents solution number and the

second dimension stores indices of columns included in the corresponding solution.

The IP in turn imports (at every iteration) the array of existing solutions from

the main script, declares an additional constraint new solution for every existing

solution, and de�nes each of the constraints in the following way:

import Open solColIdx;

constraint new_solution[[solColIdx.low..solColIdx.up]];
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// generate only new solutions:

forall (solIndex in [solColIdx.low..solColIdx.up])

new_solution[solIndex]:

sum (i in [solColIdx[solIndex].low..solColIdx[solIndex].up])

pair[solColIdx[solIndex,i]] <= solColIdx[solIndex].up;

5.4.2 Removing Multiple Copies (Perl)

During the constraint programming stage it is possible for multiple copies of the same

string to be generated. Having multiple copies of the same sequence will frequently

lead to multiple copies of the same solution obtained from the IP. A set of unique

solutions, therefore, must be selected.

Once a speci�ed number of alternative solutions have been generated and output

to a �le, a script written in Perl looks through these solutions, sorts them, and keeps

only one copy of each solution.

Any two solutions that include exactly the same set of sequences (order does not

matter), are considered the same.

5.4.3 C++ code

Once a set of unique IP solutions has been obtained from OPL and output to a �le,

a program written in the C++ programming language processes each solution and

assigns a measure of robustness to each of them. Results are then output to a �le.

5.4.4 Algorithm for Finding Overlapping Sequences

For each unique alternative solution obtained, all sequences in the solution are stored

and then processed according to the algorithm described below.

For every sequence s1 in the solution:

1) foreach point p1 on sequence s1

2) foreach sequence s2 which is present at airport(p1) at
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point p2 on departure (not including s1 at p1) within

a time interval deltaT {

3) foreach point p1'in s1: p1'> p1

4) foreach point p2' in s2: p2' > p2

5) if (p2 and p2' form an overlap) {

// Make sure the number of days in between p1 and p1'

// is the same as the number of days in between

// p2 and p2'. Otherwise it's not an actual overlap

6) if (abs((arr(p1')-dep(p1)) -

(arr(p2')-dep(p2))) <= 2*deltaT) {

// An overlap is found. Update the overlap array

// and go back to step 2) to look for other sequences

// that might overlap with s1 at p1

declare there is an overlap at point p1 for

sequence s1

go to next p1 on sequence s1

} // end if 6)

} // end if 5)

} // end foreach 4)

} // end foreach 3)

} // end foreach 2)

} // end foreach 1)

Since robustness of a string is de�ned by the percentage of points in the system

that have overlaps, the goal of the above algorithm is to look at every point in the

system and �nd out if its sequence has an overlap there.

Notice that even when sequences s1 and s2 meet at two sets of points (p11 , p21)

and (p12 , p22) within a speci�ed time interval deltaT, an overlap is not guaranteed.

The subsequences of s1 and s2 de�ned by the speci�ed points can still have di�erent

length. Since departure and arrival times are de�ned in minutes of the day, even
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if the subsequences start and end at about the same time, it is still unknown how

many times ights and points in those subsequences cross the count line. Hence, the

number of times the subsequence of s1 crosses the count line can be di�erent from the

number of times s2 cross the count line, which in turn means the two subsequences

can have di�erent length.

5.4.5 Avoiding Complexity. Sequence Storage Model.

When the ight network is large and includes thousands of ights, the number of

sequences in the solution can be quite high. Step 2 of the algorithm described in the

previous section can become quite complex if we have to look at every point on every

sequence.

The complexity of �nding pairs (s2; p2) can be avoided by storing sequences by

airport and departure time at every point. Each airport is associated with a number

of time intervals that cover 24 hours (1440 minutes). For each airport-time(A-T)

combination, there is a linked list of sequences which are present at A during the

time interval T . Thus, every sequence is referenced in the linked lists as many times

as there are points on that sequence (not including the last one, since no overlaps are

possible at that point). Therefore, in step 2, pairs (s2; p2) can be found by looking at

the linked list representing (airport(p1), TimeInterval(p1)) and the linked lists which

correspond to the neighboring time intervals for the same airport.

5.4.6 Data structures. Objects. Sequence Storage.

As was pointed out earlier, one of the problems with OPL is that there is no good

way to store sequences such that they can be e�ciently processed later to evaluate

the robustness of a solution. The object-oriented functionality of C++, on the other

hand, provides the data storage exibility that can be exploited to process solutions

e�ciently.

Figure 5-3 shows how sequences are stored in our C++ model. Here we give a

short description of data structures used.
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Flights

Flight objects contain ight id, departure and arrival times, and origin and desti-

nation cities. Times are de�ned in minutes of the day [0..1440]. Cities are represented

with integer ids.

Sequences

Sequences are de�ned by the following components:

// number of times this sequence crosses the count line

int nDays;

// maximum number of flights in a sequence

int maxSize;

// current number of flights in a sequence

int size;

// sequence arrival time determined by end of maintenance

// which follows the arrival of the last flight in a sequence

int endTime;

// array of flights representing a sequence

Flight** fl;

Sequence objects provide methods for accessing departure, arrival, and airport

information at every point on a sequence, as well as duration time of any subsequence

speci�ed by indices of start and end points of the subsequence.

SequenceNode

A SequenceNode is an object that encapsulates a sequence and provides a pointer

to the next SequenceNode. SequenceNodes are used to create linked lists of sequences

(SequenceList).

SequenceList

A SequenceList object represents a linked list of Sequences. A SequenceList's

head points to the �rst element in the list or NULL if the list is empty. The class
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provides methods for adding and removing elements as well as accessing the head of

the list.

CityTimeNode

CityTimeNode objects represent departures associated with sequence points. They

are used to create CityTimeListDeparture objects which represent lists of sequence

points whose departures fall within a particular Time interval and are associated with

a particular airport (City). A CityTimeNode contains a pointer to a sequence, an

index of a point on the sequence, departure time for that point, and a pointer to a

CityTimeNode representing next departure at the airport of interest.

CityTimeListDeparture

CityTimeListDeparture objects represent sequence points whose departures fall

within a particular time interval of the day at a particular airport. Within this time

interval (inside the list) points are sorted by departure time in increasing order. The

head element points to the �rst CityTimeNode on the list (the one that has the

earliest departure).

The class provides methods for inserting elements (sequence points), removing

elements and determining if a sequence point is contained in the list, as well as

extracting the head of the list.

Notice that keeping points sorted by departure time within a list helps access an

event's neighbors at an airport, a functionality useful when we are trying to determine

if two sequences meet at a pair of points.

SequenceStore

This is the most important class, responsible for storing alternative solutions and

determining their robustness.

SequenceStore objects are responsible for sorting and storing sequences by time

and airport. SequenceStore maintains a two dimensional array of CityTimeListDepar-

ture* elements, the �rst dimension representing airports, and the second dimension
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representing consecutive time intervals of the day. A list of sequences SL is also

maintained to keep track of all sequences entered into the SequenceStore.

Using the algorithm described in sections 5.4.4 and 5.4.5, SequenceStore was used

to determine robustness of a set a sequences, de�ned by the percentage of total points

in the system that have overlaps with at least one other point in the system. The

results are described in chapter 6.
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Chapter 6

Results and Conclusions

6.1 Overview

The robustness model described in Chapter 5 was tested on subsets of an actual

airline maintenance routing schedule. For each subset a number of equally optimal

alternative solutions were compared based on robustness. It was found that in some

cases the model provided an increase in robustness of up to 35% as compared to the

original string model. At the same time, the optimal cost of the �nal solution was

preserved.

6.2 Test Data

As shown in table 6.1, several subsets of an airline schedule used by a major airline

were used to test the robustness model. Test networks consisted of up to 6 airports,

one of which was a hub, and up to three of which were maintenance stations. The

networks contained between 14 and 37 randomly picked ights, with the smaller

networks being subsets of the larger networks. Minimum turn time for hubs was

set to 40 minutes; 30 minutes were provided for other, non-hub stations. Maximum

length of a string was de�ned to be 4320 minutes (three days), a common length of

time allowed by airlines between maintenance checks. Minimum maintenance time

was set to three hours.
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Table 6.1: Test Data

Network Flights Airports Hubs Maintenance

1 14 5 1 2
2 22 6 1 2
3 26 6 1 2
4 37 6 1 3

6.3 Robustness Factors

It would seem obvious that varying the number of alternative solutions and robustness

time tolerance would alter the degree to which robustness of the �nal solution could

be improved. In fact, increasing the number of alternative solutions generated in the

model corresponds directly to improving robustness since the �nal result is the most

robust solution in the set. The impact of varying the time tolerance on robustness,

on the other hand, is signi�cantly less clear as there is no direct correlation in this

case.

6.3.1 Number of Alternative Solutions

For each test network the OPL part of the model generated a set of 500 alternative

solutions. Then, for each of those sets a Perl script generated �ve subsets by extracting

100, 200, 300, 400, and 500 top solutions from the original set. Another Perl script

was responsible for removing multiple copies of solutions from each of those subsets

and for sorting the remaining unique solutions by ight number. Thus, for every test

network, �ve sets of unique solutions were generated. We will call these sets �nal

sets.

It was our expectation that using larger �nal sets would result in higher robustness

of the �nal solution.
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6.3.2 Robustness Time Tolerance

To determine the e�ect that varying robustness time tolerance would have on the

robustness of the �nal solution, every �nal set in each of the four networks was tested

with deltaT of 20, 30, 40, 50, 60, 70, 80, and 90 minutes.

As mentioned above, we expected there would be no direct correlation between

deltaT and improvement in robustness of the �nal solution. It seems reasonable to

assume that robustness of any solution increases as deltaT goes up, since there is more

opportunity for overlaps among the sequences in the solution. Thus, while maximum

and average robustness of any �nal set go up as deltaT increases, minimum robustness

goes up as well. Therefore, the improvement, or the di�erence between maximum and

minimum/average robustness, is not guaranteed to change.

6.4 Results

For each �le containing robustness of a �nal set for a given deltaT , a Perl script gen-

erated an information �le which describes the number of unique solutions, coe�cients

of robustness for the least and most robust solutions, and average robustness of the

set. The latter was computed as the sum of robustness coe�cients of all solutions in

the set, divided by the total number of solutions in the set.

A solution with minimum robustness corresponds to the worst case (least robust)

solution obtained from the original string model. Conversely, a solution with maxi-

mum robustness corresponds to the best case (most robust) solution obtained from

the original string model and is the solution selected by the improved string model.

The average robustness of the set indicates the likely robustness of a solution obtained

from the original model.

In the following sections, robustness coe�cients are rounded to the nearest whole

number.
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6.4.1 Improvement

From these three measurements, we can determine the improvement in robustness

computed by the improved string model as compared to the original model.

For each network and each deltaT , maximum improvement was de�ned to be the

di�erence between the highest and lowest achieved robustness among the solutions

in the largest �nal set, and average improvement was de�ned to be the di�erence

between the highest and average achieved robustness. Since the standard (non-robust)

maintenance routing problem selects any of the alternative optimal solutions, the

average improvement most closely corresponds to the expected improvement over the

original string model. However, it is important to note that in the worst case - that is,

the case in which the standard maintenance routing problem selects the least robust

solution - the improved string model can o�er the maximum improvement over the

original model.

The maximum and average improvement in robustness are given for each network

in the following sections.

6.4.2 Network 1: 14 Flights

When run against the 14 ight network, a minimum of 27 and maximum of 54 unique

solutions were generated for subsets of 100 and 500 alternative solutions, respectively.

Tables 6.2 - 6.4 show minimum, maximum, and average robustness computed for the

14 ight network. As shown, for values of deltaT < 40, all solutions computed had

robustness of 0. However, for deltaT = 40, the model was able to obtain a signi�cant

improvement in robustness - 28% (see Table 6.5.) Of particular interest was the

improvement for deltaT = 80; 90 - a di�erence of 35%. Figure 6-1 shows robustness

distribution of the �nal set of 500 solutions for each speci�ed value of deltaT . Notice

that for larger values of deltaT there exists a larger number of robust solutions,

whereas most of the solutions for small values of deltaT are nonrobust. Furthermore,

robustness of the solutions is more equally distributed for larger values of deltaT .
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Table 6.2: Results: Minimum Robustness Coe�cient(14 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 27 0 0 0 0 0 0 7 7
200 38 0 0 0 0 0 0 7 7
300 46 0 0 0 0 0 0 7 7
400 48 0 0 0 0 0 0 7 7
500 54 0 0 0 0 0 0 7 7

Table 6.3: Results: Maximum Robustness Coe�cient(14 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 27 0 0 14 14 14 14 28 28
200 38 0 0 14 14 14 14 28 28
300 46 0 0 28 28 28 28 42 42
400 48 0 0 28 28 28 28 42 42
500 54 0 0 28 28 28 28 42 42

Table 6.4: Results: Average Robustness Coe�cient(14 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 27 0 0 8.3 8.3 8.3 8.3 17.9 17.9
200 38 0 0 7.4 7.4 7.4 7.4 16.9 16.9
300 46 0 0 7.6 7.6 7.6 7.6 17.7 17.7
400 48 0 0 7.3 7.3 7.3 7.3 17.5 17.5
500 54 0 0 7 7 7 7 17.5 17.5

Table 6.5: Results: Improvement (14 ights, 54 solutions)

Improvement 4T 4T 4T 4T 4T 4T 4T 4T
=20 =30 =40 =50 =60 =70 =80 =90

Maximum 0 0 28 28 28 28 35 35
Average 0 0 21 21 21 21 24.5 24.5
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Figure 6-1: Robustness Distribution (14 ights, 500 solutions)
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6.4.3 Network 2: 22 Flights

For this network, the model computed a signi�cantly larger number of unique solu-

tions as compared to Network 1 { between 59 and 260 solutions were generated. As

with the 14 ight network, all of the computed solutions for deltaT < 40 in the 22

ight network had a robustness coe�cient of 0. Within the ight network, improve-

ments in maximum robustness could be found at deltaT = 40 (18%) and deltaT = 80

(23%). Results are shown in tables 6.6 - 6.9. Figure 6-2 shows robustness distribu-

tion of the �nal set of 500 solutions for each speci�ed value of deltaT . Notice that for

deltaT = 40 and deltaT = 50 there exists a small number of robust solutions, while

the majority of the solutions are nonrobust; for larger values of deltaT , robustness of

the solutions is more equally distributed.

Table 6.6: Results: Minimum Robustness Coe�cient (22 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 59 0 0 0 0 0 0 4 4
200 115 0 0 0 0 0 0 4 4
300 172 0 0 0 0 0 0 4 4
400 225 0 0 0 0 0 0 4 4
500 260 0 0 0 0 0 0 4 4

Table 6.7: Results: Maximum Robustness Coe�cient (22 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 59 0 0 18 18 18 18 27 27
200 115 0 0 18 18 18 18 27 27
300 172 0 0 18 18 18 18 27 27
400 225 0 0 18 18 18 18 27 27
500 260 0 0 18 18 18 18 27 27
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Figure 6-2: Robustness Distribution (22 ights, 500 solutions)
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Table 6.8: Results: Average Robustness Coe�cient (22 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 59 0 0 1.4 1.4 3.1 3.1 11.3 11.3
200 115 0 0 2.7 2.7 5.1 5.1 13 13
300 172 0 0 2.6 2.6 4.6 4.6 12.7 12.7
400 225 0 0 2.4 2.4 4.1 4.1 12.7 12.7
500 260 0 0 2.2 2.2 3.8 3.8 12.2 12.2

Table 6.9: Results: Improvement (22 ights, 260 solutions)

Improvement 4T 4T 4T 4T 4T 4T 4T 4T
=20 =30 =40 =50 =60 =70 =80 =90

Maximum 0 0 18 18 18 18 23 23
Average 0 0 15.8 15.8 14.2 14.2 14.8 14.8

6.4.4 Network 3: 26 Flights

Testing the 26 ight network, like the 22 ight network, resulted in a fairly large

number of unique solutions (376 for the �nal set of size 500). Unlike the smaller

networks, a number of solutions for deltaT = 20; 30 had some level of robustness

built into them. In fact, the two largest improvements in robustness appeared to

occur at deltaT = 20 (12%) and deltaT = 40 (27%). Results for this network can

be found in tables 6.10 - 6.13. Figure 6-3 shows robustness distribution of the �nal

set of 500 solutions for each speci�ed value of deltaT . Similarly to networks 1 and

2, robustness of the solutions is higher for larger values of deltaT . In fact, for larger

values of deltaT , distribution of robustness resembles normal distribution.
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Table 6.10: Results: Minimum Robustness Coe�cient (26 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 70 3 3 11 11 11 11 19 19
200 145 3 3 7 7 7 7 11 11
300 221 3 3 7 7 7 7 11 11
400 296 3 3 7 7 7 7 11 11
500 376 3 3 7 7 7 7 11 11

Table 6.11: Results: Maximum Robustness Coe�cient (26 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 70 7 7 23 23 30 30 34 34
200 145 7 7 26 26 30 30 34 34
300 221 15 15 30 30 34 34 38 38
400 296 15 15 34 34 34 34 38 38
500 376 15 15 34 34 34 34 38 38

Table 6.12: Results: Average Robustness Coe�cient (26 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 70 5.7 5.7 15.3 15.3 17.3 17.3 25 25
200 145 6.1 6.1 16.9 16.9 18.6 18.6 25.6 25.6
300 221 6.5 6.5 17.8 17.8 19 19 26.3 26.3
400 296 6.7 6.7 17.4 17.4 18.4 18.4 26.2 26.2
500 376 6.8 6.8 17.4 17.4 18.4 18.4 26.2 26.2

Table 6.13: Results: Improvement (26 ights, 376 solutions)

Improvement 4T 4T 4T 4T 4T 4T 4T 4T
=20 =30 =40 =50 =60 =70 =80 =90

Maximum 12 12 27 27 27 27 27 27
Average 8.2 8.2 16.6 16.6 15.6 15.6 11.8 11.8
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Figure 6-3: Robustness Distribution (26 ights, 500 solutions)

6.4.5 Network 4: 37 Flights

This network was the largest test network. As was the case with network 1, the

number of unique solutions in the 37 ight network appeared to be fairly small {

between 22 and 91 unique solutions were generated for the network's �nal sets. For

all deltaT in each �nal set, all solutions had some level of robustness built in, with

a minimum of 2% for deltaT = 20 in the �nal set of size 500 and maximum of

51% for deltaT = 90. Maximum improvements were found at deltaT = 20 (8%),

deltaT = 30 (13%), and deltaT = 90 (27%). Results are summarized in tables 6.14

- 6.17. Figure 6-4 shows robustness distribution of the �nal set of 500 solutions for

each speci�ed value of deltaT . Notice that, similarly to all smaller test networks,

robustness of the solutions is distributed more equally for larger values of deltaT .
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Table 6.14: Results: Minimum Robustness Coe�cient (37 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 22 5 10 16 16 16 18 24 32
200 37 5 8 16 16 16 16 21 29
300 42 5 8 16 16 16 16 21 29
400 67 2 8 16 16 16 16 21 24
500 91 2 8 16 16 16 16 21 24

Table 6.15: Results: Maximum Robustness Coe�cient (37 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 22 10 21 35 35 37 37 43 51
200 37 10 21 35 35 37 37 43 51
300 42 10 21 35 35 37 37 43 51
400 67 10 21 35 35 37 37 43 51
500 91 10 21 35 35 37 37 43 51

Table 6.16: Results: Average Robustness Coe�cient (37 ights)

Number of Unique 4T 4T 4T 4T 4T 4T 4T 4T
Solutions Solutions =20 =30 =40 =50 =60 =70 =80 =90

100 22 5.2 11.8 23.7 23.7 24.1 24.9 30.7 38.2
200 37 5.3 11.2 22.6 22.6 22.9 23.5 28.8 36.1
300 42 5.2 11 22.1 22.1 22.4 22.9 28.3 35.7
400 67 5.4 10.7 21.2 21.2 22.3 22.9 28 35.1
500 91 5.4 10.6 21.2 21.2 22.6 23 28.3 35.6

Table 6.17: Results: Improvement (37 ights, solutions)

Improvement 4T 4T 4T 4T 4T 4T 4T 4T
=20 =30 =40 =50 =60 =70 =80 =90

Maximum 8 13 19 19 21 21 22 27
Average 4.6 10.4 13.8 13.8 14.4 14 14.7 15.4
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Figure 6-4: Robustness Distribution (37 ights, 500 solutions)
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6.5 Conclusions

The results obtained suggest that the alternative solutions approach to the aircraft

routing problem can signi�cantly improve robustness of the solution while preserving

its optimal cost. An improvement in robustness of up to 35% over the original model

has been shown in some cases. As was expected, for each network robustness of the

�nal solution was directly related to the number of alternative solutions in the �nal

set { the larger the �nal set, the greater an improvement over the original model.

In addition, we also discovered that there was in fact a correlation between deltaT

and robustness. Contrary to our original assumption (see Section 6.3.2), we found that

larger values of deltaT resulted in larger improvement. Also, we discovered that in

most cases the largest improvement occurred between deltaT = 30 and deltaT = 40.

This last fact is especially interesting as 40 minutes is a reasonable value for time

tolerance to allow for two aircraft to be switched at an airport. Put another way, if two

aircraft depart within 40 minutes of each other and one of them is substituted for the

other, there will be a maximum of 40 minute delay (20 minutes on average). Finally,

the graphs showing robustness distribution for each of the test cases suggest that

larger values of deltaT result in a larger number of solutions incorporating some level

of robustness. Furthermore, robustness of the solutions in each network is distributed

more equally for larger values of deltaT .

6.5.1 Problems and Future Model Improvement

Unfortunately, due to insu�cient time and limitations introduced by OPL, we were

not able to test the model on su�ciently large data sets. Also, our implementation

did not make full use of the search functionality of OPL's constraint programming,

and, therefore, some ine�ciency was introduced in the pricing subproblem of column

generation.

One of the goals of our research was to explore the trade-o� between robustness

and optimality. We have shown that, in general, the solution to the maintenance

routing problem can be improved signi�cantly by increasing its robustness. Moreover,
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since in our model the robust solution is selected from the set of optimal solutions

to the original string model, no optimality is traded for robustness. However, we did

not try to determine how much extra robustness can be gained by selecting a slightly

less optimal solution. This issue still remains to be explored in the future.
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Chapter 7

Future Research

Over the course of this research work on robust airline scheduling several related areas

of interest were identi�ed. This chapter discusses some suggestions for future work.

7.1 Robustness Measure as Part of LP's Objective

Function

In section 4.5.1 a few suggestions were o�ered on how to incorporate a measure of

robustness into the objective function. While we were unable to come up with a

way to do so and keep the objective function linear at the same time, we hope this

approach will become possible in the future.

The strength of this approach (if implementable) is in that we are guaranteed

the �nal solution is optimal, since robustness consideration is a part of the column

generation process. While the alternative solutions approach guarantees improvement

of the original optimal solution, it might not result in the most robust solution since

once an optimal solution is generated, the column generation process stops. Some

of the columns making up the most robust optimal solution might in fact never be

considered.
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7.2 Robustness as Part of the Pricing Subproblem

Neither of the two approaches discussed in sections 4.5.1 and 4.5.2 has the ability

to generate columns that are robust from the start. The �rst method does not take

robustness into consideration until after all of the new columns at a given iteration of

the column generation process are added to the restricted master problem and the LP

is being solved. The second, alternative solutions, approach does not take robustness

into consideration until a set of optimal solutions has been found.

If, in the pricing subproblem of the column generation process we can generate

columns that are robust from the start, we can make the solution process signi�cantly

more e�cient. Fewer columns will have to be generated, which may signi�cantly

reduce complexity of the LP/IP as well as the solution time in general. Also, some or

all of the work described in section 5.4 can be eliminated because the solutions found

will have robustness built in from the start.

7.3 Through Flights

For simplicity purposes, our robustness model assigned the same cost to every string

and did not take into consideration potential revenue obtained from through ights

in the network. It would be interesting to explore the trade-o� between revenue

obtained from through ights and robustness in the schedule.

7.4 Hybrid Airline Scheduling and Robustness

The techniques presented in this research project to build robustness into aircraft rout-

ing can also be applied to hybrid airline scheduling solutions. One of the examples,

immediately related to aircraft routing, is the combined eet assignment/maintenance

routing string model [8]. A joint formulation and optimization framework used in hy-

brid airline scheduling can result in higher revenues. For the same reason, applying

robustness to hybrid airline scheduling can potentially result in higher robustness of

the �nal schedule.
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7.5 Robust Crew Scheduling

Robust airline scheduling, and our model in particular, can be applied to other parts

of the airline scheduling design. Crew scheduling in many ways is similar to aircraft

routing. Building robustness into crew scheduling will allow a crew, delayed in an

event of irregular operations for example, to be switched from one pairing to another

and then returned to its original pairing before the end of duty.

7.6 Estimating Performance of a Schedule Based

on Historical Data

A set of historical data from an actual airline could be used to compare the airline's

actual performance in the past to its hypothetical performance given a series of more

robust schedules.

7.7 Robust Airline Schedules in Practice

While the method developed as a result of this research project has been shown to in-

crease robustness of aircraft routing schedules in theory, it still remains to be seen how

robust schedules perform during actual operations. A robust airline schedule which

has subroute switching opportunities built into it at the strategic stage of planning

will still have to be maintained and updated during the tactical stage. Whether

robustness built into the schedule will actually be used during actual operations de-

pends on how e�ciently schedule maintenance and updates are performed during the

tactical stage.

In fact, we hope that future research will include developing e�cient ways to

maintain airline schedules, such that robustness built into a schedule is actually used

when necessary.
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Figure 7-1: Representing Robust Schedules Geometrically

7.7.1 Possible Geometrical Representation of a Robust

Schedule

As we have already seen, an aircraft routing schedule is de�ned by a set of sequences,

whose robustness in turn is de�ned by the overlaps in that set of sequences. One way

to describe a robust schedule is by using a fractal-like structure (see Figure 7-1).

The above structure represents a highly robust airline schedule in which there is

a large amount of exibility to switch aircraft in the event of irregular operations

or demand uctuations. In general, one might guess that hub-and-spoke networks

provide higher robustness than point-to-point networks. By de�nition, hubs are used

to transfer passengers from one route to another. The goal, then, is to have a number

of routes intersect at the same airport at about the same time, which frequently will

result in an overlap at that airport.

In the future it may be possible to determine robustness of an airline schedule

directly from its geometrical representation.
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7.8 Social Aspects of Airline Scheduling

7.8.1 Customer Acceptance

Another, more social-related, side of the issue that would be interesting to address

is the issue of customer acceptance of robust versus optimal schedules. That is,

given an airline with a robust schedule which takes into account potential delays but

has a slightly less convenient scheduled arrival/departure time or higher fares than

a competing airline with a more optimal but less robust schedule, would customers

choose the more robust airline?

7.8.2 Other Related Questions

Making Information More Available to the Public

It would be interesting to explore how availability of ight delay information to

the public a�ects customer satisfaction. For example, if a passenger learns that not

only his ight was delayed but many other, will he be more accepting and patient?

Government Policy and Research

Another area of interest are government imposed airline fees based on on-time

performance. Little research has been done to determine how the government policy

has historically a�ected research in airline operations.
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Appendix A

Mathematical Tools

A.1 Mathematical Programming

A mathematical program is an optimization problem of the (standard) form:

Maximize f(x) : x 2 X; g(x) � 0; h(x) = 0; (A.1)

where X is a subset of Rn and is in the domain of the real-valued functions, f , g

and h. The relations, g(x) � 0 and h(x) = 0 are called constraints, and f is called

the objective function.

A point x is feasible if it is in X and satis�es the constraints: g(x) � 0 and

h(x) = 0. A point x� is optimal if it is feasible and if the value of the objective

function is not less than that of any other feasible solution: f(x�) � f(x) for all

feasible x. The sense of optimization is presented here as maximization, but it could

just as well be minimization, with the appropriate change in the meaning of optimal

solution: f(x�) � f(x) for all feasible x.

A.2 Linear Programs (LP). Integer Programs(IP)

A linear program is an instance of a mathematical program that can be described in

the following form:
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Optfcx : Ax = b; x >= 0g (A.2)

Other forms of the constraints are possible, such as Ax � b.

Integer programs are linear programs in which the variables are required to be

integer-valued.

A.3 SIMPLEX

An algorithm invented to solve a linear program by progressing from one extreme

point of the feasible polyhedron to an adjacent one. The method is an algorithm

strategy, where some of the tactics include pricing and pivot selection.

A.3.1 Pricing

This is a tactic in the simplex method, by which each variable is evaluated for its

potential to improve the value of the objective function.

A.3.2 Pivot Selection

In the simplex method, this is a tactic to select a basis exchange. The incoming

column is based on its e�ect on the objective function, and the outgoing column is

based on its e�ect on feasibility.

A.4 CPLEX

A collection of mathematical programming software solvers.
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