613 research outputs found

    QoS Constrained Optimal Sink and Relay Placement in Planned Wireless Sensor Networks

    Full text link
    We are given a set of sensors at given locations, a set of potential locations for placing base stations (BSs, or sinks), and another set of potential locations for placing wireless relay nodes. There is a cost for placing a BS and a cost for placing a relay. The problem we consider is to select a set of BS locations, a set of relay locations, and an association of sensor nodes with the selected BS locations, so that number of hops in the path from each sensor to its BS is bounded by hmax, and among all such feasible networks, the cost of the selected network is the minimum. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard, and is hard to even approximate within a constant factor. For this problem, we propose a polynomial time approximation algorithm (SmartSelect) based on a relay placement algorithm proposed in our earlier work, along with a modification of the greedy algorithm for weighted set cover. We have analyzed the worst case approximation guarantee for this algorithm. We have also proposed a polynomial time heuristic to improve upon the solution provided by SmartSelect. Our numerical results demonstrate that the algorithms provide good quality solutions using very little computation time in various randomly generated network scenarios

    Energy-aware dynamic route management for THAWS

    Get PDF
    In this research we focus on the Tyndall 25mm and 10mm nodes energy-aware topology management to extend sensor network lifespan and optimise node power consumption. The two tiered Tyndall Heterogeneous Automated Wireless Sensors (THAWS) tool is used to quickly create and configure application-specific sensor networks. To this end, we propose to implement a distributed route discovery algorithm and a practical energy-aware reaction model on the 25mm nodes. Triggered by the energy-warning events, the miniaturised Tyndall 10mm data collector nodes adaptively and periodically change their association to 25mm base station nodes, while 25mm nodes also change the inter-connections between themselves, which results in reconfiguration of the 25mm nodes tier topology. The distributed routing protocol uses combined weight functions to balance the sensor network traffic. A system level simulation is used to quantify the benefit of the route management framework when compared to other state of the art approaches in terms of the system power-saving

    Security for Multi-hop Communication of Two-tier Wireless Networks with Different Trust Degrees

    Get PDF
    Many effective strategies for enhancing network performance have been put forth for wireless communications' physical-layer security. Up until now, wireless communications security and privacy have been optimized based on a set assumption on the reliability or network tiers of certain wireless nodes. Eavesdroppers, unreliable relays, and trustworthy cooperative nodes are just a few examples of the various sorts of nodes that are frequently categorized. When working or sharing information for one another, wireless nodes in various networks may not always have perfect trust in one another. Modern wireless networks' security and privacy may be enhanced in large part by optimizing the network based on trust levels. To determine the path with the shortest total transmission time between the source and the destination while still ensuring that the private messages are not routed through the untrusted network tier, we put forth a novel approach. To examine the effects of the transmit SNR, node density, and the percentage of the illegitimate nodes on various network performance components, simulation results are provided

    Power-Aware Planning and Design for Next Generation Wireless Networks

    Get PDF
    Mobile network operators have witnessed a transition from being voice dominated to video/data domination, which leads to a dramatic traffic growth over the past decade. With the 4G wireless communication systems being deployed in the world most recently, the fifth generation (5G) mobile and wireless communica- tion technologies are emerging into research fields. The fast growing data traffic volume and dramatic expansion of network infrastructures will inevitably trigger tremendous escalation of energy consumption in wireless networks, which will re- sult in the increase of greenhouse gas emission and pose ever increasing urgency on the environmental protection and sustainable network development. Thus, energy-efficiency is one of the most important rules that 5G network planning and design should follow. This dissertation presents power-aware planning and design for next generation wireless networks. We study network planning and design problems in both offline planning and online resource allocation. We propose approximation algo- rithms and effective heuristics for various network design scenarios, with different wireless network setups and different power saving optimization objectives. We aim to save power consumption on both base stations (BSs) and user equipments (UEs) by leveraging wireless relay placement, small cell deployment, device-to- device communications and base station consolidation. We first study a joint signal-aware relay station placement and power alloca- tion problem with consideration for multiple related physical constraints such as channel capacity, signal to noise ratio requirement of subscribers, relay power and network topology in multihop wireless relay networks. We present approximation schemes which first find a minimum number of relay stations, using maximum transmit power, to cover all the subscribers meeting each SNR requirement, and then ensure communications between any subscriber and a base station by ad- justing the transmit power of each relay station. In order to save power on BS, we propose a practical solution and offer a new perspective on implementing green wireless networks by embracing small cell networks. Many existing works have proposed to schedule base station into sleep to save energy. However, in reality, it is very difficult to shut down and reboot BSs frequently due to nu- merous technical issues and performance requirements. Instead of putting BSs into sleep, we tactically reduce the coverage of each base station, and strategi- cally place microcells to offload the traffic transmitted to/from BSs to save total power consumption. In online resource allocation, we aim to save tranmit power of UEs by en- abling device-to-device (D2D) communications in OFDMA-based wireless net- works. Most existing works on D2D communications either targeted CDMA- based single-channel networks or aimed at maximizing network throughput. We formally define an optimization problem based on a practical link data rate model, whose objective is to minimize total power consumption while meeting user data rate requirements. We propose to solve it using a joint optimization approach by presenting two effective and efficient algorithms, which both jointly determine mode selection, channel allocation and power assignment. In the last part of this dissertation, we propose to leverage load migration and base station consolidation for green communications and consider a power- efficient network planning problem in virtualized cognitive radio networks with the objective of minimizing total power consumption while meeting traffic load demand of each Mobile Virtual Network Operator (MVNO). First we present a Mixed Integer Linear Programming (MILP) to provide optimal solutions. Then we present a general optimization framework to guide algorithm design, which solves two subproblems, channel assignment and load allocation, in sequence. In addition, we present an effective heuristic algorithm that jointly solves the two subproblems. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Multi-layer Unmanned Aerial Vehicle Networks: Modeling and Performance Analysis

    Full text link
    Since various types of unmanned aerial vehicles (UAVs) with different hardware capabilities are introduced, we establish a foundation for the multi-layer aerial network (MAN). First, the MAN is modeled as K layer ANs, and each layer has UAVs with different densities, floating altitudes, and transmission power. To make the framework applicable for various scenarios in MAN, we consider the transmitter- and the receiver-oriented node association rules as well as the air-to-ground and air-to-air channel models, which form line of sight links with a location-dependent probability. We then newly analyze the association probability, the main link distance distribution, successful transmission probability (STP), and area spectral efficiency (ASE) of MAN. The upper bounds of the optimal densities that maximize STP and ASE are also provided. Finally, in the numerical results, we show the optimal UAV densities of an AN that maximize the ASE and the STP decrease with the altitude of the network. We also show that when the total UAV density is fixed for two layer AN, the use of single layer in higher(lower) altitude only for all UAVs can achieve better performance for low(high) total density case, otherwise, distributing UAVs in two layers, i.e., MAN, achieves better performance
    corecore