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Abstract

Mobile network operators have witnessed a transition from being voice dominated

to video/data domination, which leads to a dramatic traffic growth over the past

decade. With the 4G wireless communication systems being deployed in the

world most recently, the fifth generation (5G) mobile and wireless communica-

tion technologies are emerging into research fields. The fast growing data traffic

volume and dramatic expansion of network infrastructures will inevitably trigger

tremendous escalation of energy consumption in wireless networks, which will re-

sult in the increase of greenhouse gas emission and pose ever increasing urgency

on the environmental protection and sustainable network development. Thus,

energy-efficiency is one of the most important rules that 5G network planning

and design should follow.

This dissertation presents power-aware planning and design for next generation

wireless networks. We study network planning and design problems in both

offline planning and online resource allocation. We propose approximation algo-

rithms and effective heuristics for various network design scenarios, with different

wireless network setups and different power saving optimization objectives. We

aim to save power consumption on both base stations (BSs) and user equipments

(UEs) by leveraging wireless relay placement, small cell deployment, device-to-

device communications and base station consolidation.

We first study a joint signal-aware relay station placement and power alloca-

tion problem with consideration for multiple related physical constraints such as

channel capacity, signal to noise ratio requirement of subscribers, relay power and



network topology in multihop wireless relay networks. We present approximation

schemes which first find a minimum number of relay stations, using maximum

transmit power, to cover all the subscribers meeting each SNR requirement, and

then ensure communications between any subscriber and a base station by ad-

justing the transmit power of each relay station. In order to save power on BS,

we propose a practical solution and offer a new perspective on implementing

green wireless networks by embracing small cell networks. Many existing works

have proposed to schedule base station into sleep to save energy. However, in

reality, it is very difficult to shut down and reboot BSs frequently due to nu-

merous technical issues and performance requirements. Instead of putting BSs

into sleep, we tactically reduce the coverage of each base station, and strategi-

cally place microcells to offload the traffic transmitted to/from BSs to save total

power consumption.

In online resource allocation, we aim to save tranmit power of UEs by en-

abling device-to-device (D2D) communications in OFDMA-based wireless net-

works. Most existing works on D2D communications either targeted CDMA-

based single-channel networks or aimed at maximizing network throughput. We

formally define an optimization problem based on a practical link data rate model,

whose objective is to minimize total power consumption while meeting user data

rate requirements. We propose to solve it using a joint optimization approach

by presenting two effective and efficient algorithms, which both jointly determine

mode selection, channel allocation and power assignment.

In the last part of this dissertation, we propose to leverage load migration

and base station consolidation for green communications and consider a power-

efficient network planning problem in virtualized cognitive radio networks with

the objective of minimizing total power consumption while meeting traffic load

demand of each Mobile Virtual Network Operator (MVNO). First we present a



Mixed Integer Linear Programming (MILP) to provide optimal solutions. Then

we present a general optimization framework to guide algorithm design, which

solves two subproblems, channel assignment and load allocation, in sequence. In

addition, we present an effective heuristic algorithm that jointly solves the two

subproblems.

Numerical results are presented to confirm the theoretical analysis of our schemes,

and to show strong performances of our solutions, compared to several baseline

methods.
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Chapter 1

Introduction

1.1 Next Generation Wireless Networks

1.1.1 Vision and Prospects

Mobile wireless communications have experienced explosive growth over the past decade,

fueled by the popularity of smartphones, tablets and diverse cloud services. Mobile network

operators have witnessed a transition from being voice dominated to video/data domination.

A broad consensus in the wireless industry anticipates a strong contribution of this trend for

several years to come. With the maturing of fourth generation (4G) standardization and the

ongoing worldwide deployment of 4G cellular networks, technologists worldwide have begun

searching for next generation wireless solutions to meet the anticipated demands in the 2020

era given the explosive growth of mobile Internet. New research projects such as METIS,

iJOIN and 5GNOW, have started internationally, and research centers such as Samsung,

the Fraunhofer Heinrich Hertz Institute and the European Telecommunications Standards

Institute, devoted to 5G technology have begun to open [77].

The development of 3G and 4G wireless technology was mainly driven by demand for

data services over the Internet. However, the drivers for 5G systems are likely to be much

more diverse. It is widely agreed that compared to the 4G network, the 5G network should

1



achieve 1000 times the system capacity, 10 times the spectral efficiency, energy efficiency

and data rate (i.e., peak data rate of 1 Gb/s for low mobility), and 25 times the average cell

throughput [80]. The 5G network aims to connect the entire world, and achieve seamless

and ubuquitous communications between anybody, anything, wherever they are, whenever

they need, by whatever electronic devices/services/networks they wish.

1.1.2 Key Technologies

In this section, we discuss some promising key wireless technologies that can enable 5G

wireless networks to fulfill performance requirements. The purpose of developing these tech-

nologies is to build an energy efficient 5G network with a dramatic capacity increase and

efficient utilization of all possible resources.

• Energy Efficiency (EE) and Spectral Efficiency (SE) co-design

Given limited spectrum and ever increasing capacity demand, SE has been pursued

for decades as the top design priority of all major wireless standards, ranging from

cellular networks to local and personal area networks. SE-oriented designs, however,

have overlooked the issues of infrastructure power consumption. Currently, RANs

consume 70 percent of the total power [42]. A sustainable future wireless network

must therefore be not only spectral efficient but also energy efficient. Hence, EE and

SE joint optimization is a critical part of 5G research.

• Spatial densification via small cells and relays

To handle the explosively growth of traffic demands, network operators need to de-

ploy additional macro base stations (BSs), leading to significant cost and elaborate

site planning. Low-power nodes (i.e. small cells which may be employed indoors or

outdoors) offer a simpler cost-effective alternative to conventional cell splitting. Small

form factor and low power rating of small cells (e.g. microcells, picocells) enable much

lower capital expendiure (CAPEX) and operational expenditure (OPEX) compared to

2



macrocells. At locations without wired backhaul access, relay nodes may be deployed

instead of small cells. A relay node uses wireless/cellular spectrum not only to pro-

vide access to mobile users, but also to backhaul data to an anchor BS with wired

backhaul [12].

• Device-to-Device (D2D) communications

In voice-centric systems it was implicitly accepted that two parties willing to establish

a call would not be in close proximity. In the age of data, this premise might no longer

hold, and it could be common to have situations where several co-located devices would

like to wirelessly share content or interact [14]. D2D communication commonly refers

to the technique that enables wireless devices to communicate directly with each other

without an infrastructure of access points or BSs. The BS only helps user devices set

up connections without relaying any data traffic. D2D communication can potentially

improve user experience by reducing latency and power consumption, increasing peak

data rates, and creating new proximity-based services such as proximate multiplayer

gaming [12]. Thus, it has been considered as a key enabling technology for the next

generation (i.e. 5G) wireless communications.

• Cognitive radio (CR) technology

Emerging CR technology and the Dynamic Spectrum Access (DSA) apprach [4] enable

unlicensed wireless users (a.k.a secondary users) to sense and access the under-utilized

spectrum opportunistically even if it is licensed. The CR networks should be aware of

the surrounding radio environment and regulate its transmission accordingly. Adopting

CR is motivated by the fact that a large portion of the radio spectrum is underutilized

most of the time [80]. It has been considered as the next generation wireless commu-

nication technology that can lead to better spectrum utilization and higher network

capacity.
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1.2 Energy-Efficient Network Planning and Design

1.2.1 Motivation

As described in Section 1.1, energy-efficiency is one of the most important aspects in planning

and design of next generation wireless networks. Due to rapid growth of wireless terminals

and their traffic demands, wireless networks have become one of the largest contributors to

power usages. Information and communications technologies (ICT) takes up a considerable

proportion of total energy consumption. In 2012, the annual average power consumption by

ICT industries was over 200 GW, of which telecoms infrastructure and devices accounted

for 25 percent [74]. ICT already represents around 2% of total carbon emissions, of which

mobile networks represent about 0.2%, and this is expected to increase every year. In the

5G era, it is expected that millions more base stations (BSs) with higher functionality and

billions more smart phones and devices with much higher data rates will be connected. The

largest mobile network in the world consumed over 14 billion kWh of energy in 2012 in its

network of 1.1 million BSs [42]. Such huge energy consumption has raised public concerns

about electricity costs, and greenhouse gas emissions that are known to have a negative

impact on global climate.

As global carbon emissions increase and sea levels rise, global weather and air pollution in

many large cities across the world is becoming more severe [34]. In addition to the environ-

mental aspects, energy costs also represent a significant portion of network operators overall

expenditures (OPEX). The rising energy costs and carbon footprint of operating cellular

networks have led to an emerging trend of addressing energy-efficiency amongst the network

operators and regulatory bodies such as 3GPP and ITU [1, 45]. Therefore, the problem of

how to build a green (power-efficient) wireless network has attracted extensive research at-

tention from both industry and academia recently. There is significant potential for power

savings in wireless networks. European Commission has recently started new projects within

its seventh Framework Programme to address the energy efficiency of mobile communica-

4



tion systems, viz. energy Aware Radio and NeTwork TecHnologies (EARTH), Towards Real

Energy-efficient Network Design (TREND), and Cognitive Radio and Cooperative strategies

for Power saving in multi-standard wireless devices (C2POWER) [15, 24, 78]. If green com-

munications technologies are universally deployed across current/future network, significant

energy savings can be realized, enabling larger infrastructure deployments for 4G and 5G

capacity upgrades without requiring significant increase in average revenue per user (ARPU).

Most previous research efforts, however, were mainly focused on reducing energy con-

sumption of battery powered wireless devices such as mobile phones and sensor nodes. Re-

search attention has not been well paid to power savings on BSs until very recently. The

most straightforward way to reduce power consumption of BSs is to turn off idle BSs or put

them into sleep. However, without careful network planning, turning off BSs might lead to

loss of coverage and unsatisfied traffic demands.

Considering power saving has been recognized as an urgent issue worldwide, we aim

to conduct some research works focusing on saving power consumption on both wireless

infrastructure (e.g. macro-BS, micro-BS, relay nodes) and user equipments (UEs). By

embracing some of key promising technologies in next generation wireless networks such

as small cell network deployment and D2D communications, we study the optimization

problems in both offline network planning to save the power consumption on macro-BSs,

micro-BSs, relay nodes and online resource allocation to save the aggregate transmit power

consumption on UEs in potential D2D links.

It is known that small cell network is one of these new trends for next generation mobile

network design. One model is using Relay Stations (RS) as small cell providers to achieve

extended coverage, lower cost, and higher network capacity. In offline network planning, we

first study a joint signal-aware RS placement and power allocation problem across a field of

multiple BSs in wireless relay networks. We aim to design a low-cost multihop wireless relay

network with the consideration of channel capacity, subscriber’s SINR requirement, power

consumption of relay nodes and multi-cell scenario. However, saving the power consumption

5



on RSs is not enough. In order to save more power, a practical solution needs to be brought

forward to save the power consumption on macro-cell BSs. Unlike previous works in literature

in which idle BSs or under-utilized BSs are turned off or put into sleep to save power, we

aim to propose a more practical solution and offer a new perspective on implementing green

wireless networks by embracing the hot trending small cell networks. We would like to see

how (or if) small cell networks can provide a more energy-efficient greener wireless network.

Besides the research in offline planning and design, we also intent to study the online

resource allocation problem in the context of D2D underlaying cellular networks as consider-

ing D2D communications are very likely to take place in next generation wireless networks.

BSs need to determine the transmission mode for each potential D2D link and also allocate

resources for them effectively and efficiently. Thus, the joint optimization problem of mode

selection and resource allocation is worth studying. Our goal is to save the total transmit

power of UEs in potential D2D links such that UEs can have longer battery lifetime.

At last, we combine wireless resource virtualization with green wireless network and

then claim that multiple Mobile Virtual Network Operators (MVNOs) can be supported

over a shared physical wireless network and traffic loads in a BS can be easily migrated to

more power-efficient BSs in its neighborhood such that idle BSs can be turned off or put

into sleep to save power. We propose to leverage load migration and BS consolidation for

green communications and consider a power-efficient network planning problem in virtualized

Cognitive Radio Networks (CRNs) with the objective of minimizing total power consumption

while meeting traffic load demand of each MVNO.

All our research works are targeting the energy-efficiency in planning and design of next

generation wireless networks. Our ultimate goal is to contribute novel ideas and effective

solutions to the research community of green wireless networking.
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1.2.2 State of The Art and Literature Gap

In this section, we describe the state of the art and discuss the literature gap on the areas

that we work on, which are listed as below.

• Power efficiency on wireless infrastructure

Green communications and networking, especially power efficiency on BSs and wireless

infrastructure, has attracted many researchers’ attentions recently. [39] and [16] are two

surveys summarizing the current research works on green wireless network, especially on

green cellular networks. Many BS equipment manufacturers have begun to offer a number of

eco and cost friendly solutions to reduce power demands of BSs and to support off-grid BSs

with renewable energy resources. Nokia Siemens Networks Flexi Multiradio Base Station,

Huawei Green Base Station and Flexenclosure Esite solutions are examples of such recent

efforts [28,41,66].

In current literatures, the most straightforward way to reduce power consumption of BSs

is to turn off idle BSs or put them into sleep. [23, 25, 30, 60, 61, 69, 72] are all working on

shutting down some of under-utilized BSs in order to achieve the power savings via different

approaches while satisfying various constraints in the network. In [69], Peng et al. proposed

a profile-based approach to green cellular infrastructure, which leveraged emporal-spatial

traffic diversity and node deployment heterogeneity, and powered off under-utilized BSs

based on historical data. The authors of [30] provided an algorithm that minimized power

consumption by selectively turning on or off cell towers and deciding which power to assign

to the active nodes and what frequencies to use, so as to maintain full coverage and respect

users capacity demands. In [25], Elayoubi et al. investigated network sleep mode for reducing

energy consumption of radio access networks. They proposed an offline-optimized controller

that associated traffic with an activation/deactivation policy that maximized a multiple

objective function of QoS and energy consumption. In [60], the authors showed how to

optimize the energy saving, first assuming that any fraction of cells could be turned off, and

then accounting for the constraints resulting from the cell layout. [23] proposed a concrete
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methodology for saving energy, which was based on re-arranging the user-cell association so

as to allow shutting down under-utilized parts of the network. [61] investigated the energy

saving potential of exploiting cell size breathing by putting low loaded cells in to sleep mode.

In [72], the authors developed a system selection algorithm that found the optimal traffic

allocation for the different systems that minimized power consumption while insuring the

target QoS. Besides utilizing sleep mode to save energy, the authors in [10] studied the effect

of cell sizes on the energy consumption and proposed a practical, 2-level scheme that adjusted

cell sizes between two fixed values, and showed an energy saving of up to 40%. In [73], the

authors first studied how to adaptively vary the processing speed based on incoming load

and then proposed and analyzed a distributed algorithm, called Speed Balance, that could

yield significant energy savings. However, without careful network planning, turning off BSs

might lead to loss of coverage and unsatisfied traffic demands. Furthermore, in reality, it

is very difficult to shut down and reboot BSs frequently due to numerous technical issues

and performance guarantees. Shutting down BSs would lead to loss of coverage due to

handover delays, which were not carefully considered in above mentioned works. Rebooting

BSs requires air conditioners to spend extra power on heating to indoor temperature. The

extra power consumption was usually neglected in most works. Hence, in practice, to find a

feasible short-term solution, we need to seek other opportunities.

• Relay station placement

Small cell network is one of many new trends for next generation wireless networks since

many mobile network operators see small cells as vital to managing spectrum more efficiently.

Ideally, small cell network scheme can help network carriers to achieve extended coverage

and higher network capacity. One of the feasible small cell network designs is using RS to

offload traffic that directly transmitted to/from macro cells.

Relay station placement has been an active research topic in wireless networks, espe-

cially in wireless sensor networks. By using RSs, one could deploy a network at a lower

cost than using only (more expensive) BSs to provide wide coverage while delivering a re-
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quired level of service to users [33, 54, 55, 76]. In [56], Lin and Xue proved the single-tiered

placement problem with R = r and K = 1 was NP-hard, where R, r and K denoted the

transmission range of relay nodes, the transmission range of sensor nodes, the connectivity

requirement respectively. A 5-approximation algorithm was presented to solve the problem.

The authors also designed a steinerization scheme which had been used by many later works.

Beside minimizing the number of placed RSs, extensive research has been done on place-

ment with physical constraints, such as energy consumption and network lifetime. Hou et

al. studied the energy provisioning problem for a two-tiered wireless sensor network [40].

Besides provisioning additional energy on the existing nodes, they considered deploying relay

nodes (RNs) into the network to mitigate network geometric deficiency and prolong network

lifetime. In [84], Hassanein et al. proposed three random relay deployment strategies for

connectivity-oriented, lifetime-oriented and hybrid deployment. In [67], Pan et al. studied

BS placement to maximize network lifetime. Recently, a new dual-relay coverage architec-

ture was proposed for 802.16j Mobile Multi-hop Relay-based (MMR) networks [54,55], where

each subscriber station (SS) was covered by two RSs. [54] assumed that only one RS was

placed in each cell. ILP formulation was applied to find an optimal placement of RS which

could maximize the cell capacity in terms of user traffic rates. In [55], assuming a uniform

distribution on user traffic demand, the authors studied how to determine the RSs locations

from a set of predefined candidate positions. Quality of service provisioning in telecommu-

nications networks has been shown to be important to study in practice [13]. Considering

channel quality, the authors of [90] studied multiple hop relay problem. Two tiers model was

mentioned as well, but it addressed the relay placement problem on condition that all relay

nodes forwarded traffic in their maximum transmit power. In addition, an efficient MUST

algorithm was proposed to address the connectivity problem on upper tier. However, MUST

worked under the physical constraint of only one BS in the field. Thus by far, limited work

has studied relay station placement problem in a more general wireless relay networks of

multiple BSs, considering a practical set of physical constraints such as indivisual channel
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capacity, SNR requirement of subscriber, relay power and network topology together.

• Mode selection and resource allocation in D2D communications

In the context of D2D communications, resource allocation has been addressed by quite a

few research works recently. In [3], the authors proposed a coalitional game based approach

for mode selection of D2D links, with the objective of minimizing the total power while

satisfying rate requirements. In [6], the authors targeted at the energy-efficient resource

allocation for D2D communications as an underlay of a fully loaded LTE-A network. They

aimed to maximize the number of admissible D2D pairs thereby minimizing the total uplink

transmit power of cellular and D2D links by solving two subproblems separately. The authors

of [17] formulated a joint optimization problem as a Mixed Integer Non-Linear Programming

(MINLP) problem, where the mode to operate, radio resources to use, and power to transmit

were to be optimally decided for a group of users. They also presented a heuristic algorithm

with reduced complexity. The authors of [22] proposed novel mode selection algorithms that

took into account the interference situation and the operational state of the cellular network

in both single-cell and multi-cell scenarios. In [37], the authors derived means for obtaining

optimal communication modes for all devices in the system in terms of system equations,

which captured network states such as link gains, noise levels, SINR, etc. Furthermore,

practical communication mode selection algorithms were presented to show their performance

against the achievable bounds. In [38], Han et al., developed a stochastic framework for sub-

channel and transmission mode scheduling, with the objective of maximizing the average

sum-rate of the system, while satisfying the Quality-of-Service (QoS) requirement of each

user. In [46], the authors proposed an exhaustive search based mode selection and power

assignment scheme for D2D communication systems. The proposed scheme searched all

possible mode combinations which consisted of mode indices for all devices in the system.

In [53], the authors formulated the joint mode selection and resource allocation in D2D

communications underlaying cellular networks as a flow maximization problem based on

the transmission graph and then optimally solved it. In [57], the underlay and overlay
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mode selections were analyzed for D2D communications in the LTE-advanced single-cell

scenario. Their results showed that the underlay mode was preferred when the cellular user

was closer to the BS or relay node than the D2D user. In [82, 83], Xiang et al. , presented

a distance-dependent algorithm and a cooperative mode selection mechanism respectively,

both aiming at selecting optimal transmission modes with overall capacity maximized and

QoS of mobile users satisfied. In [85], Yu et al. analyzed optimum resource allocation

and power control, aiming to optimize throughput over shared resources while fulfilling

prioritized cellular service constraints. It was found that in most of the cases, optimum

power control and resource allocation for resource sharing modes could either be solved

in closed form or searched from a finite set. In [86], the authors considered joint mode

selection, channel assignment, and power control to maximize overall system throughput.

They decomposed the optimization problem into two subproblems: power control, joint mode

selection and channel assignment. They developed low-complexity heuristic algorithms to

solve the subproblems. The authors of [92] proposed a dynamic stackelberg game framework

in which the BS and potential D2D UEs acted as the leader and the followers respectively to

jointly address the problems of spectrum allocation and user-controlled mode selection. The

authors of [91] studied the joint optimization problem of D2D mode selection, modulation

and coding scheme assignment, resource block and power allocation with the objective of

minimizing the overall power consumption under rate requirements. They decoupled the

problem into two sub-problems, which were solved by Lagrangian relaxation and tabu search

methods, respectively. General introductions to D2D communications, and related protocols

and standards can be found in [21, 51]. However, limited work has addressed joint resource

optimization problems in the context of D2D communications and OFDMA-based wireless

networks based on a practical link data rate model with the objective to minimize total

power consumption.

•Wireless resource virtualization

Even though server/desktop virtualization has been well studied, research on wireless
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resource virtualization is still in its infancy. In [48], Kokku et al. described the design

and implementation of a Network Virtualization Substrate (NVS) for effective virtualiza-

tion of wireless resources in cellular networks. NVS met three key requirements: isolation,

customization, and efficient resource utilization. They demonstrated its efficacy via a proto-

type implementation and evaluation on a WiMAX testbed. In [65], the authors proposed a

Cognitive Virtualization Platform called AMPHIBIA, which enabled end-to-end slicing over

wired and wireless networks and exploited the network advantages of virtualization and CR

technologies. In [93], Zhu et al. introduced the first TDD WiMAX Software Defined Radio

(SDR) BS implemented on a commodity server, in conjunction with a novel design of a

remote radio head. In [52], the authors presented a software-defined cellular network archi-

tecture that supported flexible slicing of network resources. Wireless resource virtualization

has also been studied for LTE networks [89], WiMAX networks [9], WiFi networks [81], access

networks [49], multihop wireless networks [88], and wireless sensor networks [44]. However,

most of works were mainly focused on how to design and implement resource virtualization

at one node. Limited work has studied BS consolidation (that can be enabled by virtualiza-

tion) for reducing power consumption of the whole network in the context of a network with

virtualized cognitive radio BSs that are shared by multiple MVNOs.

1.2.3 Contributions

In this section, we present our contributions from the research works conducted in this thesis.

Overally speaking, we provide effective solutions to the offline network planning and design

problems by leveraging wireless relay placement and small cell deployment in the context of

wireless relay networks and small cell networks, respectively. Additionally, we enable green

D2D communications in OFDMA-based wireless networks via a joint optimization approach.

We effectively and efficiently solve the online joint optimization problem of mode selection,

channel allocation and power assignment for potential D2D links, and also demonstrate the

substantial power savings by our approach, compared to several baseline methods. At last, in
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virtualized cognitive radio networks, we effectively solve a power-efficient network planning

problem by leveraging load migration and BS consolidaion for green communications.

More detailedly, our contributions arise from three major research works. In offline

network planning, we provide effective solutions to base/relay station placement in heteroge-

nous cellular networks. In online resource allocation, we study joint resource optimization

for green D2D communications and explore BS consolidation in virtualized cognitive radio

networks, respectively.

• Base/relay station placement in heterogenous cellular networks

For base/relay station placement in heterogenous cellular networks, we first study a joint

signal-aware RS placement and power allocation problem with multiple BSs in wireless relay

networks with taking into account multiple related physical constraints such as channel

capacity, signal to noise ratio (SNR) requirement of subscribers, relay power and network

topology. We present approximation schemes which first find a minimum number of RS,

using maximum transmit power, to cover all the subscribers meeting each SNR requirement,

and then ensure communications between any subscriber to a BS by adjusting the transmit

power of each RS. Numerical results are presented to confirm the theoretical analysis of our

schemes, and to show strong performances of our solutions. Then, to save power consumption

on macro-BS, we propose a much more practical solution and offer a new perspective on

implementing green wireless networking by embracing the hot-trending small cell network

idea. Instead of putting BSs into sleep, we tactically reduce the coverage (and the power

usage) of each BS, and strategically place microcells (relay stations) to offload the traffic

transmitted to/from BSs. We propose approximation algorithms for various network design

scenarios, with different wireless network setups and different power saving optimization

objectives. Extensive numerical results have been conducted to support our theoretical

analysis and showed that our schemes can provide up to 52% network power consumption

compared to traditional wireless macro cell networks.

• Joint resource optimization for green D2D communications
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For online optimization for green D2D communications, we formally define an optimiza-

tion problem for power-efficient D2D communications in OFDMA-based wireless networks

based on a practical link data rate model. We present two effective and efficient algorithms

to solve it in polynomial time, which both jointly determine mode selection, power assign-

ment and channel allocation. It has also been shown by extensive simulation results that

the proposed algorithms can achieve over 68% power savings, compared to several baseline

methods.

• Base station consolidation in virtualized cognitive radio networks

In BS consolidation work, we propose to leverage load migration and BS consolidation

for green communications and consider a power-efficient network planning problem in vir-

tualized cognitive radio networks with the objective of minimizing total power consumption

while meeting traffic load demand of each MVNO. We formally define a BS consolidation

problem and present an Mixed Integer Linear Programming (MILP) formulation to provide

optimal solutions. We present a general optimization framework to guide algorithm design,

which solves two subproblems, channel assignment and load allocation, in sequence. We

present a channel assignment algorithm with an approximation ratio of ( 1
∆
) (where ∆ is

the maximum number of BSs a BS can potentially interfere with). For the load allocation

problem, we present a polynomial-time optimal algorithm for a special case where BSs are

power-proportional as well as two fast heuristic algorithms for the general case. It has been

shown by extensive simulation results that the proposed algorithms produce close-to-optimal

solutions, and moreover, achieve over 45% power savings compared to a baseline algorithm

that does not migrate loads or consolidate BSs.

1.3 Outline Of This Thesis

The rest of this thesis is organized as follows:

We present our work on base/relay station placement in heterogenous cellular networks
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in Chapter 2. In this Chapter, we first focus on relay station placement problems and aim

to design a multihop green wireless relay network with the consideration of some practical

physical constraints, which is presented in Section 2.1. Then we present our work on microcell

BS placement in Section 2.2. We aim to reduce the coverage of macrocell BSs and meanwhile

deploy microcell BSs to offload the traffic transmitted to/from macrocell BSs in order to save

total power consumption.

Besides saving power consumption on wireless infrastructure by deploying small cells, we

also conduct research on saving total transmit power consumption on UEs. We consider

a green wireless network with D2D links and study a joint optimization problem of mode

selection and resource allocation in D2D underlaying cellular networks, which is presented

in Chapter 3.

In Chapter 4, we present our work to save power consumption of BSs in virtualized cog-

nitive radio networks by leveraging load migration and BS consolidation. In such networks,

multiple mobile virtual network operators can be supported over a shared physical wireless

infrastructure and traffic loads in a BS can be easily migrated to more power-efficient BSs

in its neighborhood such that idle BSs can be turned off or put into sleep to save power.

The conclusions of this thesis and future works are presented in Chapter 5.
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Chapter 2

Base/Relay Station Placement in

Heterogenous Cellular Networks

In this chapter, we introduce and discuss our research work on the topic of base/relay

station placement in heterogenous wireless networks. It consists of two parts: relay station

placement and microcell BS placement. First, we design a low-cost multihop wireless relay

network with the consideration of practical physical constraints such as channel capacity,

subscriber’s SNR requirements, power consumption of relay nodes and multi-cell scenario.

In the relay network, relay stations are placed to provide service to subscribers and ensure

communications between any subscriber to a BS by adjusting the transmit power of each

relay station. Then we bring forward a new idea and propose a practical solution to save

the power consumption on macrocell BSs without turning off idle or under/utilized BSs. We

claim to place small cells (e.g. microcells) strategically and tactically reduce the coverage

(and the power usage) of each macrocell BS with the objective of minimizing the total power

consumption.

The rest of this chapter is organized as follows. We discuss SNR-aware relay station

placement in Section 2.1 including network model in Section 2.1.2, problem statements in

Section 2.1.3, approximation algorithms from Section 2.1.4 to Section 2.1.6 and numerical
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results in Section 2.1.7. The work on power-aware microcell BS placement is introduced

in Section 2.2. The corresponding problem statements, solutions and numerical results are

presented from Section 2.2.2 to Section 2.2.3.

2.1 SNR-Aware Relay Station Placement

2.1.1 Overview

With the exponential growth in mobile data traffic, how to better utilize the spectrum and

improve network throughput has been an important issue in telecommunication. Many are

using WiFi data offloading as a more efficient use of radio spectrum. Others are looking into

how to improve network capacity by better reusing spectrums. Small cell network is one of

many new trends for next generation wireless networks since many mobile network operators

see small cells as vital to managing spectrum more efficiently. Ideally, small cell network

scheme can help network carriers to achieve extended coverage and higher network capacity.

One of the feasible small cell network designs is using Relay Stations (RS) for offloadindg

traffic that directly transmitted to/from macro cells to achieve extended coverage, lower cost,

and higher network capacity.

In this work, we study a joint signal-aware RS placement and power allocation problem

with multiple BSs in wireless relay networks considering multiple related physical constraints

such as channel capacity, signal to noise ratio (SNR) requirement of subscribers, relay power

and network topology. we extended the research of [32] by considering different SNR thresh-

olds to users. Each user has its own SNR threshold value based on its data rate request.

Generally, users have higher SNR thresholds when higher data rate are requested. However,

the SNR threshold considered in [32] was a constant in a range of [−25dB,−10dB] for all

users. This universal setting of SNR threshold is not practical enough since user requests are

normally heterogeneous. To the best of our knowledge, this work is the first one to study low-

cost multi-hop relay problem considering channel capacity, subscriber’s SNR requirement,
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power consumption of relay nodes and multiple BSs in wireless multi-hop networks.

2.1.2 Network model

In our model, a wireless multi-hop network consists of Subscriber Stations (SS), Base Stations

(BS), and Relay Stations. In reality, several types of SS exist, including static SS, adhoc SS

and compound SS. In recent study, [79] has demonstrated that traffic from mobile access is

less than 20%, while majority of wireless traffic is actually coming from infotainment (such

as video streaming, online gaming), which would not be used by mobile users regularly. It

is also shown that most mobile users usually only check emails and browse web, which only

contributes a small proportion of total traffic. In [27] it shows that web browsing accounts

for 10% and less than 10% in 2013 and 2019, respectively. Given this character of wireless

traffic, in this work, we assume that SSs are static users such as Wal-mart, McDonald’s,

and gas stations, which are static but have large traffic demands. Each SS represents the

aggregated traffic coming from these service locations.

Similarly, all the RSs, with the function of relaying traffic coming from BS, other RSs,

or SS, are assumed to be fixed as well in this work. Our network model divides the network

into two tiers, lower tier and upper tier. In the lower tier, coverage RSs are placed in order

to cover all the SSs while meeting SS’s performance requirements such as channel capacity,

SNR threshold. Communications in the lower tier are mainly between SSs and coverage

RSs, which are denoted as ”access links”. In the upper tier, connectivity RSs are to be

placed in order to connect coverage RSs to BSs, using possible multiple-hop relay model. The

communication links in the upper tier are denoted as ”relay links” in this work. The scenario

described above is illustrated in Fig.2-1.

2.1.2.1 SNR-Aware Green Relay Allocation

Each SS needs to be covered by an RS or BS for traffic transmission. Different from most

previous work, we take channel capacity and SNR threshold into consideration in this work.
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Figure 2-1: Scenario Illustration

The access links between an SS and its coverage RS should provide enough channel capacity

to satisfy the SS’s data rate request. In addition, for each SS being able to correctly decode

signals, its received Signal to Noise ratio (SNR) is another parameter that should be con-

sidered. Typical 802.16 adaptive modulation and coding parameters are used to estimate

the throughput achievable as a function of SNR. The relationship among adaptive modula-

tion, minimum SNR and user throughput is listed in Table.2.1. From Table.2.1 we can see,

each user needs to satisfy a minimum SNR threshold if its throughput reaches in the range

[10Mb/s, 45Mb/s]. For instance, if an user has 25Mb/s throughput, then its received SNR

needs to be at least 14.5dB so that it can correctly decode the signals. Hence, there are

different SNR threshold values for the users with various data rate requests.

Modulation Minimum SNR, dB User throughput, Mb/s
QPSK 1/2 10 10
16QAM 1/2 14.5 20
16QAM 3/4 17.25 30
64QAM 2/3 21.75 40
64QAM 3/4 23 45

Table 2.1: Minimum SNRs with various throughputs
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Definition 1 (Feasible coverage). Let si be a fixed SS with known location, and bi be its

data rate request (in terms of bps). An RS rm is said to provide a feasible coverage for si if

the channel capacity of the link (in terms of bps) between si and rm is sufficient for the data

rate request of si; and, the SNR received at si is above the SNR threshold. 2

Definition 2 (SNR for subscribers). Let si be an SS, R = {r1, r2, ..., rn} be the RS set and

P = {p1, p2, ..., pn} be the set of received power by si from each RS. If SS si receives signal

from RS rj, the SNR at si is defined as
pj∑n

i=1 pi−pj
. 2

To simplify the study, we transform the capacity and SNR requirements into distance

requirements since the capacity of a wireless link is highly related to the distance between

transmitters and receivers [18]. In this work, we choose two-ray ground path loss model for

modeling the long distance LOS channel with large scale signal strength. The received power

Pr is given as

Pr = PtGtGrh
2
th

2
rd

−α (1.1)

where Pt is the transmit power, and Gt,Gr and ht,hr are the gains and heights of transmitter

tower and receiver tower, respectively. d is the Euclidean distance between the two end nodes,

α is the attenuation factor, which usually varies in a range of 2− 4. According to Shannon’s

theorem, wireless link capacity is given by C = B log(1 + SNRr), where B is the channel

bandwidth. Thus, if noise N0 is a constant, the channel capacity (in terms of bps) is only

related to the received signal power Pr and moreover only related to the distance between two

end nodes assuming transmit power Pt of RS is constant. Therefore, the capacity requests

of SS are equivalent to distance requests between SS and its corresponding RS.

2.1.3 Problem Statements

Definition 3 (SNR Aware Green (SAG) Relay problem). Given a wireless relay network

with multiple BSs and a set of SSs S = {s1, s2, ..., sn}, let SNR = {β1, β2, ..., βn} be the

feasible SNR thresholds for SSs, The SAG problem seeks a minimum number of RSs R and

20



transmit power allocation strategy for R such that:

1. Providing feasible coverage for each si ∈ S. Specifically, each SS si ∈ S has enough

SNR and an access link with enough capacity to an RS or BS;

2. Each placed RS must provide enough capacity on relay links to transit traffic to a BS;

3. Sum of transmit powers of the placed RSs should be minimized. 2

Unlike previous coverage problems, which assume that RSs always transmit in maximum

power, we allow to adjust power consumption of RSs as long as the adjustment does not

change the coverage topology. A similar problem, DARP, has been studied in [90] without

considering power minimization. Since DARP is estimated to be NP-hard [90], we expected

SAG to be NP-hard as well. To solve SAG, our solution consists of two aspects, coverage

with minimum number of RSs, and minimizing transmit power of the placed RSs. First, we

assume that all the RSs are operating with maximum transmit power. With this assumption,

we aim to find a minimum number of RSs to provide feasible coverage for all the SSs. In the

second step, power optimization scheme will be applied to reduce the power consumptions.

Naturally, we divide the original problem into two sub-problems, Lower-tier Coverage Relay

Allocation (LCRA) problem and Upper-tier Connectivity Relay Allocation (UCRA) problem,

which are defined in following, and try to tackle them one by one.

Definition 4 (Lower-tier Coverage Relay Allocation (LCRA) problem). Given a wireless

relay network with a set of subscriber station S = {s1, s2, ..., sn}, and the SNR threshold

set for SSs SNR = {β1, β2, ..., βn} . The LCRA problem seeks K, minimum number of relay

stations to provide feasible coverage for si ∈ S, and the total transmit power by deploying K

RSs is minimized. 2

On the upper tier, we need to consider how to transmit all the traffic from coverage RSs

to BSs. We name the RSs placed on the upper tier connectivity RSs since the function of

RSs in UCRA is to relay the communications between coverage RSs and BS. Similar to LCRA
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problem, we first assume that RSs relay with maximum power so that we can determine the

minimum number of RS locations.

Definition 5 (Upper-tier Connectivity Relay Allocation (UCRA) problem). Given a wireless

relay network with a set of coverage RSs Rc = {r1, r2, ..., rn}, distance requirements Dr =

{d1r, d2r, ..., dnr } for Rc, set of BSs B = {bs1, bs2, ..., bsm}, UCRA seeks a minimum number of

connectivity RSs operating with minimum power that ensures the communications between

coverage RSs and BSs. 2

In next sections, we will first tackle LCRA and UCRA problems separately, and then provide

a solution to SAG by using a combination of the solutions to LCRA and UCRA.

2.1.4 Approximation Solutions for LCRA

Unlike the pure coverage problems, LCRA problem needs to take SS’s SNR requests into

consideration, which makes the LCRA problem more complicated. For example, to solve pure

coverage problems in [90], we could allocate circles’ intersection points as candidate positions

for coverage RSs, which are finite, to find best solutions. However, circles’ intersection points

might not guarantee feasible solutions for LCRA due to the SNR requirements. Though

placing multiple RSs to cover multiple SSs can satisfy the distance requirements of SSs, it is

likely that these RSs could interfere with each other, and result in unbearable SNR at some

SSs.

To find a more appropriate solution for feasible coverage, we propose to use small scale

of grids spreading around entire field as candidate RS locations. The benefit of using grids

is that most of the field can be considered if we adjust the grid size small enough. However,

smaller grid size will generate more candidate positions. Hence, the running time could be

non-linearly increasing with smaller grid size. Therefore, how to pick a right grid size to

achieve the best tradeoff between solution quality and running time is a critical issue. We

propose two schemes to find best candidate positions:
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1. Intersections As Candidates (IAC): including all the intersection points between any two

SS’s feasible circles, which is illustrated in Fig.2-2(a).

2. Grids As Candidates (GAC): including all the center points of grids which divide the

entire field, which is shown in Fig.2-2(b).

It is easy to see that the number of candidate positions in GAC is highly related to the grid

size. The smaller the grid size, the more accurate results we can obtain. Thus, we set the

grid size as small as possible as long as optimizer software (e.g. Gurobi 5.0) can find results.

(a) IAC construction (b) GAC construction

Figure 2-2: Illustration of IAC and GAC

To solve LCRA, we first aim to find a minimum number of RS to cover SSs assuming RSs

are using maximum transmit power (details in Section 2.1.4.1). Next step, in Section 2.1.4.2,

we try to adjust transmit powers of RSs to further reduce the total power consumption

without losing coverage. We outline the framework of our solution in the following. Details

of each step are given in Section 2.1.4.1.

2.1.4.1 Coverage Under SNR Constraint

Given a relay network with a set of SS S = {s1, s2, s3, ..., sn}, corresponding feasible distance

D = {d1, d2, d3, ..., dn} and SNR threshold β = {β1, β2, β3, ..., βn}. We first formulate an
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Algorithm 1: Framework of LCRA Solution

1 STEP 1: Algorithm 2 - Cover all the users by minimum number
2 of RSs, assume each RS using its maximum power
3 STEP 1.1: Algorithm 3 - Split users into multiple zones,
4 and then cover them zone by zone
5 STEP 1.2: Algorithm 4 - Try to identify users that are covered
6 by only one RS
7 STEP 1.3: Algorithm 5 - Tweak RS positions to make them
8 become feasible
9 STEP 1.3.1: Algorithm 6 - update coverage map once an

10 RS’s position is modified
11 STEP 2: Algorithm 7 - Adjusting the power of each placed RS to
12 further reduce energy consumption

Integer Programming with quadratic constraints ILPQC to obtain optimal solutions. Let Ti

and Tij be the indicator variables in our ILPQC , where Ti indicates if candidate position i is

chosen to place RS, and Tij denotes if SS sj has a feasible access link with RS at position i.

The ILPQC is listed as below:

Objective

min
∑
alli

Ti (1.2)

Subject to :

Ti ≤
∑
allj

Tij ≤ nTi ∀i (1.3)

∑
alli

Tij = 1 ∀j (1.4)

dijTij ≤ dj ∀i∀j (1.5)

d−α
ij∑

alli d
−α
ij Ti − d−α

ij Ti
≥ βjTij ∀j (1.6)

where (1.2) is the objective to find the minimum number of RS positions. Linear con-

straint (1.3) states that each placed RS covers at least one SS. Linear constraint (1.4) states

that each SS can access to only one RS. Linear constraint (1.5) states feasible distance re-

quirement for each SS. Quadratic constraint (1.6) states that each SS should satisfy its SNR
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constraint. Both IAC and GAC are used to generate the set of candidate positions.

The formulation will provide the minimum number of RSs that can provide feasible

coverage, and is used as the benchmark for performance evaluation in later sections. However,

with the number of SSs increasing, the running time of the formulation with quadratic

constraints increases exponentially. Therefore we propose a polynomial-time solution as a

practical solution for large networks, which is listed in Algorithm 2.

Algorithm 2: SNR Aware Minimum Coverage (SAMC) (S,D,β)

1: Initialize set Lss = {L1
ss, L

2
ss, ..., L

m
ss} which denotes SS groups to be returned from Zone

Partition;
2: Lss ←Zone Partition (S,D);
3: Initialize sets LRS = {L1

RS , L
2
RS , ..., L

m
RS} which denotes each coverage RS group placed for

each SS group;
4: for each SS group Li

ss do
5: Ki

mhs = Minimum Hitting Set (Li
ss, Di);

6: Gi = Coverage Link Escape(Li
ss, Di,K

i
mhs);

7: Li
RS = Sliding Movement(Gi, L

i
ss, Di, β);

8: end for
9: for any Li

RS in LRS do
10: if there exists a Li

RS = ∅ then
11: return infeasible;
12: else
13: LRS = L1

RS

∪
L2
RS

∪
...

∪
Lm
RS ;

14: return LRS ;
15: end if
16: end for

The first step, Algorithm Zone partition, is to partition the field into several zones such that SSs

and RSs in one zone will be distant from the stations in other zones. Thus, the interferences

between inter-zone RS/SS pairs are small enough to be ignored. Details of Zone partition are

presented in Algorithm 3.

Fig.2-3(a) and Fig.2-3(b) illustrate how the entire field can be divided into several in-

dependent zones. In Fig.2-3(a), the effective distance deff between s1 and s2 is calculated

as deff = dis(s1, s2) − d1 − d2. If deff is less than or equal to dmax, which is the maximum

distance between two SSs to ensure that one RS covering one SS may generate interferences

to the other SS, we can add an edge from s1 to s2, which means that any RS placed to cover
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(a) Effective distance (b) Independent zones

Figure 2-3: Illustration of Zone partition

s1 may generate interferences to s2 (or vice versa). On the other hand, if deff is larger than

dmax, s1 and s2 can be assigned to different independent zones. Any RS placed to cover s1

(or s2) will not interfere s2 (or s1). Using this scheme, we test each pair of SSs, and generate

several independent zones as shown in Fig.2-3(b).

In Line 5 of Algorithm 2, for SSs in each zone, we first find a set of RSs to cover all the

SSs satisfying distance requirements by solving a hitting set problem. [62] proposes a (1+ ϵ)

approximation algorithm to solve minimum hitting set problem in geometry. Next, we aim

to to satisfy the SNR requirements by adjusting RS positions. We notice that if one SS is

covered by only one RS, named one-on-one coverage, then this RS could be moved closer to

the covered SS (and hence further from other SSs). In this way, we can save power for the

SS and RS over access links, and reduce the possibility of interfering other SSs. Naturally,

the more one-on-one coverage, the higher probability of satisfying SNR requirements for SSs.

To seek more one-on-one coverage, Coverage Link Escape (Algorithm 4) is used in Line 6 of

Algorithm 2.

After Coverage Link Escape, it is still possible that some RSs can only provide feasible distance

coverage but not SNR for SSs. We call these place RS ”infeasible RSs”. To reduce infeasible

RSs and improve the performance, in Line 7 of Algorithm 2, we propose the Sliding Movement

scheme, whose details are in Algorithm 5. For each infeasible RS location, which is on each

covered SS’s feasible circle, we try to ”slide” the RS along the corresponding SS’s feasible
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circle to try to find a feasible RS location. The question is how to slide the infeasible

candidates along SS’s feasible circles. The impact of sliding is complicated because it will

not only affect the signal power received by its covering SSs but also the noise received by

other SSs. One SS may receive higher SNR at the cost of other SSs suffering lower SNR as

the result of a sliding operation. One method is to find infeasible coverage RSs which cannot

satisfy SNR constraints. Then, based on the coverage topology, we try to slide the infeasible

RSs along its covering feasible circles in order to clear SNR violations. If some SNR violation

could not be cleared, we mark its covering RS as un-slidable. After sliding all infeasible RSs,

we get a set of slidable RSs and their updated locations. Since updating slidable RSs can

change the coverage topology, every SS’ SNR constraint needs to be rechecked. To avoid

of exponentially large number of updating of slidable RSs, we sort slideable RSs using the

following criteria: SNR gain for covered SS’s after sliding
geneated noise to other SSs after sliding

, and slide all the violated RSs one by one

in polynomial time. The details are in Algorithm 6. If all the SSs meet their SNR requests,

we found a feasible solution for the SAMC problem. Otherwise, SAMC will return infeasible.

Algorithm 3: Zone Partition(S,D,Nmax)

1: calculate dmax according to Nmax, where PmaxGd−α
max = Nmax, G = GtGrh

2
th

2
r, Nmax is the

maximum noise which can be ignored;
2: create a new graph G involving all SSs in;
3: for any two SSs si, sj in G do
4: deff ← min{dist(si, sj)-di,dist(si, sj)-dj};
5: if deff ≤ dmax then
6: add edge e(si, sj) to G ;
7: end if
8: end for
9: find the connected components of G ;
10: return SS groups of each connected component;

Let us use an example to illustrate how SAMC works. Because we divide the entire field

into several independent zones, and all the operations in each independent zone are the same,

we use one independent zone for our demonstration.

Fig.2-4(a) shows the results from minimum hitting set algorithm. There are 6 SSs in this

independent zone. The best solution is placing 3 RSs to cover s1 to s6. In Fig.2-4(a), r1
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Algorithm 4: Coverage Link Escape(S,D,Kmhs)

1: construct a bipartite graph G between side A with all SSs, and side B including all the points
in Kmhs, where Kmhs is the RS set returned by minimum hitting set algorithm;

2: for every SS si in side A do
3: for every point pi in Kmhs do
4: if pi is in or on ci then
5: add edge e(si, pi) to G ;
6: end if
7: end for
8: end for
9: calculate nmax ← the maximum number of edges including the same point in side B ;
10: assume that all the edges in G and all the points in side B are not marked initially;
11: for n from nmax to 1 do
12: for every unmarked point p in side B do
13: if there are n edges containing p then
14: mark these n edges;
15: mark point p;
16: for each recent marked edge e(p, q) do
17: delete all the unmarked edges containing point q;
18: end for
19: end if
20: end for
21: end for
22: return bipartite graph G ;

(a) Minimum hitting set (b) Coverage link establishment

Figure 2-4: Minimum Hitting Set and Coverage Topology

covers s1 and s2, r2 covers s2, s5, s6, and r3 covers s3 and s4. Coverage links are established

in Fig.2-4(b).

Fig.2-5(a) to Fig.2-5(d) show how Coverage Link Escape and RS Sliding Movement work,
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which are the core of SAMC. In Fig.2-5(a), as we know, one SS can only get access to one

RS. In Fig.2-4(b) we see, s2 gets access to both r1 and r2. According to Coverage Link Escape

scheme, the access link between s2 and r1 is a redundant link and it can be deleted since the

degree of r1 is less than that of r2 (2 < 3). Now since r1 covers only one SS s1 after removing

link (s2, r1 ), it can be moved to be co-located with s1 in order to avoid interfering with

other SSs as Fig.2-5(b) shows. Since r1 co-locates with s1, it only needs a very low transmit

power to maintain the coverage, and generate no interference to other SSs. Then we check

each SS’s SNR requirement in Fig.2-5(c), and find that s2’s SNR requirement cannot be

satisfied. In terms of RS Sliding Movement, r2 needs to be slided along s5’s feasible circle in

order to find a feasible location which is in the common area among s2’s SNR circle, s5’s

feasible circle and s6’s feasible circle. s2’s SNR circle is shown in Fig.2-5(d). In Fig.2-5(d),

after massaging r2’s location, we recheck each user’s SNR requirement. Eventually, SAMC

finishes when all SNR requirements are satisfied.

In the beginning of SAMC algorithm, we invoke minimum hitting set algorithm to get the

coverage RSs without considering SNR constraints. Then we are checking if each SS’s SNR

could be met using coverage RSs topology. If there exist some SSs whose SNR constraints

are not satisfied, we need to slide coverage RS’s point along its covering SSs’ feasible circles

in order to find a feasible solution. During the process of SAMC, no coverage RSs are deleted

or added in order to meet SSs’ SNR constraints. Consequently, the result of SAMC has the

same number of coverage RSs as the number returned from the minimum hitting set solution.

Therefore, SAMC’s performance is highly related to minimum hitting set algorithm, following

the same scheme used in [90]. [62] gives an (1 + ϵ)-approximation PTAS for the minimum

hitting set problem. We adopt the PTAS, and claim that if SAMC returns a feasible solution,

it is also an (1+ϵ)-approximation solution. In other words, if SAMC returns a feasible solution

K, the number of RS provided by K will be no more than (1 + ϵ) ∗ |OPTC|, where OPTC is

an optimal solution with the minimum number of RSs that can provide feasible coverage.
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(a) delete redundant access link (b) move RS co-locatedly with SS

(c) test SNR requirements (d) slide violated RS

Figure 2-5: Illustration of Coverage Link Escape and RS Sliding Movement

2.1.4.2 Power Reduction Optimization

In the previous section, we find feasible coverage RSs assuming that RSs are transmitting

at their maximum powers in SAMC. In this section, we aim to adjust transmit powers of the

placed RSs so that we can further reduce the energy consumption while maintain coverage

and SNR constraints.

Given a fixed network topology consisting of SSs and coverage RSs found by SAMC,

we first present another Linear Programming with Quadratic Constraints (LPQC) to get an

optimal RS transmit power allocation so that the total transmit power is minimized. Let Pi

denote the transmit power of ith RS in coverage RSs, which is in the range of [0, Pmax], and
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Algorithm 5: RS Sliding Movement(G, S, D, β)

1: H ← ∅, B ← ∅;
2: for every point p in side B of G do
3: if there is only one edge e(p, q) containing p then
4: if p and q are not at the same location then
5: move p to the same location as q;
6: end if
7: H ← H

∪
{p};

8: delete point p and corresponding SS in G;
9: end if
10: end for
11: for every SS si in side A do
12: check if SNR constraint β of si can be satisfied
13: if not, mark si;
14: end for
15: B = B

∪
{all marked si};

16: if B is empty then
17: H = H

∪
{all RSs in side B};

18: return H;
19: else
20: Rs

u ← all the RSs in side B covering the SSs in B;
21: Rs

r ← all the rest RSs in side B;
22: H ′ ← update RS topology (Rs

u, R
s
r, G, S,D,H,B);

23: if H == H ′ then
24: H ′ ← ∅;
25: end if
26: return H ′

27: end if

Tij be the indicator of whether SS sj communicates with RSi. The goal is to min
∑

Pi.

Objective :

min
∑
alli

Pi (1.7)

Subject to : ∑
alli

Tij = 1 ∀j (1.8)

PiGd−α
ij ≥ P j

ssTij ∀j (1.9)

PiGd−α
ij∑

alli PiGd−α
ij − PiGd−α

ij

≥ βjTij ∀j (1.10)

According to the two-ray model, Pr = PtGtGrh
2
th

2
rd

−α, and G = GtGrh
2
th

2
r are all constants.

Constraint (1.8) means that any SS must communicate with one and only one RS. Constraint

(1.9) indicates that coverage RS ri must provide enough transmit power to ensure the data
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Algorithm 6: Update RS Topology (Rs
u, R

s
r, G, S,D,H,B)

1: for each RS ri in Rs
u do

2: W ← ∅;
3: let sk and sj denote SSs whose SNR can and cannot be met under coverage of ri,

respectively;
4: construct a virtual circle c′j for each sj to ensure that s′js SNR can be met only if ri moves

into c′j ;
5: W=W

∪
{all virtual circles c′j}

∪
{all feasible circles ck of sk};

6: if all the circles in W have common area then
7: mark ri as slidable to r′i in Rs

u, where r′i is the centre of the common area;
8: else
9: mark ri as un-slidable in Rs

u;
10: end if
11: end for
12: for each slidable ri in Rs

u do
13: let sj be such that sj ’s SNR cannot be satisfied under the coverage of ri;
14: △i

snr ← SNR
sj
r′i
− SNR

sj
ri ;

15: Si ← S/sj ; Ii ← 0;
16: for each SS sk in Si do
17: Iki ← Isk

r′i
− Iskri ;

18: Ii ← Ii + Iki ;
19: end for
20: △i ← △i

snr
Ii

;
21: end for
22: construct the pairs (△i, ri, r

′
i);

23: imax ← argmaxi∈|Rs
u|△i;

24: update rimax to r′imax
and obtain an updated Rs

u;
25: if all SNRs satisfied then
26: H ← H

∪
Rs

r

∪
Rs

u;
27: else
28: record the unsatisfied SSs into a new set B′;
29: if size(B′) < size(B) then
30: Rs′

u ←
31: all the RSs in side B covering the SSs in B′;
32: Rs′

r ← all the rest RSs in side B;
33: H ←
34: Update RS Topology (Rs′

u , R
s′
r , G, S,D,H,B′);

35: end if
36: end if
37: return H;

rate request from its covering SS sj, where P j
ss denotes minimum received power requested

by SS sj. Quadratic constraint (1.10) represents the SNR constraint for every SS. In nu-

merical results, we will use the LPQC as the optimal solution for power cost reduction and
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the benchmark for performance comparison. Similarly, LPQC takes exponentially increased

running time as the number of RSs or SSs increasing, it is not efficient or practically usable

for large networks. Therefore, we present another efficient heuristic based on the following

observation.

We observe that the reduction of transmit power of an RS will reduce the noise to SSs

covered by other RSs so that these SSs could have higher probability to fulfil their SNR

constraints. We call the minimum transmit power of an RS under its coverage constraints

Pc. Besides coverage constraints, RSs need to meet each SS’s SNR constraint. Similarly,

we call the minimum transmit power of RS under its SNR constraints Psnr. As long as the

transmit power of one RS is no less than Pc and Psnr for its covered SSs, its transmit power

can be reduced. Let Llow be the coverage RS set as a result of SAMC, β be the SNR threshold,

Pmax be the maximum transmit power of RS, and Pss be the set of minimum received power

each SS needs to ensure its data rate. Moreover, let P i
min denote the coverage power Pc for

RS ri and P i
SNR denote the SNR power Psnr for RS ri, respectively. It is straightforward to

calculate coverage power Pc and SNR power Psnr for each RS ri. If all the RSs can reduce

power to their own coverage power Pc while meeting SNR constraints, the power saving

approach is optimal.

The details of the power saving algorithms are listed in Algorithm 7. And let us use

an example to illustrate how to calculate the coverage power Pc and the SNR power Psnr for

each RS.

In Fig.2-6(a), one RS covers s1, s2 and s3. Without taking SNR into consideration, we

can figure out the minimum power to cover s1, s2 and s3, respectively. This example shows

the maximum transmit power of RS is 7, the minimum power to cover s1, s2 and s3 are

4, 3, 5, respectively. Then the coverage power pc for this RS is the maximum value among p1c ,

p2c and p3c , which is 5. In order to calculate SNR power for one RS, we need to take received

interference to each SS under the coverage of the RS into consideration. In Fig.2-6(b), the

received interference by s1, s2 and s3 can be easily determined since we assume that three
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(a) Coverage power (b) SNR power

Figure 2-6: Coverage Power and SNR power calculation

surrounding RSs contributing to interference on s1, s2, s3 are transmitting in their maximum

transmit power. Then we can reduce the transmit power of center RS from its maximum

value to satisfy s1’s, s2’s and s3’s SNR requirements, respectively. We obtain p1snr = 3,

p2snr = 2 and p3snr = 6. The SNR power for center RS can be easily calculated by taking the

maximum value among p1snr, p
2
snr, p

3
snr since all three SSs under coverage must satisfy their

SNR requirements simultaneously.

Theorem 1. Algorithm 7 is a (1+ϕ)-approximation for the Power Reduction Optimization

(PRO) problem. More specifically, if the power cost of all the RSs returned by Algorithm 7

is denoted by |P |, we have |P | ≤ (1 + ϕ) · |OPTP |, where |OPTP | is an optimal solution for

PRO, and ϕ =
∑

i∈C(P
i
snr−P i

c)

OPTP
. 2

Proof: If all Psnr ≤ Pc, then |P | = |OPTP |. Otherwise, let P i
c denote the coverage power

for RS ri, and P i
snr denote the SNR power for RS ri. Thus in whatever OPTP or P , it is

composed of P i
c or P i

snr for each RS ri. For instance,

P = {P 1
c , P

2
snr, P

3
snr, P

4
snr, P

5
c }

OPTP = {P 1
c , P

2
c , P

3
snr, P

4
snr, P

5
c }

Also, we let I = maxi{all P i
snr occur in OPTP} and C be the set of ri for all i ∈ [1, I] in

OPTP which does not operate in P i
snr.
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Algorithm 7: Power Reduction Optimization (PRO) (Llow, S, Pss, β, Pmax)

1: K ← ∅;P1 ← ∅;P2 ← ∅;P3 ← ∅;Ptmp ← ∅;
2: Initialize P1, P2, P3, Ptmp

3: for each item i in Llow do
4: P i

1 = Pmax; P
i
3 = Pmax; compute P i

min;
5: P i

2 = P i
min; P

i
tmp = Pmax;

6: end for
7: put each RS point of Llow into K;
8: while K is not empty do
9: for each item i in P1 do
10: if P i

1 == P i
3 then

11: P i
1 = P i

2;
12: check if P i

1 can meet SNR constraints for SS covered by RSi;
13: if yes then
14: remove RS point i from K; P i

tmp = P i
1;

15: end if
16: P i

1 = Pmax;
17: end if
18: end for
19: clear P1; P1 ← Ptmp;
20: if length of K is not changed then
21: for each item i in P1 do
22: if P i

1 == P i
3 then

23: compute P i
SNR;

24: end if
25: end for
26: Find index i for minimum ∆Pi = P i

SNR − P i
min;

27: P i
1 = P i

SNR; P
i
tmp = P i

SNR;
28: remove RS point i from K;
29: end if
30: end while
31: return

∑
alli P

i
1;

Therefore, the worse case for P is,

P = OPTP +
∑
i∈C

(P i
snr − P i

c)

The approximation ratio in worse case is

P

OPTP

=
OPTP +

∑
i∈C(P

i
snr − P i

c)

OPTP

= 1 +

∑
i∈C(P

i
snr − P i

c)

OPTP

Since ϕ =
∑

i∈C(Pi
snr−P i

c )

OPTP
, we have |P| ≤ (1 + ϕ) · |OPTP |.
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2.1.5 Approximation Solutions for UCRA

After covering all the SSs with sufficient SNR, we need to relay the traffic from the covering

RSs to the BSs. In [90], the authors studied a similar MUST problem, which is estimated

to be NP-hard. MUST assumes only one BS and RSs always operate with maximum power.

Therefore, MUST can be regarded as a special case of UCRA. To solve UCRA, the first challenge

is how to decide the feasible distance of each RS, which is affected by the SSs or RSs being

covered. In order to guarantee the data rate of each SS, for each RS ri, the link capacity

between ri and its parent node cannot be lower than the one between ri and its any child.

Therefore, we define feasible distance of an connectivity RS ri, connecting ri and its parent

station (an RS or a BS), should equals to the minimum feasible distance of all its children,

which is shown in Fig. 2-7.

Figure 2-7: Feasible distances of connectivity RSs

With the assumption of connectivity RSs operating with Pmax, we propose our solution

in Algorithm 8.

Let us use an example to demonstrate Algorithm MBMC, which is shown in Fig. 2-8(a)

to Fig. 2-8(e). In this example, there are 3 BSs, 5 SSs and 3 coverage RSs deployed in this

field. Firstly, we calculate the overall minimum feasible distance, which is 2 in Fig. 2-8(a).
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Algorithm 8: Multiple BS Minimum Connectivity (MBMC)(Rc, S,D,B)

1: construct a complete graph G = (Rc, E), where Rc denotes coverage RS set;
2: dmin = mini∈S di;
3: for each node ri in G do
4: create a new set Ki;
5: for each BS bj in B do
6: calculate distance (ri, bj) and store it into Ki;
7: end for
8: find minKi and add the corresponding BS node b into G;
9: add edge e(ri, b) into G;
10: end for
11: for each edge e(xi, xj) in G do

12: assign weight w1(xi, xj) = ⌈∥e(xi,xj)∥
dmin ⌉ − 1 on the edge;

13: end for
14: Find a minimum spanning tree τmst of G with BS as the root;
15: for each RS ri do
16: Calculate its feasible distance dir;
17: end for
18: for each RS ri and its parent rpi on τmst do

19: w2(r
p
i , ri) = ⌈

∥e(rpi ,ri)∥
dir

⌉ − 1;

20: Place w2(r
p
i , ri) RSs on e(rpi , ri) separating the edge into ⌈∥e(r

p
i ,ri)∥
dir

⌉ sections with each one

with feasible distance;
21: end for

In Fig.2-8(b), each coverage RS builds an edge to its nearest BS. The numbers on the edges

are the distances between coverage RSs to their nearest BS. Then we add additional edges

to build a complete graph among all the coverage RSs. The weights on all the edges are

calculated according to the scheme presented in MBMC. All the edge weights are shown in

Fig.2-8(c). Since all the BSs are backhauled to a central location, we assume that there is

an edge with weight of 0 between any two BSs. Then we find the minimum spanning tree of

this graph and obtain the results shown in Fig.2-8(d). Finally, connectivity RSs are placed

on each edge between coverage RS and its connecting BS by equally separating the edge.

Fig.2-8(e) shows the results of MBMC.

Since both MBMC and MUST proposed in [90] are minimum spanning tree based algo-

rithms, MBMC has the same 8dmax

dmin
-approximation ratio as MUST proved, where dmin and dmax

denote the minimum and maximum feasible distances of SSs, respectively. Having locations
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(a) calculate overall dmin (b) select nearest BS

(c) calculate link weights (d) minimum spanning tree

(e) deploy connectivity RSs

Figure 2-8: Illustration of MBMC

of connectivity RSs returned by MBMC, we then try to optimize power cost of each RS. Our

solution is listed in Algorithm 9. Let Llow denote the set of coverage RSs, Lhigh denote the

set of connectivity RSs, P i
ss denote the set of received power requirements of SSs covered by

RS ri, P
i
rs denote received power requirement of RS ri, Ni denote the number of RSs placed

on the path from RS ri to its parent, pij denote the transmit power of jth RS on the path
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from RS ri to its parent, and G = GtGrh
2
th

2
r.

Algorithm 9: Upper-tier Connectivity Power Optimization (UCPO)(Llow, Lhigh, Pss)

1: for each RS ri in Llow do
2: put each P i

ss into new set Ki;
3: P i

rs = max(Ki);

4: Di =
distance(i,parent(i))

Ni
;

5: Pi =
P i
rs

GD−α
i

;

6: for each RS rj on path (i, parent(i)) do
7: pij = Pi;
8: end for
9: end for
10: return

∑
alli

∑
allj pij ;

2.1.6 Approximation Algorithm for SAG problem

With the approximation solutions (in terms of number of RSs placed) for both lower tier

and upper tier, we present an approximation algorithm for the SAG problem in Algorithm

10.

Algorithm 10: SNR-aware Green (SAG) Relay(S,D,B, β, Pss, Pmax)

1: Llow ← ∅; Lhigh ← ∅;
2: Llow ← SAMC(S, D, β);
3: PL ← PRO(Llow,S, Pss, β, Pmax);
4: Lhigh ← MBMC(Llow,S, D, B);
5: PH ← UCPO(Llow, Lhigh, Pss);
6: Ptotal = PL + PH ;
7: return Ptotal;

2.1.7 Numerical Results

In this section, numerical results are presented to show the effectiveness of our schemes,

including SAMC, PRO, MBMC, UCPO and SAG algorithms. All the simulations are run on a

Intel Core(TM) i5 CPU of 2.7GHz with 8GB memory. All the SSs and BSs are uniformly

distributed in a square testing field. All the figures illustrate the average of 10 test runs for

various scenarios.
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Figure 2-9: Performance in 3km× 3km playing field

2.1.7.1 Simulation Environment Settings

Since solving the ILP with quadratic constraints in Gurobi 5.0 [36] takes exponentially

increasing running time and memory as growing the number of SSs or lessening the grid size,

very large scale of testing field and huge amount of SSs are not considered in our simulations.

We consider the large scale of playing field is composed of a couple of small fields and the

operations in each sub-field are independent to others. More specially, the entire testing field

can be divided into several sub-zones depending on the distributions of SSs in Zone Partition

Algorithm. We select two scales of testing field for our numerical evaluations: 3km × 3km

field and 5km × 5km field. And we set the grid size as small as possible as long as we can
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(a) Coverage RSs for SAMC
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(b) Power cost for PRO
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150 200 250 300 350 400 450 500 550 600
4000

5000

6000

7000

8000

9000

10000

11000

Number of UsersP
o
w
e
r
 
C
o
n
s
u
m
p
t
i
o
n
 
o
f
 
C
o
n
n
e
c
t
i
v
i
t
y
 
R
S
s
 
(
W
a
t
t
)

 

 

baseline
UCPO

(d) Power cost for UCPO

Figure 2-10: Performance in 5km× 5km playing field

avoid out-of-memory issue from solving our ILPs. Signal-to-Noise Ratio (SNR) threshold for

each SS is set according to typical 802.16 standard document. In 802.16 standard, each user

with a certain data rate request needs to satisfy a minimum (SNR) threshold requirement.

Data rate request for each user is randomly distributed between 10Mb/s and 45Mb/s. The

number of SSs in playing fields varies from 150 to 600, which are uniformly distributed as

well. We place at most 4 BSs in the testing field in order to show the performance of MBMC

comparing to MUST in previous literature. Now, we have five metrics to be compared among

various scenarios such as the number of coverage RSs, power consumption of coverage RSs,

the number of connectivity RSs, power consumption of connectivity RSs and the entire power
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consumption of all relay nodes. First, we present the numerical results on both lower tier

and upper tier, separately. Then we show the performance of our SAG scheme comparing

with some other existing schemes. The results collected from lower tier and upper tier are

shown in 2.1.7.2 and 2.1.7.3, respectively.

Here is a list of all constant parameters we used in our simulation.

Parameters Values

Max. Transmit Power of RS 70 Watt (48.45 dBm)
Channel Bandwidth 10 MHz
Height of User Client 1.5 m

Height of RS 10 m
Transmitter Antenna Gain 2 dBi
Receiver Antenna Gain 2 dBi
Attenuation Factor 2
Thermal Noise -85 dBm

Grid Size 100 m× 100 m

Table 2.2: Constant Parameters

2.1.7.2 Evaluation of Heuristics on Lower Tier

On the lower tier, we test the performance of IAC, GAC and SAMC on two playing fields

of 3km × 3km and 5km × 5km, respectively. The results are shown in Fig. 2-9(a) and

Fig. 2-10(a). We can easily see that the number of coverage RSs coming from SAMC is

lower than both GAC and IAC in whichever scenario. GAC has the most number of coverage

RSs, which is caused by the selected size of candidate grid. The less size of candidate grid,

the more accurate the results it would provide. Due to limited amount of memory in our

simulation computer, we are not able to set small enough grid size in order to get the near-

optimal solution so that the results from GAC are not as good as the results from IAC. Our

proposed SAMC is starting from the results of minimum hitting set based on IAC. If the

selected locations of coverage RSs from minimum hitting set can not satisfy all SSs’ SNR

threshold requirements, SAMC tries to slide violated RS location along the feasible circle of

SS in order to find a location that can satisfy previous violated SNR threshold requirement.
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Figure 2-11: Illustration of tree topologies for various schemes

But IAC based ILPQC will not perform these following improvements. IAC based ILPQC

just drops this RS location and then searches one or more RSs to replace the RS. Since the

algorithm we select for solving minimum hitting set problem is a near-optimal solution, it is

probable that IAC based ILPQC would find more than one RSs to replace one violated RS

while ensuring the SSs under the coverage of the violated RS can still be covered. If there are

many violated RSs which are selected from minimum hitting set, it is likely that IAC based

ILPQC would return more number of coverage RSs than SAMC returns. Such possibility is

verified by our results in Fig. 2-9(a) and Fig. 2-10(a). When all the users’ SNR requirements

are satisfied based on the results from minimum hitting set, IAC based ILPQC will probably
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return the same amount of coverage RSs as SAMC does, which can also be seen in both Fig.

2-9(a) and Fig. 2-10(a). From above observations, we can see that SAMC outperforms both

IAC and GAC in terms of not only the number of coverage RSs but also the running times.

Fig.2-9(b) and Fig.2-10(b) show that PRO performs near to optimal and does save much

power from the baseline model, in which all the RSs operate in maximum power when more

users are involved. Moreover, PRO can save more power comparing with the baseline espe-

cially in larger scale of testing field with same set of users uniformly distributed. Therefore,

this result confirms our theoretical analysis of PRO performance.
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Figure 2-12: Compare the performance between MBMC and MUST with various number of
BSs in 3km× 3km field(NSS = 300)
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Figure 2-13: Compare the performance between MBMC and MUST with various number of
BSs in 5km× 5km field(NSS = 300)
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Figure 2-14: SAG performance in 3km× 3km field

2.1.7.3 Evaluation of Heuristics on Upper Tier

On the upper tier, we are concentrating on showing how MBMC works and why it outperforms

MUST proposed in [90]. As we discussed in previous section, MUST can only be applied to one

BS scenario but MBMC extents MUST scheme and works well in multiple BSs environment,

which is the more practical deployment. Thus we claim that MBMC is more practical than

MUST. Assume that 4 BSs are deployed in the testing field. We run MUST for four times,

for each of which we let MUST connect to one of the four BSs, respectively. Fig. 2-11(d)

illustrates the case in which all SSs only connect to the corner BS (MUST algorithm) and Fig.

2-11(c) illustrates the case in which all SSs connect to their nearest BS (MBMC algorithm).

We can compare the data collected in Fig. 2-9(c) and Fig. 2-10(c) between MBMC and

MUST. Apparently, MBMC outperforms MUST from each of the scenarios adapting MUST.

Also, we test the scenarios of various number of BSs from 1 to 4 on both 3km × 3km

and 5km × 5km playing fields with the number of users set to 300. From Fig. 2-12 and

Fig. 2-13, we can easily find that the number of connectivity RSs from MBMC is less than

or equal to that from MUST in all testing scenarios. If there is only one BS deployed in

the field, MBMC and MUST return the same result. However, when the number of BSs is
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Figure 2-15: SAG performance in 5km× 5km field

increasing from 2 to 4, we can see from both Fig. 2-12 and Fig. 2-13 that the number of

connectivity RSs returned from MBMC is decreasing because there are more BSs to connect

to and each coverage RS will choose its nearest BS to connect to according to MBMC, which

leads to less number of connectivity RSs to place. From the above observation, we can say

that MBMC outperforms MUST in more practical environment. Based on the connectivity

topology returned byMBMC, it is probably not necessary for each connectivity RS to transmit

in its maximum transmit power to maintain the connection. We reduce the transmit power of

each connectivity RS according to UCPO scheme and then find that large amount of power

consumption can be saved comparing with the baseline in which all connectivity RSs are

transmitting in maximum power. The performance of optimal UCPO can be confirmed in

Fig. 2-9(d) and Fig. 2-10(d).

2.1.7.4 Evaluation of Heuristics for SAG

Our SAG scheme combines the solutions for both lower tier and upper tier. Fig. 2-11(a),

Fig. 2-11(b) and Fig. 2-11(c) illustrate the tree topologies coming from IAC plus MBMC, GAC

plus MBMC and SAMC plus MBMC, respectively. At last, we compare the performance among

SAG, SAMC+DARP, IAC+DARP and GAC+DARP, where DARP represents the deployment
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Figure 2-16: Impact of the number of BSs

approaches proposed in [90] excluding their lower tier coverage approaches (since [90] does

not take users’ SNR constraint into consideration). Fig. 2-14 and Fig. 2-15 confirm that our

design SAG is not only a feasible but also an energy efficient relay deployment strategy for

hot-trended wireless relay networks.

Fig. 2-16(a) to Fig. 2-16(d) show the impact of the number of BSs on the network energy

consumption. In a 3km× 3km field (Fig. 2-16(a) and Fig. 2-16(b)), we increase the number

of BSs from 1 to 10 and observe that, with more BSs deployed in the field, less number of RSs

are needed relaying traffic while guaranteeing the SNR for each subscriber. Furthermore, the

total power consumption of the placed RSs is decreased as well with more BSs. From Fig.
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2-16(b), we can see that more BSs lead to more power cost savings. This is consistent with

practical deployment. An area with dense BS deployment needs less RSs to relay the traffic

since more traffic can go to BSs directly. We place relay RSs on the edges of a minimum

spanning tree, the less RSs to place, the less power cost savings could be achieved against

the baseline. For 5km×5km field (Fig. 2-16(c) and Fig. 2-16(d)), we increase the number of

BSs from 2 to 20, similar results are observed. Fig. 2-16 also confirms that our SAG design

outperforms the baseline.

2.2 Power-Aware Microcell BS Placement

2.2.1 Overview

Saving power on BSs becomes a critical issue in wireless cellular networks. Many existing

work has proposed to schedule BS into sleep to save energy. However, in reality, it is

very difficult to shut down and reboot BSs frequently due to numerous technical issues and

performance requirements. In this work, we propose a much more practical solution and

offer a new perspective on implementing green wireless networking by embracing the hot-

trended small cell network idea. Instead of putting BSs into sleep, we tactically reduce the

coverage (and the power usage) of each BS, and strategically place microcells (relay stations)

to offload the traffic transmitted to/from BSs in order to save total power consumption.

Small cell network has gain momentum in the past few years and become a hot trend

for next generation wireless networking. The authors in [68] tackle the problem of placing

the minimum number of relays to achieve bandwidth sufficiency when real-time multimedia

streams need to be sent to the sink. They considered the constraints of heterogeneous

link capacity and transmission range. Zhang et al. in [90] studied a distance-aware relay

placement problem in WiMAXMesh Networks with the goal of placing the minimum number

of RSs to cover all the subscribers while satisfying subscribers’ data rate request constraint.

They considered a two-tiered network and proposed several efficient algorithms to solve
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the optimization problems on both tiers, respectively. [35] investigated a joint optimization

problem on relay node placement and route assignment for two-tiered wireless networks and

proposed a recursive weighted clustering binary integer programming algorithm to maximize

the total number of information packets received at the BS during the network lifetime.

In [26], Elgendy, O.A. et al. proposed an optimization framework to maximize either the

total cell capacity or the total cell-edge capacity, while taking into consideration the effect

of co-channel interference. In [47], the authors investigated the problem of optimal relay

placement for coverage extension in relay assisted LTE-A networks. They studied both DL

and UL transmission scenarios for optimal relay placement taking into account the SINR of

the received signal on the evolved-NodeB (eNB)-RN and RN-User Equipment (UE) links.

However, our work is different from all these previous ones. We know that more than 60%

power consumption on wireless infrastructure is spent on wireless radio access network and

transmission power of BSs is the major part of total power consumption on radio access

network. Since transmit power is exponentially increasing with the transmission range, we

consider to reduce the transmission range of macro BSs meanwhile deploying multiple micro

BSs to support the coverage and users’ QoS requirements, which can save power consumption

on wireless access network to a great extent. Hence, our purpose of placing relays is to save

power consumption in the network, Or we can say, to make BS feel relax while covering all the

users each of which has a certain amount of throughputs. We are the first one to propose the

new perspective of embracing hot-trended small cells on Green Wireless Networks. However,

most of the studies on small cell have focused on network capacity improvement. To the

best of our knowledge, nobody has considered how (or if) small cell networks can provide a

more energy-efficient greener wireless network.

2.2.2 Problem Statements

In this work, we consider a wireless network with N(≥ 1) BSs and M users. We assume

that the locations of BSs and users are known. In other words, users in this work are large
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static wireless service subscribers, such as Wal-mart, McDonald’s and gas stations, which are

static but usually have large traffic demands. Since all the users in this work share similar

communication characteristics and QoS, we assume that all users have the same data rate

service L. Most previous works on green wireless network introduce a sleep mode for BSs.

If a BS has a low traffic load or idle during a certain time period, then it could be shut

down in order to save wasting power consumption on some components such as air cooling,

power amplifier, digital data processing and so on. However, in reality, it is very difficult

to shut down and reboot BSs frequently due to numerous technical issues and performance

guarantees. In this work, we do not propose to shut down BSs, instead, we ”relax” the BSs by

reducing their burden of service coverage. Meanwhile, hot-trending small cells (called relay

station (RS) in this work) are applied to provide enough coverage with less total network

energy consumption. Before we present our problem definitions, let us first introduce the

power consumption model for BSs and RSs.

2.2.2.1 Power Models of Base Station and Relay Station

Power consumption of a BS or RS consists of various power costs, including transceiver,

power amplifier, digital signal processing, air cooling and so on. Also, it is not only relevant

to the transmit power of the antennas but also the traffic loads from the users and some other

factors. Many previous literatures [7, 19, 20, 59] were working on it and proposing several

useful ones. In our work, we select the power models in [20], [69]. The power model of BS

proposed in [20] is:

Pel/macro = nsector(Pel/rect + F (nTx(Pel/amp + Pel/trans) + Pel/proc) + Pel/link + Pel/airco

with nsector the number of sectors, F the load factor, nTx the number of transmitting anten-

nas, and Pel/rect, Pel/amp, Pel/trans, Pel/proc, Pel/link and Pel/airco the power consumption (in

Watt) of the rectifier, the power amplifier, the transceiver, the digital signal processing, the

microwave link, and the air conditioning, respectively.
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The power model of RS proposed in [20] is:

Pel/micro = Pel/rect + Pel/airco + F (Pel/amp + Pel/trans + Pel/proc) (2.1)

with F the load factor, and Pel/rect, Pel/airco, Pel/amp, Pel/trans, and Pel/proc the power con-

sumption of the rectifier, the air conditioning, the power amplifier, the transceiver, and the

digital signal processing (in Watt), respectively.

Simply put, some energy consumption is related with the transmission (distance and

traffic), some are related with the traffic, such as rectifier cost, and others are fixed cost,

such as air conditioning cost. Therefore, we simplified our energy consumption model as

following:

Pel/macro = (a0r
2
bs + b0)× Lbs + c0; (2.2)

Pel/micro = (a1r
2
rs + b1)× Lrs + c1; (2.3)

where a0,a1,b0,b1,c0,c1 are constants we can know, rbs and rrs are the transmit range of BS

and RS, Lbs and Lrs are the traffic loads of BS and RS, respectively.

Our power models take transmit range, users’ traffic loads, and some constant power

costs into consideration. Thus, our models are feasible and practical ones. Furthermore, our

power model of BS is consistent with that proposed in [69].

2.2.2.2 Green Relaxed Energy Aware Network Problem

In this section, we present our Green Relaxed Energy Aware Network (GREAN) problem.

Our goal of our proposed scheme is to tactically reduce the coverage, and then the power

consumption, of the BS. For the uncovered users, we strategically place RSs, which have much

smaller energy consumption compared to BS, while keeping the total energy consumption

reduced. An illustration of our strategy is shown in Fig. 2-17. The traditional BS-takes-all

network in Fig. 2-17(a) will be replaced by a hybrid Macro+small cells network in Fig.

2-17(b). Also, in our study, an RS has a maximum transmission range dmax
R , but can select

its own transmit power range based on coverage designs. Our goal is to minimize the total
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network energy by strategically placing RSs, as well as adjusting radius (and power usage)

of BS and RSs.

(a) BS covers all the users (b) Both BS and RSs cover all the users

Figure 2-17: Illustration of GREAN design

Definition 6 (Green Relaxed Energy Aware Network (GREAN) problem). Given a network

with a BS, a set of users V = {v1, v2, ..., vn}, with traffic rate L, the GREAN problem seeks a

network design with K RSs such that:

1. the placement of the K RS, and the transmit power of each placed RS

2. the transmit power of BS

3. User must be covered by BS or RS

4. the total power consumption of BSs and RSs should be minimized. 2

It is straightforward to see that the GREAN problem is closely related with K-center

problem or Dominant set problem. Therefore, we speculate that GREAN is also NP-hard,

and try to present approximation schemes for the problem.

2.2.2.3 A Special Case: GREAG Problem

In the GREAN problem, there are infinite number of locations for placing RSs. To find a final

solution for GREAN, first, we try to tackle a problem with limited number of RSs locations,
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which is defined in following:

Definition 7 (Green Relaxed Energy Aware Grid (GREAG) problem). Given a grid network

with grid size ds, a BS is in the center of the network, and a set of users V = {v1, v2, ..., vn},

with traffic rate L, locate on the grids, shown in Fig. 2-18. The maximum power range of

a RS is assumed to be dmax
R = 2 · ds, the GREAG problem seeks placement of K RSs and

transmit power allocation strategy for RSs and BS such that:

1. RSs can only be placed in the center of a grid

2. the placement of K RSs, and the transmit power of each placed RS

3. the transmit power of BS

4. the total power consumption of both BSs and RSs should be minimized. 2

Given the maximum coverage range of RSs, dmax
R , we can construct a grid network with

grid size ds = dmax
R /2, as shown in Fig. 2-18. By enforcing a grid network, now we have

limited number of potential locations for RSs, which are center of each grid in Fig. 2-18.

Figure 2-18: An illustration for GREAG problem

For this special case, we first present and prove an approximation solution, which is listed

in Algorithm 11.

Theorem 2. Algorithm 11 is a (8M)-approximation for the GREAG problem. In other

words, let the power consumption returned by Algorithm 11 be P , and OPT be an optimal
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Algorithm 11: GREAG(dmax
R , K)

1: Let E(vi, vj) ≜ power consumption of RS or BS placed at vi to cover user vj ;
2: V = {v0, v1, ..., vn} with v0 is BS, users = {v0, v1, ..., vn};
3: Let s0 = v0, and B0 ← {v1, ..., vn}, the users that covered by B0;
4: for k ← 0 to K − 1 do
5: h← max{E(sj , vi) | vi ∈ Bj and 0 ≤ j ≤ k};
6: Let vi be a user whose covering station sj ’s energy consumption E(sj , vi) would be h;
7: vi needs to be covered by a new RS sk+1; Move vi to Bk+1;
8: Find the nearest candidate location (center of a grid) to vi, and place sk+1 in the location;
9: for each vt ∈ (B0

∪
...

∪
Bk) do

10: let j be such that vt ∈ Bj ;
11: if E(vt, sj) ≥ E(vt, sk+1) and dis(vt, sk+1) ≤ dmax

R then
12: move vt from Bj to Bk+1;
13: end if
14: end for
15: end for
16: if B0 is empty then
17: h0 ← min{E(B0, vi) | vi ∈ B0

∪
...

∪
BK+1};

18: let vi be the user who consumes B0 h0 and whose energy consumption for its corresponding
RS sl is maximal;

19: move vi from Bl to B0;
20: end if
21: Return B0, ..., BK ;

solution for GREAG, we know P ≤ 8M · OPT, where M = max{a0
a1
, b0
b1
, c0
c1
} from the power

model in (2.2)(2.3). 2

Proof: For any user i, let OPTi denote the power consumption for a station (BS or RS) to

cover user i in an optimal solution OPT, and let OBJi denote the power consumption for a

station (BS or RS) to cover user i in our GREAG solution. For a user i in V , let dmin denote

the distance from i to its covering RS/BS si. Following the energy consumption model,

OBJi, the energy consumption for si to cover user i, is

OBJi ≤ (a0d
2
min + b0)L+ c0 (2.4)

≤ (a0(d
max
R )2 + b0)L+ c0 (2.5)

≤M · a1(dmax
R )2 · L+M · b1 · L+M· c1 (2.6)

Meanwhile, given the fact that users are all on the grids, and RS/BS are in centers of

grids, the minimum distance between an RS/BS to a user is
√
2
2
ds, where ds is the grid size.
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Therefore, we have

OPTi ≥ (a1(

√
2

2
· ds)2 + b1)L+ c1 (2.7)

According to our assumption, dmax
R = 2 · ds, we have

OPTi ≥ (a1(

√
2dmax

R

4
)2 + b1)L+ c1 (2.8)

≥ (a1
(dmax

R )2

8
+

b1
8
)L+

c1
8

(2.9)

=
1

8
(a1(d

max
R )2L+ b1L+ c1) (2.10)

Combining (2.6) and (2.10), we know that

OBJi ≤ 8 ·M ·OPTi (2.11)

Since P =
∑N

i=1 OBJi and OPT =
∑N

i=1 OPTi, summing all the users, we can see that

P ≤ 8 · M · OPT

2.2.2.4 Solution to GREAN problem

Now in this section we propose a solution to the GREAN problem, where users and BS can be

at any place, and there is no constraint on the locations of RSs. Our solution is very similar

to the solution to GREAG problem. But the major difference of is that we now choose the

users locations as potential RS placement locations (shown in Line 8 of Algorithm 12).

Let us use an example in Figs. 2-19 and 2-20 to illustration how the algorithm works.

There are six users, u1 . . . u6 in the cell. First, we find the maximum energy for BS to cover

a user, which is user u1 with the longest distance, shown in figure 2-19(a). Then we place an

RS, r1, co-located with u1. Next, we adjust users coverage comparing energy consumption

for each user’s from r1 with energy from BS. Since distances between r1 and u4, u5 and u6

are all larger than RS’s maximum transmit range dmax
R , they can only be covered by BS.

On the other hand, energy consumption of covering u2 from r1, E(r1, u2), is smaller than
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Algorithm 12: GREAN(dmax
R ,K)

1: Let E(vi, vj) ≜ power consumption of RS or BS placed at vi to cover user vj ;
2: V = {v0, v1, ..., vn} with v0 is BS, users = {v0, v1, ..., vn};
3: Let s0 = v0, and B0 ← {v1, ..., vn}, the users that covered by B0;
4: for k ← 0 to K − 1 do
5: h← max{E(sj , vi) | vi ∈ Bj and 0 ≤ j ≤ k};
6: Let vi be a user whose covering station sj ’s energy consumption E(sj , vi) would be h;
7: vi needs to be covered by a new RS sk+1; Move vi to Bk+1;
8: Place sk+1 at the same location with user vi;
9: for each vt ∈ (B0

∪
...

∪
Bk) do

10: let j be such that vt ∈ Bj ;
11: if E(vt, sj) ≥ E(vt, sk+1) and dis(vt, sk+1) ≤ dmax

R then
12: move vt from Bj to Bk+1;
13: end if
14: end for
15: end for
16: if B0 is empty then
17: h0 ← min{E(B0, vi) | vi ∈ B0

∪
...

∪
BK+1};

18: let vi be the user who consumes B0 h0 and whose energy consumption for its corresponding
RS sl is maximal;

19: move vi from Bl to B0;
20: end if
21: Return B0, ..., BK ;

E(bs, u2), the energy consumption of covering u2 by BS. Therefore, u2 would be covered by

r1 now. Next, we keep finding the largest energy consumption for a RS/BS to cover any of

its covering user. Now E(bs, u4) has the maximum energy. Then we place another RS r2 at

u4’s location, shown in Fig. 2-19(c). Now we have r1 covers u1, u2, r2 covers u3, u4 and BS

covers u5, u6. Following same process, we place r3 to cover u2, r4 to cover u5, u6, and leave

no user to be covered by BS. In order to keep BS alive, we force BS to cover one nearest user

with the minimum energy. In Fig. 2-20(d), BS covers u6 since u6 is the one nearest to BS.

Final solution is shown in Fig. 2-21.

Theorem 3. Algorithm 12 is a (1+α)-approximation for the GREAN problem. More specif-

ically, if the power consumption of both BS and RSs returned by Algorithm 12 is denoted

as P, we have P ≤ (1+α) ·OPT, where α = a1R2
maxL

b1·L+c1
and OPT is an optimal solution for the

GREAN problem. 2

Proof: For any user i, we let OPTi denote the power consumption for a station (BS or RS) to
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(a) Place r1 (b) Adjust r1′s covering set

(c) Place r2 (d) Adjust r2′s covering set

Figure 2-19: Illustration of GREAN (place r1 and r2)

cover user i in the optimal solution, andOBJi denote the power consumption for a station (BS

or RS) to cover user i in our GREAN solution. Since we know that a0 ≥ a1, b0 ≥ b1, c0 ≥ c1,

if user i is covered by BS in an optimal solution, we have

OPTi = (a0(r
opt
bs )2 + b0)L+ c0 (2.12)

≥ b0L+ c0 ≥ b1L+ c1

where roptbs is the distance between BS and i in the optimal solution.
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(a) Place r3 (b) Adjust r3′s covering set

(c) Place r4 (d) Adjust r4′s covering set

Figure 2-20: Illustration of GREAN (place r3 and r4)

If user i is covered by a RS in optimal solution, we also have

OPTi = (a1(r
opt
rs )

2 + b1)L+ c1 (2.13)

≥ b1L+ c1

where roptrs is the distance between an RS and i in the optimal solution. Thus, no matter if

user i is covered by BS or RS, we have

OPTi ≥ b1L+ c1 (2.14)
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Figure 2-21: Illustration of covering sets

Case 1: If in our GREAN solution, user i is covered by an RS. Then we have

OBJi ≤ (a1R
2
max + b1)L+ c1

Therefore, in this case, we have

OBJi

OPTi

≤ (a1R
2
max + b1)L+ c1
b1L+ c1

= (1 +
a1R

2
maxL

b1 · L+ c1
)

Let α = a1R2
maxL

b1·L+c1
, we have

OBJi ≤ (1 + α)OPTi

Case 2: If in our GREAN solution, user i is covered by BS. Let dmin be the distance between

i and its nearest RS placed in GREAN solution. Following our algorithm, the reason for a

user i covered by BS is because

OBJi = (a0 · d2BS,i + b0)L+ c0 ≤ (a1d
2
min + b1)L+ c1 (2.15)

≤ (a1R
2
max + b1)L+ c1

Like in Case 1, OBJi ≤ (1 + α)OPTi in Case 2.

Therefore, for each user i, we have OBJi ≤ (1 + α)OPTi. Since P =
∑N

i=1OBJi and

OPT =
∑N

i=1OPTi, summing all the users, we can easily see

P ≤ (1 + α)OPT

where α = a1R2
maxL

b1·L+c1
.

59



2.2.2.5 Minimize the number of Relay Stations for GREAN

In previous sections, we have studied the case placing a fixed number,K, of RSs in the

network. In this section, we try to see if we can use less number of RSs (≤ K) for better

solutions.

Definition 8 (Budget Aware Power Saving (BAPS) problem). Given a network with a BS,

a set of users V = {v1, v2, ..., vn} with traffic rate L the BAPS problem seeks an optimal

amount of relay stations R and transmit power allocation strategy for R such that:

1. the placement of ≤ K RSs

2. the transmit power of each placed RS

3. the transmit power of BS

4. the total power consumption of both BSs and RSs should be minimized. 2

Based upon the observation that we obtain the results from GREAN problem (using a

fixed K RSs), we present a solution to the BAPS problem based upon GREAN solution via a

linear search on the number of RSs to place.

Algorithm 13: Budget Aware Power Saving (BAPS)(dmax
R , K)

1: P ← ∅;
2: for k ← 1 to K do
3: pk ← GREAN(dmax

R ,K);
4: P ← P

∪
pk;

5: end for
6: Pmin ← the minimum value in P;
7: return Pmin;

2.2.2.6 Multi-cell Scenarios

So far, we have studied all the problems in a single cell. But in practice, network carriers

will deploy multiple macro cells in a market. The number of RS will be used for the whole

market (multiple cells), instead of for each cell. Therefore, in this section, we study how to

set up RSs for the multi-cell scenario.
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Definition 9 (Multi-Cell Budget Aware Power Saving (MC-BAPS) problem). Given B BSs

in a network market, a set of users covered by these BSs, a total number of RSs (or micro

cells) that can be distributed in the market (among B BSs). the MC-BAPS problem seeks:

1. the amount of RS (micro cells) to be allocated for each BS (macro cell)

2. the placement of RSs for each BS (macro cell)

3. the transmit power of each placed RS in each BS (macro cell)

4. the transmit power of each BS

5. the total power consumption of all BSs and RSs should be minimized 2

In order to solve the MC-BPAS problem, one intuitive solution is to convert the multi-cell

problem into the previously studied single cell problem. If the number of placed RS for each

single cell is known, we can use BAPS algorithm to solve the single cell power saving problem.

One major question to answer is how to allocate RSs among multiple BSs (macro cells)?. In

other words, we need to know how many RSs (micro cells) to be used in each BS (macro

cell), with the constraint that the total RSs placed cross the whole market is no more than

K. We start by distributing RSs evenly among all of the B BSs. Then, we will try to check

if we can achieve more savings if we move an RS from one macro cell (BS) to another. We

will keep redistributing RSs among macro cells to save power until no more power can be

saved.

Let us use an example in Fig. 2-22 to illustrate our algorithm. There are 4 cells in

this market, denoted sa c1, c2, c3, c4. The maximum number of RSs K in this market is 16.

Initially, we equally divide 16 RSs into each cell. So each cell has 4 RSs at the beginning.

Then, for each cell we calculate the power consumption with 3 RSs, 4 RSs and 5 RSs.

Next, we check if redistribution of RS numbers will provide more power savings. If C2

reduce its RS to 3, while C1 gets one more RS, we can see P |k1=5 = 5 and P |k2=3 = 2. Since

[P |k1=5+P |k2=3] = 7 > [P |k1=4+P |k2=4], no power can be saved during this RS redistribution.
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Algorithm 14: MC-BAPS(dmax
R , K)

1: Initialize Si and ki to be empty;
2: for each user vi in U do
3: Assume user vi access to the nearest BS bsj : Sj ← Sj

∪
vi;

4: end for
5: Evenly distribute ⌊Kbudget

|Lbs| ⌋ RSs into each BS;

6: while not DONE do
7: P ← ∅;
8: for each BS bsi do
9: pi ← BAPS(dmax

R , ki);
10: p′i ← BAPS(dmax

R , ki + 1);
11: p′′i ← BAPS(dmax

R , ki − 1);
12: end for
13: for each BS bsi do
14: for each BS bsj (j ̸= i) do
15: if (p′i + p′′j ) < (pi + pj) then

16: Record energy saving △Pij = [(pi + pj)− (p′i + p′′j )] and add it into P ;
17: end if
18: end for
19: end for
20: if P is empty set then
21: DONE == 1;
22: else
23: pick △P = max{Pij∀i, j};
24: //Reduce 1 RS from bsj , and shift the quota (1 more RS) to bsi;
25: ki ← ki + 1; kj ← kj − 1;
26: end if
27: end while
28: for each BS bsi do
29: pi ← BAPS(dmax

R , ki);
30: end for
31: Ptotal ← 0;
32: for each BS bsi do
33: Ptotal ← Ptotal + pi;
34: end for
35: return Ptotal;

Thus, no RS redistribution between these two cells. However, RS redistribution between

some cells do provide power savings, such as {3 | C3 → C1}, {5 | C3 → C2} and {5 | C3 →

C4}. After RS redistribution, the number of RS in each cell is determined. Then, we will

apply BAPS algorithm for each cell to find RS placement and power consumptions.
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Figure 2-22: Illustration of MC-BAPS

2.2.3 Numerical Results

In this section, numerical results are presented to show the effectiveness of our schemes,

including GREAN, BAPS, MC-BAPS algorithms. All the simulations are run on a Intel Core i7

CPU of 2.7GHz with 8GB types of memory. All the users and BSs are uniformly distributed

in a square testing field. All the figures illustrate the average of 10 test runs for various

scenarios.

2.2.3.1 Simulation Environment Settings

In order to test the performance of GREAN and BAPS algorithms, we set a square region with

size of 2km × 2km. The BS is placed at the centre of this region. We assume that this BS

covers all the users in this region. There are [50 − 550] users uniformly distributed in this

two-dimensional region. Each user has a throughput of [0.4Mbps−1.4Mbps]. The number of

RSs K is changing from 3 to 36 for testing GREAN in this single cell. The maximum transmit

range of RS is set to 300m. In testing MC-BAPS algorithm, we set a multi-cell region with

size of 3km × 3km. 4 BSs are uniformly distributed in this two-dimensional region. The

number of users in multi-cell region is changing from 200 to 2200. The maximum number of

RSs in this multi-cell region is changing from 20 to 130. We refer to [20], [19] and [69] for
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the parameters of our power models. We list all the parameters which are used in our power

models in Table 2.3.

SymbolsMacrocell Microcell
nsector 3 n/a
nTx 2 n/a
Pel/rect 100 W 100 W
Pmax
el/amp 156.3 W 16.6 W

Pel/trans 100 W 100 W
Pel/proc 100 W 100 W
Pel/link 80 W n/a
Pel/airco 1500 W 60 W
Rmax 1000 m 300 m
a 1.95e-6 7.7e-7
b 1.875 0.8
c 605 60

Table 2.3: Power model parameters

In our work, we are targeting 4G LTE macrocell BS with 2× 2 MIMO antennas in each

sector. There are total three sectors in each BS. We present the evaluations of our schemes

in the following sections.

2.2.3.2 Evaluation of GREAN algorithm

From Fig. 2-23(a) and 2-23(b), we can see that GREAN algorithm has good performance on

power saving. Comparing with baseline in which no RS exists and all the users must get

access to BS, GREAN can save up to 23% power consumption. More power can be saved

especially when there are more users in the cell since power saving from more users can

better counterbalance the static power consumption of placing K RSs.

If we are given the exact number of RSs to place, network operator need to pay the static

power consumption of these K RSs, air conditioning and rectifier consumption for instance.

The dynamic power saving of each user can be seen as the difference between the power

consumption for BS to cover this user and that for one RS to cover this user. If sum of the

dynamic power saving for all the users is more than all the static power consumptions of K
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Figure 2-23: GREAN and BAPS in different scenarios
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RSs, then we can say that total power consumption from current placements is lower than

baseline. Thus, for the case of only a few users in the cell, sum of the dynamic power saving

from all the users cannot counterbalance the static power consumptions of K RSs. Total

power consumptions of both BS and K RSs would be larger than baseline. In other words,

no power can be saved especially for the cell with few users. It can be easily seen from Fig.

2-23(a) and 2-23(b).

In Fig. 2-23(b), we can easily find that when the number of users is less than 250,

placing more than 10 RSs will cause over-baseline power consumptions. Our scheme does

not work well in these cases. Moreover, larger K would require more users to counterbalance

the static power consumptions in order to achieve power saving. It can be seen from Fig.

2-23(b) between blue line and red/green line.

In Fig. 2-23(a), we can see a trend of power consumptions for a fixed number of users

with increasing the number of RSs placed. More RSs being placed does not mean more power

can be saved in the cell. For a fixed number of users, placing the first few RSs will easily

achieve power saving since the dynamic power saving for covering all the users can easily

counterbalance the static power consumption of these few RSs. With more RSs placed in

this cell, the static power costs will grow linearly with the number of RSs while the dynamic

power saving will grow more and more fast at the beginning and then grow slowly down.

Thus we can see the trend. From this trend, we can know for a single cell with fixed number

of users, there would be a maximum power saving corresponding to a certain number of RSs

placed in. We illustrate the GREAN results in Fig. 2-24(a) with the number of RSs fixed to

15 and that of users fixed to 80. We can see the coverage circles of each station in this cell.

2.2.3.3 Evaluation of BAPS algorithm

From Fig. 2-23(a) we know, there would be an optimal number of RSs achieving the most

power saving in a fixed user scale. Since BAPS is based on linear searching on the number

of RSs and selecting the minimum power consumption as its result, it will always return the
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(a) GREAN results (b) MC-BAPS results

Figure 2-24: Illustration of GREAN and MC-BAPS results

same result if the given maximum number of RSs is more than the optimal number of RSs.

Hence we can see in Fig. 2-23(c), the solid red line is decreasing with maximum number of

RSs increasing until Kmax reaches 19. We can say, for this single cell with a user scale of

550, in order to achieve the most power saving, we need to place 19 RSs in this cell. We

denote the optimal number of RSs as Kopt. From Fig. 2-23(c), we can see Kopt = 19 for a

user scale of 550, Kopt = 13 for a user scale of 400, and Kopt < 10 for a small user scale of

250. From Fig. 2-23(d) we see, in a user scale larger than 200, we can see BAPS has good

power saving comparing with baseline. The more power saving, the more users get involved

in this cell.

2.2.3.4 Evaluation of MC-BAPS algorithm

In the multi-cell cases, we add one more baseline in which we set the maximum number

of RSs in each cell is equally divided from the maximum number of RSs in this region.

Comparing with this new added baseline, we can see how much our MC-BAPS algorithm

outperforms the equal assignment solution. From Fig. 2-25(a) and 2-25(b), we see both

MC-BAPS and equal assignment solution outperforms baseline pretty much. Furthermore,

MC-BAPS outperforms equal assignment solution up to 11%. MC-BAPS saves more power
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comparing with equal assignment solution and baseline in a larger user scale. From Fig.

2-25(b) we can see, when Ktotal = 130, MC-BAPS and equal assignment solution has the

same performance since Kopt for each cell is much smaller than 32 (⌊130
4
⌋). Each cell achieves

the same power saving with either one more RS placed in or one less RS placed in so that

no K transference is needed. Without K transference, our MC-BAPS makes no improvement

against equal assignment solution. They have the same results.

In Fig. 2-25(c), we vary the throughputs of each user from 0.4Mbps to 1.4Mbps. With

a larger throughput, both baseline and our scheme will have a higher power consumption

since BS or RSs need to consume more power to maintain the communication link with its

covering users when they have a larger traffic demand. However, our scheme can achieve a

larger power saving when each user has a higher throughput, as can be easily seen in Fig.

2-25(c). Also, in a multi-cell region, we can find that our scheme can have more than 50%

power saving in some scenarios. All the numerical results show that our schemes outperforms

baseline pretty much. They can achieve a large amount of power saving, especially in a large

user scale. We illustrate the MC-BAPS results in Fig. 2-24(b) with maximum number of RSs

for this multi-cell region fixed to 70 and the number of users set to 1000. From Fig. 2-24(b),

we can see 4 BSs are located near the four corners of this region. All the red points construct

a RS set which is our MC-BAPS result.
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Chapter 3

Joint Resource Optimization for

Green D2D Communications

3.1 Overview

Device-to-Device (D2D) communication commonly refers to the technique that enables wire-

less devices to communicate directly with each other without an infrastructure of access

points or BSs, which has been considered as a key enabling technology for the next genera-

tion, (i.e., 5G) wireless communications. We illustrate the concept of D2D communications

as an underlay to a cellular network in Fig. 3-1.

Basically, in such a network, two User Equipment (UE) units can communicate directly

with each other over the D2D link. The BS only helps UE units set up connections without

relaying any data traffic. With D2D communications, a UE unit can transmit packets

to another UE unit nearby at a reduced power level such that power consumption can

be reduced, moreover, interference to other traditional communications (via a BS) can be

mitigated, which can improve network capacity. In addition, D2D communications can

offload the traffic of BS, which can improve network capacity further.

To take full advantage of D2D communications, channels need to be carefully allocated
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Figure 3-1: A wireless network with D2D links

and transmit power (per channel) needs to be carefully assigned. However, resource allo-

cation in a wireless network with D2D links is different from that in traditional wireless

networks because of there exists an additional problem, mode selection (i.e., determining the

mode, D2D or cellular, to be used for data transmissions), which is coupled with other re-

source allocation problems. Even though mode selection has been addressed by a few recent

papers [37,46,82,83], some of them [37,46] were focused on 3G WCDMA-based cellular net-

works in which data transmissions were conducted on a single channel and the others [82,83]

aimed at maximizing the sum of data rates of mobile users (network throughput). In this

work, we study a new optimization problem for D2D communications in an OFDMA-based

wireless network, whose objective is to minimize total power consumption while meeting user

data rate requirements. We propose a joint optimization approach to solve it, which jointly

determines mode selection, channel allocation and power assignment. In addition, the Shan-

non’s equation has been widely adopted to model link data rate, which is not practical since
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it provides an upper bound, rather than the actual value, for link data rate. We, however,

consider a practical model, in which link data rate is an increasing step function of Signal

to Interference and Noise Ratio (SINR). Practically, by leveraging the Adaptive Modulation

and Coding (AMC) technique, link data rate on a sub-channel becomes a discrete increas-

ing step function C(·) of the SINR (at the receiver). For example, 5 SINR thresholds are

specified in the WiMAX standard [43], each of which corresponds to a different modulation

index and data rate.

The differences between this work and related papers are summarized as follows: 1)

Unlike some related works studying D2D communications in a single-channel 3G CDMA-

based cellular network [37,46], we consider an OFDMA-based cellular network with multiple

sub-channels and study channel allocation. 2) Unlike some related works that aimed to

improve network capacity/throughput [17, 38, 53, 82, 83, 85, 86], the main objective here is

to minimize total power consumption to enable green wireless networking. 3) Unlike most

related works [17,22,38,46,53,57,82,83,85,86] that modeled link data rate using a continuous

function based on Shannon’s theorem, we consider a practical model in which link data rate is

an increasing step function of SINR. 4) We aim to present a practical algorithm with low time

complexity, which is different from the exhaustive search based approach [46] with high time

complexity. 5) The problem studied here is mathematically different from those optimization

problems formulated based on game theory in [3,92], or the problems studied in [6,91] (which

have different objective functions and constraints). 6) In addition, different from our early

work [31], we propose a new algorithm, Joint-2, to solve the problem, and present more

simulation results for justification based on both the WiMAX and LTE standards in this

work.

The rest of this chapter is organized as follows. The system model and problem formu-

lation are presented in Section 3.2. The joint optimization algorithms that we propose are

discussed in Section 3.3, which is followed by performance evaluation in Section 3.4.
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3.2 System Model and Problem Formulation

Table 3.1: Major Notations

Notation Description
C(·) The per-channel link data rate function;

GT (i),R(j),k Channel gain between transmitter T (i) of link i and
receiver R(j) of link j on sub-channel k

I legacyR(i),k Interference to receiver of D2D link i

on sub-channel k contributed by legacy users;
K The number of sub-channels;
mi The mode of D2D link i;
N The number of D2D links;
pi,k The transmit power of D2D link i on sub-channel k.
pi,m,k The transmit power of D2D link i on sub-channel k with mode m.
P legacy The maximal allowable interference power on legacy sub-channel;
Qlegacy The set of sub-channels allocated to legacy links;
Ri,0/Ri,1 The data rate of D2D link i in cellular or D2D mode;
R(·) The receiver of a D2D link;
T (·) The transmitter of a D2D link;
Γi The data rate requirement of D2D link i.

In this work, we consider a single cell in an OFDMA cellular network, which consists of a

BS, N pairs of D2D users (a.k.a D2D links), M legacy users (which only communicate with

the BS), and K non-overlapping sub-channels. Since neighboring cells can be allocated sets

of different channels, they can be operated independently in an interfere-free manner. Each

D2D link i consists of a D2D transmitter T (i) and a D2D receiver R(i). Similar to [17,46], we

focus on uplink communications since we aim to minimize power consumption of UE units

by leveraging D2D communications. Each D2D link i can work in one of the two modes:

1) D2D mode: T (i) directly communicates with R(i); 2) cellular mode: T (i) communicates

with R(i) via the BS (as relay). A subset of available sub-channels are assumed to be taken

by legacy users for serving their own traffic, which can be re-used by D2D links as long as the

total power contributed by D2D links does not exceed a given threshold P legacy at the BS.

A relatively conservative threshold can be set to guarantee that traditional communications

are not affected by D2D communications.
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GT (i),R(i),k denotes the gain of a link i on sub-channel k, which can be measured period-

ically using pilot signals. pi,kGT (i),R(i),k gives power received at R(i) on sub-channel k, and

pj,kGT (j),R(i),k(j ̸= i) gives the interference contributed by T (j) at R(i) on sub-channel k,

where pi,k is the transmit power at T (i) on sub-channel k. In closely related works [17,38], the

well-known Shannon’s equation is used to calculate link data rate. However, it is known that

the Shannon’s equation gives the capacity of a link, which may not be achievable in practice.

Moreover, link data rate is usually not a continuous function of the Signal-to-Interference-

Plus-Noise-Ratio (SINR). As mentioned above, we consider this practical model for link data

rate. So if the SINR and spectrum bandwidth of a sub-channel k of link i are given, then we

can obtain the data rate of link i on sub-channel k via the function C(SINRi,k), which can

be at several different levels. In the simulation, we adopted discrete increasing step functions

based on both the WiMAX and LTE standards, which will be described in greater details in

Section 3.4. A data rate constraint needs to be enforced for each D2D link i, which requires

its data rate to be no less than a given threshold Γi.

Here, we aim to solve an optimization problem, which minimizes total transmit power

of UEs subject to a data rate requirement for each UE based on the practical link data

rate model mentioned above. Solving this problem can enable power-efficient D2D commu-

nications with satisfying data rates for mobile users. We present the problem formulation

formally in the following, which is referred to as the Green-D2D problem.

• Mode selection variables m = {mi|mi = {0, 1}, 1 ≤ i ≤ N}: mi = 1 if D2D link works

in the D2D mode; mi = 0, otherwise.

• Channel-power assignment variables p = {pi,k ≥ 0|1 ≤ i ≤ N, 1 ≤ k ≤ K}: pi,k gives

T (i)’s transmit power on sub-channel k. Note that pi,k = 0 if sub-channel k is not

allocated to D2D link i.

Green-D2D

min
⟨m,p⟩

N∑
i=1

K∑
k=1

pi,k (2.1)
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Subject to:

miRi,1 + (1−mi)Ri,0 ≥ Γi, ∀i ∈ {1, · · · , N}; (2.2)

N∑
i=1

mipi,kGT (i),BS,k ≤ P legacy, ∀k ∈ Qlegacy; (2.3)

(1−mi)pi,k
∑
j ̸=i

(1−mj)pj,k = 0,∀i, j ∈ {1, · · · , N}, ∀k ∈ {1, · · · , K}\Qlegacy; (2.4)

(1−mi)pi,k = 0,∀i ∈ {1, · · · , N},∀k ∈ Qlegacy; (2.5)

K∑
k=1

pi,k ≤ Pmax,∀i ∈ {1, · · · , N}. (2.6)

where:

Ri,0 =
∑

k∈{1,··· ,K}\Qlegacy

C(
pi,kGT (i),BS,k∑

j ̸=i pj,kGT (j),BS,k +N0

), ∀i ∈ {1, · · · , N}; (2.7)

Ri,1 =
∑

k∈{1,··· ,K}

C(
pi,kGT (i),R(i),k∑

j ̸=i pj,kGT (j),R(i),k + I legacyR(i),k +N0

),∀i ∈ {1, · · · , N}. (2.8)

Note that in the formulation, we use Ri,0 (Equation (2.7)) to denote the rate of D2D

link i working in the cellular mode; and Ri,1 (Equation (2.8)) to denote the rate of D2D

link i working in the D2D mode. In Equation (2.8), I legacyR(i),k = 0, k ∈ {1, · · · , K}\Qlegacy.

The objective (2.1) is to minimize the total power consumption of D2D links. The following

constraints must be satisfied:

• Link data rate constraints (2.2): The data rate of each D2D link is no less than the

given threshold Γi. As mentioned above, the per-channel link data rate is given by a

discrete increasing step function C(·) of the SINR and sub-channel index.

• Interference constraints (2.3): On each sub-channel used by legacy users, the total

interference power contributed by all links working in the D2D mode should not exceed

the given threshold P legacy.
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• Channel allocation constraints (2.4) and (2.5): Sub-channels allocated to the legacy

links cannot be used for D2D links working in the cellular mode. Moreover, two D2D

links both working in the cellular mode can not share a common channel.

• Power assignment constraints (2.6): The transmitter of each D2D link distributes its

power to the set of assigned sub-channels and the sum of the power assigned to these

sub-channels cannot exceed the maximum power level Pmax.

This problem is a non-linear integer programming problem, which is usually very hard

to solve. So we present effective and efficient heuristic algorithms to solve it in polynomial

time.

3.3 Joint Optimization Algorithms

The Green-D2D problem can be easily divided into 3 subproblems: mode selection, channel

allocation and power assignment. A trivial solution is to solve the problem in three separate

steps and then combine solutions to the three subproblems together. However, such a method

usually does not work well, which has been validated by our simulation results. We present

two algorithms, which solve these three subproblems jointly.

3.3.1 Joint Algorithm 1 (Joint-1)

In this algorithm (denoted as Joint-1 ), we use linear search to determine transmission modes

(D2D or cellular) using power consumption as guidance first and then jointly compute the

channel allocation and power assignment accordingly.

The goal of the mode selection subproblem is to find a solution which can potentially lead

to a low-power channel-power assignment. The mode selection is a combinatorial problem.

It is not possible to examine all the combinations since the total number of such combi-

nations increases exponentially with the number of D2D links (N). We certainly want a
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D2D link to work on a mode with low power consumption. However, it is hard to obtain

its power consumption without knowing transmission modes, channel allocations and power

assignments of other links. Our idea for mode selection is to sort all the D2D links based

on a metric and then find a threshold to divide all the links into two subsets such that D2D

links in one subset are set to work on the D2D mode while those in another subset will work

on the cellular mode.

Intuitively, a D2D link i should work on a mode that can lead to relatively high channel

gains, which hopefully can result in low power consumption. So we use the following channel

gain ratio g(i) as the metric to assist mode selection:

g(i) =

∑K
k=1 GT (i),R(i),k

K∑
k∈{1,...,K}\Qlegacy GT (i),BS,k

K−|Qlegacy|

. (3.1)

Basically, g(i) is the ratio of the average channel gain in the D2D mode to that in the

cellular mode. Note that g(i) is the ratio between two channel gains, which is different from

channel gain. The higher this ratio is, the more likely the link should work on the D2D

mode. The hard part is to determine a threshold for this metric to split the D2D links into

two modes. Our algorithm performs a linear search on the channel gain ratios of all D2D

links and selects the one that leads to minimal total power consumption as the threshold

(lines 4–10 in Algorithm 15). We formally present this algorithm as Algorithm 15.

This algorithm uses a subroutine to determine the channel-power assignment p based on

given mode selection m (line 7 in Algorithm 15). The channel-power assignment subproblem

is to determine the sub-channels allocated to each D2D link and the corresponding power

assignment. The goal is to minimize total power consumption based on the given mode

selection. P is the total power consumption for channel-power assignment p.

The channel-power assignment subroutine is formally presented as Algorithm 16.

Since equations (2.7) and (2.8) are step functions, the channel-power allocation problem

still cannot be solved optimally after we are given the mode selection m for all D2D links.

We propose a waterfilling-like algorithm (Algorithm 16), which increases only one D2D link’s
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Algorithm 15: Joint Algorithm 1 (Joint-1)

Input : Γ =< Γi >, G =< GT (i),R(j),k >
Output: m =< mi >, p =< pi,k >, Pmin

1 Sort all D2D links in the ascending order of channel gain ratio gi (Eq. 3.1)
2 and store their indices in an array A;
3 j := 0;
4 while j ≤ N do
5 mA[i] := 0, i ≤ j and i ∈ [1, ..., N ];
6 mA[i] := 1, j < i < N and i ∈ [1, ..., N ];
7 < p, P >:= Set-Channel-Power(m,G,Γ);
8 if j = 0 or P < Pmin then
9 < mopt,pmin, Pmin >:=< m,p, P >;

10 j := j + 1;

11 return < mopt,pmin, Pmin >;

data rate by one level at each step, while minimizing total incremental power consumption

(lines 3–18 in Algorithm 16).

We find that if mode selection m and channel rate assignment r are given, then the

channel-power assignment p can be obtained by solving a Linear Programming (LP) problem,

which can be done in polynomial time. We use Pm,r to denote the total power consumption,

and use pm,r to denote the channel-power allocation solution when channel rate assignment is

r and mode selection solution ism. We formally present the LP for channel-power assignment

in the following:

LP-Channel-Power (m, r)

P = min
<p>

N∑
i=1

K∑
k=1

pi,k (3.2)

Subject to:

pi,kGT (i),R(i),k∑
j ̸=i pj,kGT (j),R(i),k + I legacyR(i),k +N0

≥ C−1(ri,k),mi = 1,∀i ∈ {1, · · · , N},∀k ∈ {1, · · · , K};

(3.3)

pi,kGT (i),BS,k∑
j ̸=i pj,kGT (j),BS,k +N0

≥ C−1(ri,k),mi = 0,∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , K}\Qlegacy;

(3.4)
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Algorithm 16: Set-Channel-Power

Input : m =< mi >, G =< GT (i),R(j),k >, Γ =< Γi >

Output: p =< pi,k >, P =
∑N

i=1

∑K
k=1 pi,k

1 ri,k := 0,∀i ∈ [1, ..., N ], ∀k ∈ [1, ..., K];
2 while 1 do
3 for each pair (i, k) with pi,k not setting to 0 do
4 if Eq. (2.2) is not satisfied then
5 Increase ri,k one rate level up;
6 r′i,k := ri,k +∆ri,k;

7 Pm,r′ := LP-Channel-Power(m, r′);
8 Pm,r := LP-Channel-Power(m, r);
9 if LP-Channel-Power(m, r′) infeasible then

10 Wi,k := −1;
11 else
12 Calculate Wi,k using Eq. (3.8);

13 else
14 Wi,k := 0;

15 Wmax := maxi∈[1,...,N ],k∈[1,...,K] Wi,k;
16 < rmax,pmax >:= argmax

<r,p>
Wi,k;

17 if Wmax > 0 then
18 < r,p >:=< rmax,pmax >;
19 Set some pi,k := 0 according to Constraints (2.4);

20 else if Wmax = 0 then
21 break;

22 else
23 return < null,−1 >;

24 P :=
∑N

i=1

∑K
k=1 pi,k;

25 return < p, P >;
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N∑
i=1

mipi,kGT (i),BS,k ≤ P legacy, ∀k ∈ Qlegacy; (3.5)

(1−mi)pi,k = 0,∀i ∈ {1, · · · , N},∀k ∈ Qlegacy; (3.6)

K∑
k=1

pi,k ≤ Pmax,∀i ∈ {1, · · · , N}; (3.7)

where C−1(ri,k) gives the SINR value corresponding to ri,k for link i and sub-channel k. This

LP problem can be efficiently solved in polynomial time. In the simulation, we used the

Gurobi Optimizer [36] to solve all LP problem instances.

Next, we explain the structure of Algorithm 16. Initially, the algorithm sets data rates

of all link-channel pairs to 0 (line 1). In the while loop, the algorithm tries to find the most

power-efficient upgrade in each iteration, which increases the data rate of a link-channel pair

one level up (lines 3–18). In the for loop (lines 3–14), the algorithm examines all possible

link-channel pairs to find the best one by solving a series of LP-Channel-Power. We use the

following rate-power ratio to measure power efficiency:

Wi,k =
∆ri,k

∆Pm,r(∆ri,k)
, (3.8)

where ∆ri,k is the incremental data rate and ∆Pm,r(∆ri,k) gives the corresponding incremen-

tal power consumption. The algorithm keeps selecting the most power-efficient link-channel

pair (according to the rate-power ratio) to upgrade its rate in each iteration (lines 15–18)

till the corresponding data rate requirement on each D2D link is satisfied (lines 20–21). To

avoid violating constraints (2.4) after a link-channel rate (ri,k) is upgraded (line 19), the

algorithm disregards some link-channel pairs by setting their power assignments pi,k := 0.

Setting pi,k := 0 ensures that the subchannel k cannot be used by D2D link i working in the

cellular mode since some other link j working in the cellular mode has already used it.

The time complexity of Joint-1 (Algorithm 15) is dominated by the while loop, which

takes O(N · T2) time, where T2 is the running time of Algorithm 16. Similarly, the run-
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ning time of Algorithm 16 is also dominated by a while loop, which takes O(N2K2L ·

TLP-Channel-Power) time, where L is the number of SNR levels and TLP-Channel-Power is the time

for solving the LP. So the overall time complexity of Joint-1 is O(N3K2L · TLP-Channel-Power).

Note that in practice, the LP can be solved very quickly using a well-designed LP solver

such as the Gurobi Optimizer [36].

As introduced in [50], in reality, BS/UEs broadcast reference signals in a cell every

8ms. After receiving the signal, each UE will report the Channel Quality Identifier (CQI)

indicating its channel condition such that the BS can obtain necessary input information for

the proposed algorithms. The BS is expected to run a resource optimization algorithm every

several seconds, which is certainly doable for the proposed algorithms.

3.3.2 Joint Algorithm 2 (Joint-2)

In this algorithm (denoted as Joint-2 ), we also jointly determine mode selection, channel al-

location and power assignment but in a way different from above. Specifically, we enumerate

all link-mode-channel triplets; then for each link-mode-channel triplet, we try to find the best

power assignment, which, however, is hard to determine without knowing the data rate the

corresponding triplet should work at. There are multiple levels for the data rate. Unlike in

Joint-1, we employ a greedy approach by pushing the data rate of a link-mode-channel triplet

to the highest possible level. Doing so leads to using relatively small number of subchannels

over each link, which hopefully causes limited interference to other links, thereby resulting

in less power for compensating interference. Joint-2 is formally presented as Algorithm 17.

As mentioned above, if mode selection and channel rate assignment are given, then the

corresponding power assignment can be obtained by solving an LP problem, which can be

done in polynomial time. Here, similar to LP-Channel-Power, we try to determine the power

assignment by solving an LP problem. However, different from Joint-1, in which modes of all

links are determined before solving LP-Channel-Power, Joint-2 tries to determine the power

assignment for a triplet (instead of a link-channel pair) when some triplets have not yet been

81



Algorithm 17: Joint Algorithm 2 (Joint-2)

Input : Γ =< Γi >, G =< GT (i),R(j),k >
Output: m =< mi >, p =< pi,m,k >, Pmin

1 ri,m,k := 0, ∀m ∈ [0, 1], ∀i ∈ [1, ..., N ],∀k ∈ [1, ..., K];
2 while 1 do
3 Wi,m,k := −1,∀m ∈ [0, 1],∀i ∈ [1, ..., N ],∀k ∈ [1, ..., K];
4 for each triplet (i,m, k) with pi,m,k not set to 0 do
5 m′ := m;
6 if Eq. (2.2) is not satisfied then
7 Push ri,m,k to rhighest except that
8 lower rate level can satisfy Γi;
9 m′

i := m; r′i,m,k := ri,m,k +∆ri,m,k;

10 while r′i,m,k ≥ rlowest do
11 Pm′,r′ := LP-Mode-Channel-Power(m′, r′);
12 Pm′,r := LP-Mode-Channel-Power(m′, r);
13 if LP-Mode-Channel-Power(m′, r′) infeasible then
14 Decrease r′i,m,k one rate level down;

15 else
16 Calculate Wi,m,k using Eq. (3.15);
17 break;

18 else
19 Wi,m,k := 0;

20 Wmax := maxm∈[0,1],i∈[1,...,N ],k∈[1,...,K]Wi,m,k;
21 < mmax, rmax,pmax >:= argmax

<m,r,p>
Wi,m,k;

22 if Wmax > 0 then
23 < m, r,p >:=< mmax, rmax,pmax >;
24 Set some pi,m,k := 0 according to Constraints (3.16)(3.17);

25 else if Wmax = 0 then
26 break;

27 else
28 return < null, null,−1 >;

29 P :=
∑N

i=1

∑1
m=0

∑K
k=1 pi,m,k;

30 return < m,p, P >;
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considered (i.e., modes/channels/rates of some links have not yet been determined). We

formally present the LP for the power assignment in the following:

LP-Mode-Channel-Power (m, r)

P = min
<p>

N∑
i=1

1∑
m=0

K∑
k=1

pi,m,k (3.9)

Subject to:

pi,1,kGT (i),R(i),k∑
j ̸=i pj,1,kGT (j),R(i),k + I legacyR(i),k +N0

≥ C−1(ri,1,k),∀i ∈ {1, · · · , N}, ∀k ∈ {1, · · · , K};

(3.10)

pi,0,kGT (i),BS,k∑
j ̸=i pj,0,kGT (j),BS,k +N0

≥ C−1(ri,0,k),∀i ∈ {1, · · · , N},∀k ∈ {1, · · · , K}\Qlegacy; (3.11)

N∑
i=1

mipi,1,kGT (i),BS,k ≤ P legacy,∀k ∈ Qlegacy; (3.12)

(1−mi)pi,0,k = 0,∀i ∈ {1, · · · , N}, ∀k ∈ Qlegacy; (3.13)

1∑
m=0

K∑
k=1

pi,m,k ≤ Pmax, ∀i ∈ {1, · · · , N}; (3.14)

Similarly, in the above formulation, pm,r denotes the power assignment corresponding

to mode selection m and channel rate assignment r. Equations (3.9)-(3.14) are similar to

equations (3.2)-(3.7) respectively. The difference is that variables < pi,k > are replaced by

< pi,m,k > since we consider link-mode-channel triplet in Joint-2 instead of link-channel pair

in Joint-1. The objective is to minimize total power consumption. Note that this LP is solved

iteratively. Every time when it is solved, for those triplets that have not yet be considered,

the correspond rates (ri,m,k) are set to 0, resulting in C−1(ri,m,k) = 0; while for those triplets

that have been considered, their rates are set to the values determined in previous steps.

Next, we explain the structure of Algorithm 17. Initially, the algorithm sets the data

rates of all link-mode-channel triplets to 0 (line 1). In the outer while loop, the algorithm

tries to find the most power-efficient upgrade in each iteration, which increases the data rate
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of a link-mode-channel triplet to the highest possible level (lines 4–23). In the for loop (lines

3–19), the algorithm examines all possible link-mode-channel triplets to find the best one by

solving a series of LP-Mode-Channel-Power. Similarly, we use the following rate-power ratio

to measure power efficiency:

Wi,m,k =
∆ri,m,k

∆Pm,r(∆ri,m,k)
, (3.15)

where ∆ri,m,k is the incremental data rate and ∆Pm,r(∆ri,m,k) gives the corresponding incre-

mental power consumption. Joint-2 keeps selecting the most power-efficient triplet (i,m, k)

(according to equations (3.15)), and pushes its rate to the highest possible level by checking

if the above LP-Mode-Channel-Power can still return a feasible solution (lines 7–17). By

doing so, the algorithm contributes to the rate requirement of the corresponding link in a

greedy manner. This procedure stops when the rate requirement of every link is satisfied

(lines 25–26).

After each rate upgrade for some link, the algorithm disregards those link-mode-channel

triplets with conflicts to ensure feasibility by setting the corresponding pi,m,k := 0. Specifi-

cally, the power assignment for some link-mode-channels (pi,m,k) need to be set to 0 in order

to avoid violating constraints (3.16) and (3.17) as listed below (line 24):

pi,0,kpi,1,k = 0, ∀i ∈ {1, · · · , N},∀k ∈ {1, · · · , K}; (3.16)

(1−mi)pi,0,k
∑
j ̸=i

(1−mj)pj,0,k = 0,∀i, j ∈ {1, · · · , N}, ∀k ∈ {1, · · · , K}\Qlegacy. (3.17)

Constraints (3.16) ensure that each D2D link can work in only one mode, either cellular

mode or D2D mode. Constraints (3.17) make sure that any two D2D links both working in

cellular mode cannot share a common sub-channel.

The time complexity of Joint-2 (Algorithm 17) is dominated by the outer while loop.

The running time of each iteration is dominated by the for loop, which takes O(NKL ·
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TLP-Mode-Channel-Power) time, where L is the number of SNR levels and TLP-Mode-Channel-Power

is the time for solving the LP. Thus, the overall time complexity of Joint-2 is O(N2K2L ·

TLP-Mode-Channel-Power)). Again, the LP can be solved very quickly in practice.

3.4 Performance Evaluation

In this section, we present and analyze simulation results to justify effectiveness of the

proposed algorithms.

In the simulation, the coverage region of the cell was a disk with a radius of R = 300m. A

BS was located at the center of the cell, and N legacy legacy users were randomly distributed

in the cell. Qlegacy = 2×N legacy sub-channels have been randomly assigned to legacy users.

For each pair of D2D link T (i), R(i), the receiver R(i) was randomly placed in the circle

centered at the sender T (i) with a radius of Dmax, which follows a 2D uniform distribution.

For each D2D link i, the data rate requirement Γi was randomly chosen, which follows a

uniform distribution between Γmin and Γmax. In order to guarantee the QoS of legacy users,

the aggregated interference on each legacy sub-channel from D2D links cannot exceed a

threshold Plegacy. If a D2D link works in the cellular mode where data traffic is relayed by

the BS, then it cannot use the legacy sub-channels reserved for legacy users. The sub-channel

gains were set to follow the free space model [29]:

G = (20 log10(d) + 20 log 10(f) + 92.45)(1 + σ), (4.1)

where d is the distance between transmitter and receiver in the unit of km and f is the

center frequency in the unit of GHz. σ is a zero mean random variable following standard

distribution. We summarize common simulation settings in the Table 3.2.

As mentioned above, the link data rate is an increasing step function of its SNR levels.

According to the IEEE 802.16e standard [43], we show how we set per-channel link data

rates using Table 3.3. All the values presented here are calculated based on the settings that
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Table 3.2: Common Simulation Settings

Parameter Value
Radius of the cell 300m
Sub-channel bandwidth 0.4MHz
Background noise −85dBm
Max transmit power (Pmax) 25mW
Gauss variance of σ 0.5
Min data rate requirement (Γmin) 0.4Mbps
P legacy −87.21dBm
No. of sub-channels for each legacy user 2
Frequency band (f) 1.92GHz

the sub-channel bandwidth is 0.4MHz and the antenna gain is 2dBi. Note that link data rate

is a linear function of the sub-channel bandwidth, therefore we can easily obtain a similar

step function if we are given a different sub-channel bandwidth.

Modulation Code Rate Min SNR (dB) Rates(Mbps)
QPSK 1/2 10 0.4
16QAM 1/2 14.5 0.8
16QAM 3/4 17.25 1.2
64QAM 2/3 21.75 1.6
64QAM 3/4 23 1.8

Table 3.3: SNR thresholds and the corresponding per-channel data rates according to the
WiMAX standard [43]

In the simulation, we compared the proposed algorithm with the following baseline algo-

rithms:

1. All D2D links in the cellular mode with random sub-channel allocation (All-Cellular):

In this algorithm, all D2D links work in the cellular mode and sub-channels are ran-

domly allocated to D2D links such that each D2D link gets the same number of sub-

channels.

2. All D2D links in the D2D mode with random sub-channel allocation (All-D2D): In

this algorithm, all D2D links work in the D2D mode and sub-channels are randomly

allocated to D2D links such that each D2D link gets the same number of sub-channels.
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3. Random mode selection and random sub-channel allocation algorithm (Random): Each

D2D link’s mode is randomly determined, with 50% probability for each mode. Channel

allocation is the same as that of the other baseline algorithms.

Note that in all these three baseline algorithms, after random channel allocation, they

assign power to each sub-channel using a greedy subroutine: start channel-power assignment

from certain level such that the link can have the highest possible SNR (that can lead to the

highest data rate); lower channel-power assignment as long as the corresponding link data

rate is large enough to meet the given requirement.

We compared the proposed joint algorithms against the three baseline algorithms in terms

of total power consumption using the following 5 scenarios:

1. Scenario 1: We changed the maximum rate requirement Γmax from 0.6Mbps to 3.6Mbps

with a step size of 0.3Mbps. The other parameters were set as follows: N = 12,

Dmax = 15m, K = 34 and N legacy = 5.

2. Scenario 2: We increased the number of D2D links N from 4 to 24 with a step size of

2. The other parameters were set as follows: Γmax = 1.8Mbps, Dmax = 15m, K = 34

and N legacy = 5.

3. Scenario 3: We varied the maximum distance of D2D links Dmax from 5m to 40m with

a step size of 5m. The other parameters were set as follows: Γmax = 1.8Mbps, N = 12,

K = 34 and N legacy = 5.

4. Scenario 4: We increased the number of available sub-channels K from 22 to 50 with

a step size of 4. The other parameters were set as follows: Γmax = 1.8Mbps, N = 12,

Dmax = 15m and N legacy = 5.

5. Scenario 5: We increased the number of legacy users N legacy from 2 to 10 with a

step size of 1. The other parameters were set as follows: Γmax = 1.8Mbps, N = 12,

Dmax = 15m and K = 34.
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(a) Max. data rate requirement (Γmax)
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(b) No. of D2D links (N)
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(c) Max. distance of D2D links (Dmax)

Figure 3-2: Impact of Γmax, N and Dmax on the total power consumption

The simulation results are presented in Figs. 3-2 and 3-3. We can make the following

observations from these results:

1) In all scenarios, the proposed joint algorithms consistently outperform the baseline

algorithms. On average, Joint-1 and Joint-2 achieve 88% and 84% power savings compared

to All-Cellular, respectively. This shows that D2D communications can significantly reduce

power consumption compared to the traditional communication approach. Moreover, com-

pared to All-D2D, the proposed algorithms can lead to an average of 78% and 68% power

savings, respectively. Compared to Random, the proposed algorithms result in an average of

86% and 82% power savings, respectively. This justify our claim that when using D2D com-
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(a) No. of total available sub-channels (K)
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(b) No. of legacy users (N legacy)

Figure 3-3: Impact of K and N legacy on the total power consumption

munications, mode selection, channel allocation and power assignment need to be carefully

determined.

2) From Figs. 3-2(a) and 3-2(b), we can see that no matter which algorithm is used, the

total power consumption increases monotonically with the data rate requirement and the

number of D2D links. However, the proposed joint algorithms are superior to the baseline

algorithms since unlike them, the corresponding power consumption grows very slowly with

these two important parameters. This shows that compared to simple 3-step greedy methods,

joint decision making along with LP-based optimization can lead to significant performance

improvement.

3) From Fig. 3-2(c), we can see that a longer D2D link distance leads to more power

consumption for both our joint algorithms and baseline algorithms except All-Cellular where

all D2D links work in the cellular mode so that they have nothing to do with this parameter.

Since all D2D links have to maintain their received SNR at certain levels in order to meet

their data rate requirements, longer D2D link distances will result in higher transmit power

for those D2D links working in the D2D mode. Power consumption of Joint-2 grows faster

than that of Joint-1. This is because usually rate levels on active sub-channels obtained

from Joint-2 are higher than those from Joint-1, thus, higher transmit power is necessary to
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achieve higher SNRs in Joint-2.

4) From Figs. 3-3(a) and 3-3(b), we can make two interesting findings. First, power con-

sumption given by all the baseline algorithms remains the same even with more sub-channels.

Power assignment in the baseline algorithms uses a simple greedy procedure. If a link’s data

rate requirement can be satisfied by certain number of sub-channels then the algorithms will

not use more sub-channels. In other words, more sub-channels do not necessarily lead to bet-

ter performance for those baseline algorithms. Second, the proposed joint algorithms result

in less power consumption with more sub-channels. That is because our algorithms always

select the most power-efficient sub-channel to use in each step. More available sub-channels

means the algorithms has more options to choose from. If there are better sub-channels

from the additional set of available sub-channels, total power consumption given by our al-

gorithms will be reduced. Otherwise they remain the same just like the baseline algorithms.

This again shows that joint decision making with LP-based optimization outperforms simple

greedy methods.
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(a) Rate level on each sub-channel by Joint-1
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(b) Rate level on each sub-channel by Joint-2

Figure 3-4: Illustration of channel-rate allocation by Joint-1 and Joint-2

5) In some cases, power consumption of Joint-1 is less than that that of Joint-2. However,

in some cases (e.g. Γmax ≥ 3.0Mbps, N ≥ 20, K ≤ 26, and N legacy ≥ 9 in Figs. 3-2 and

3-3), Joint-2 offers nearly the same or better performance. Usually, Joint-2 uses less sub-
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channels but higher rate levels, while Joint-2 uses more sub-channels but lower rate levels.

Thus, in those cases with limited available sub-channels, Joint-2 may likely perform better

than Joint-1. To further demonstrate this, we conducted simulation with a small case with

Γmax = 3.5Mbps, N = 3 and K = 6 and show the corresponding results in Fig. 3-4. We can

clearly see that differences between Joint-1 and Joint-2 on sub-channel utilization.

Modulation Code Rate Min SNR (dB) Rates(Mbps)
QPSK 1/12 -6.50 0.06
QPSK 1/9 -4.00 0.092
QPSK 1/6 -2.60 0.15
QPSK 1/3 -1.00 0.24
QPSK 1/2 1.00 0.352
QPSK 3/5 3.00 0.472
16QAM 1/3 6.60 0.592
16QAM 1/2 10.00 0.764
16QAM 3/5 11.40 0.964
64QAM 1/3 11.80 1.092
64QAM 1/2 13.00 1.328
64QAM 3/5 13.80 1.560
64QAM 3/4 15.60 1.808
64QAM 5/6 16.80 2.048
64QAM 11/12 17.60 2.220

Table 3.4: SNR thresholds and the corresponding per-channel data rates according to the
LTE standard [50]

In addition, we also evaluated the performance of the proposed algorithms based on the

LTE standard. As in [50], we used the following settings in our simulation, which are listed in

Table 3.4. The other settings were the same as those in scenarios 1 and 2. The corresponding

results are shown in Fig. 3-5, from which we can make the following observations: Similarly,

we can see that the proposed joint algorithms consistently outperform the baselines. On

average, Joint-1 and Joint-2 achieve 98% and 97% power savings compared to All-Cellular

respectively. This shows that D2D communications can significantly reduce transmit power

consumption on UEs compared to the traditional approach in LTE networks. Moreover,

we can make similar observations when we compare Joint-1 and Joint-2 with All-D2D and

Random. Specifically, compared to All-D2D, the proposed algorithms lead to an average
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(a) Max. data rate requirement (Γmax)
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(b) No. of D2D links (N)

Figure 3-5: Impact of Γmax and N on the total power consumption according to the LTE
standard [50]

of 88% and 84% power savings, respectively; and compared to Random, they result in an

average of 96% and 95% power savings, respectively.
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Chapter 4

Base Station Consolidation in

Virtualized Cognitive Radio Networks

4.1 Overview

Virtualization is the creation of a virtual (rather than actual) version of certain physical re-

sources, such as a computer, storage device, or network resources. Virtualization has emerged

as a useful technology for improving resource utilization and power efficiency. For example,

in a virtualized data center, Virtual Machines (VMs) can be created to host applications and

servers can be consolidated by migrating VMs such that idle servers and chassis, can be shut

down or put into sleep. Virtualization technology has been introduced to wireless networking

recently [48]. In general, network virtualization enables deploying customized services and

resource management solutions in isolated slices on a shared physical network. Particularly,

with wireless resource virtualization, multiple Mobile Virtual Network Operators (MVNOs)

can be supported over a shared physical wireless network and traffic loads in a BS can be

easily migrated to more power-efficient BSs in its neighborhood such that idle BSs can be

turned off or put into sleep to save power.

Emerging Cognitive Radio (CR) technology and the Dynamic Spectrum Access (DSA)
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approach [5] enable unlicensed wireless users (a.k.a secondary users) to sense and access the

under-utilized spectrum opportunistically even if it is licensed. CRs have been considered

as the next generation wireless communication technology that can lead to better spectrum

utilization and higher network capacity.

In this work, we propose to leverage load migration and BS consolidation for green com-

munications and consider a power-efficient network planning problem in virtualized Cog-

nitive Radio Networks (CRNs) with the objective of minimizing total power consumption

while meeting traffic load demand of each MVNO. We find that the problem can divided

into two subproblems: the channel assignment problem and the load allocation problem.

The channel assignment problem seeks a solution that assigns a channel for each BS in an

interference-free manner. The load allocation problem is to determine which subset of BSs

to turn off (or put into sleep) and how to allocate load of each MVNO on every BS to active

BSs. Power savings can be achieved by migrating loads of MVNOs to more power-efficient

BSs and/or shutting down BSs to save idle power. Note that since different CR BSs work

on different channels, their power efficiency might be different because to maintain certain

transmission range, the BS using a low-frequency channel can use less power than that using

a high-frequency channel due to the signal propagation property.

Even though green wireless networking has attracted extensive attention recently, most

previous works were focused on 3G/4G/WiFi networks (rather than CRNs) without ad-

dressing the case where there are multiple MVNOs in the network. To the best of our

knowledge, we are the first to propose to leverage load migration and BS consolidation for

green communications in a virtualized CRN (with multiple MVNOs), and present theoreti-

cally well-founded and practically efficient algorithms to solve the corresponding optimization

problems.

The differences between our work and these related works are summarized as follows: 1)

Unlike most papers on wireless resource virtualization which were mainly focused on how to

design and implement resource virtualization at one node, we aim to leverage load migration
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and BS consolidation (that can be enabled by virtualization) for reducing power consumption

of the whole network 2) Most previous works on green wireless networking studied power-

efficient resource management problems in the context of 3G/4G/WiFi networks rather than

CRNs and did not address the case where there are multiple MVNOs in the network. 3)

Different from most works on spectrum sharing in CRNs which aimed at improving spectrum

utilization and network capacity, we study a power-efficient network planning problem in the

context of a network with virtualized CR BSs, which has never been done before.

The rest of this chapter is organized as follows. We present the problem definition

in Section 4.2. We propose an optimization framework to guide the algorithm design in

Section 4.3. An joint algorithm is proposed and discussed in Section 4.4. At last, we present

simulation results in Section 4.5.

4.2 Problem Definition

We summarize major notations in the following table for quick reference.

In this work, we consider a CRN with N BSs, which is shared by K MVNOs. The

available spectrum is divided into a set of orthogonal channels. Note that since we study a

network planning problem rather than a MAC layer channel selection problem, the channel

considered here represents a relatively large portion of the spectrum and may include a group

of sub-channels defined in the context of OFDMA. There are a set Hi of channels available

to each BS i, which may change over time. Channel availability information can be obtained

from a spectrum database (as suggested by FCC) or using a spectrum sensing method [87].

Since available channels of a CR may be distributed over a large range of spectrum, they

may have (or be able to support) quite different properties such as channel gain, data rate,

etc. Each BS is assigned one channel to support wireless users of multiple MVNOs for a

certain period of time.

With virtualization, wireless resources (such as timeslots in an OFDMA frame) are allo-
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Table 4.1: Major Notations

Variable Description
Ai Idle power

Bf
i The load coefficient in the power consumption

function of BS i
Ch

i The capacity of BS i on channel h
Hi A set channels available to BS i

Hmax The maximum number of available channels on a BS
K The number of MVNOs
Lik The load demand of MVNO k on BS i
li The total traffic load on BS i
N The number of BSs
Si The neighbor set of BS i
Ii The interference set of BS i
xi Decision variable: xi = 1 if BS i is

turned on; 0, otherwise.
yhi Decision variable: yhi = 1 if channel

h is assigned to BS i; 0, otherwise.

ljhik Decision variable: The amount of load
of MVNO k on BS i that is migrated to BS j

on channel h.

cated dynamically to slices, each of which may correspond an MVNO or a group of service

flows of an MVNO. In a BS, a slice manager [48] (similar to hypervisor in the context of

server virtualization) can be used to manage resource allocation for slices with the goal of

achieving isolation, customization and efficient utilization of resources. Each MVNO pro-

vides wireless communication services for a group of mobile users, which create certain traffic

loads on each BS. We use a N ×K matrix L to specify the traffic load of MVNO k on BS

i. Each BS i can migrate part of or all of its traffic load to a set Si of neighboring BSs.

With virtualization, a BS can quickly adjust resource allocation for its slices to accommodate

traffic loads migrated from other BSs. Different (conservative or aggressive) criteria can be

used to identify such a neighbor set for each BS. Note that i ∈ Si. In addition, for each BS

i, there is a set of BSs Ii which can potentially interfere with BS i if they work on the same

channel. If channel h is assigned to BS i, then any BS in Ii cannot be assigned channel h.
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Similarly, different criteria can be used to identify such an interference set for each BS. Note

that i /∈ Ii (this is just a technical agreement for easy presentation). In the simulation, we

used relatively conservative methods to identify these two sets for each BS, which will be

explained in Section 4.5.

Similar as in [69], we adopt a simple and widely-used linear model for power consumption

of a BS i, which is given as follows:

Pi(li, f) = Ai +Bf
i ∗ li, (2.1)

where Ai is a constant that specifies the idle power usage, li is the traffic load, and Bf
i is the

load coefficient. Note that the value of this coefficient may vary with transmission frequency

f because usually low-frequency wireless signals travel longer than high-frequency signals if

transmitted at a given power level, in other words, to maintain certain transmission range,

the BS using a low-frequency channel can use less power than that using a high-frequency

channel. However, the values may be the same for multiple channels on a common spectrum

band. The values of Ai and Bf
i can be obtained via a profile-based approach such as that

in [69] or estimated using a signal propagation model [70]. We say a BS is power-proportional

if Ai = 0. Currently, almost no BS is power-proportional. However, we still consider this

special case since with the advancement of communication hardware and cooling technology,

it might be possible to significantly reduce idle power to make it close to zero in the future.

We are interested in finding a resource allocation solution that specifies which channel to

be assigned to each BS and how to allocate traffic loads of each MVNO. A resource allocation

solution is said to be feasible if available channels are assigned to BSs in a interference-free

manner, the traffic load demands specified by the matrix L can be satisfied and the total

load on each BS does not exceed its capacity. Now, we are ready to define the optimization

problem.

Definition 10. Given N BSs, K MVNOs, a N ×K traffic load matrix L and the set Hi of
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available channels on each BS i, i ∈ {1, · · · , N}, a power-efficient network planning problem

seeks a feasible resource allocation solution that minimizes the total power consumption of

BSs.

Note that this network planning procedure can be conducted on a relatively large time

scale, e.g., 30 minutes or 1 hour. In addition, we are only interested in finding out how

to distribute traffic loads of MVNOs among BSs in a network, however, how to allocate

resources to slices to support multiple MVNOs to meet their load demands in a single BS is

out of scope of this work, but has been studied in [48,52,89].

This optimization problem is very hard to solve since its subproblem, interference-free

channel assignment, is known to be NP-hard [75]. Therefore, we first present an MILP

formulation to provide optimal solutions.

Decision variables:

• xi = {0, 1}: xi = 1 if BS i is turned on; 0, otherwise.

• yhi = {0, 1}: yhi = 1 if channel h is assigned to BS i; 0, otherwise.

• ljhik ≥ 0: The amount of load of MVNO k on BS i that is migrated to BS j on channel

h.

MILP-Green

min
⟨xi,yhi ,l

jh
ik ⟩

N∑
i=1

(Aixi +
∑
h∈Hi

Bh
i (

K∑
k=1

∑
j:i∈Sj

lihjk)) (2.2)
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Subject to:

∑
h∈Hi

yhi ≤ xi, ∀i ∈ {1, · · · , N}; (2.3)

yhi +

∑
j∈Ii y

h
j

N
≤ 1, ∀i ∈ {1, · · · , N},

∀h ∈ Hi (2.4)∑
j∈Si

∑
h∈Hj

ljhik = Lik, ∀i ∈ {1, · · · , N},

∀k ∈ {1, · · · , K}; (2.5)

K∑
k=1

∑
j:i∈Sj

lihjk ≤ yhi C
h
i , ∀i ∈ {1, · · · , N},

∀h ∈ Hi. (2.6)

In this formulation, the objective (2.2) is to minimize total power consumption of BSs. By

abusing the notation a little bit, we use h to denote both channel h and its central frequency.

As described before, each BS can only be assigned one channel, which is guaranteed by

constraints (2.3). Constraints (2.4) ensure that channels are assigned in an interference-free

manner, i.e., if channel h is assigned to BS i, then none of BSs in the interference set Ii

can be assigned this channel. Each MVNO k has a load demand Lik on each BS i, which

must be satisfied by using BS i and/or BSs in the neighbor set Si via load migrations. This

is ensured by constraints (2.5). The last set of constraints (2.6) make sure that each BS i

has sufficient capacity to support its own traffic loads and those migrated from neighboring

BSs. Note that the capacity of a BS can be conservatively set to certain percentage of its

actual capacity to guarantee quality of service since it may need to serve loads migrated

from neighboring BSs. It is known that solving such an MILP may take exponentially long

time, especially for large cases. Hence, we present polynomial-time algorithms in the next

section.
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4.3 Optimization Framework

In this section, we first present a 2-step framework to guide algorithm design. Essentially,

the optimization problem defined above consists of two subproblems: channel assignment

and load allocation. The channel assignment subproblem is to determine which channel to

be assigned to each BS. The load allocation subproblem is to determine which subset of BSs

should be turned on and how to distribute loads to active BSs. We formally present the

optimization framework in the following.

Algorithm 18: The Optimization Framework

Step 1 Compute a channel assignment that maximizes the total weight (defined below) of
assigned channels;

Step 2 Based on the channel assignment, obtain a minimum-power load allocation.

It is important to obtain a channel assignment that can (hopefully) lead to a minimum

power solution to the original problem. Our approach is to set a weight for each channel h

on BS i, w(i, h) =
Ch

i

Pi(Ch
i ,h)

, where Ch
i is the capacity of BS i on channel h and Pi(C

h
i , h) gives

the total power needed to support Ch
i amount of loads on BS i with channel h. Therefore

this weight function returns per-watt load that can be supported by assigning channel h to

BS i. By finding a channel assignment with maximum total weight, we can (hopefully) have

sufficient capacity to accommodate traffic loads with low power consumption. In Step 2, an

algorithm can be used to obtain a load allocation based on the channel assignment computed

in Step 1.

Next, we present an approximation algorithm for channel assignment. For the load

allocation problem, we present a polynomial-time optimal algorithm for a special case where

BSs are power-proportional as well as two fast heuristic algorithms for the general case.

100



4.3.1 Channel Assignment Algorithm

The channel assignment problem is to determine a channel assignment that can result in

the maximum total weight (defined above) and ensures that any two BSs that interfere with

each other are given two different channels. To assist computation, we construct an auxiliary

graph, the Multi-Channel Contention Graph (MCCG), to model conflict (interference) in a

network with multiple heterogeneous channels, which was proposed in our previous work [75].

To ensure the completeness of the presentation, we briefly describe how it is constructed.

In an MCCG GC(VC , EC), every vertex corresponds to a BS-channel pair in A, where A =

{(i, h) : ∀i ∈ {1, · · · , N}, ∀h ∈ Hi}. There is an undirected edge connecting two vertices

in VC if their corresponding BS-channel pairs interfere with each other. Two BS-channel

pairs (i, h) and (j, h′) are said to interfere with each other if 1) i = j or 2) h = h′ and

(j ∈ Ii or i ∈ Ij), where Ii and Ij are the interference sets of BS i and j respectively. Note

that there is an undirected edge between every two vertices corresponding to BS-channel

pairs that contain a common BS because they always conflict with each other no matter

which channel is considered since a BS can only work on one channel. In other words, all

vertices corresponding to a common BS form a clique in GC . This case is covered by the

first condition. Now, we are ready to present the channel assignment algorithm.

Algorithm 19: The Channel Assignment Algorithm

Step 1 V := VC ; Set all ⟨yhi ⟩ :=0;

Step 2 while (V ̸= Ø)

vmax := argmaxv∈V
w(v)
∆v+1

, where ∆v is the degree
of vertex v on GC ;
yhmax
imax

:= 1, where vmax = (imax, hmax);
V := V − Vmax, where Vmax is the set of
vertices share a common edge with vmax;

endwhile

Step 3 return ⟨yhi ⟩;

Every time, the algorithm selects a vertex (BS-channel pair) with the maximum weight-
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to-degree ratio and assigns the channel accordingly. In this way, vertices with high weights

and low interference impact are expected to be selected for channel assignment. We analyze

the performance and time complexity of this algorithm in the following.

Theorem 4. Algorithm 19 is a 1
∆
-approximation algorithm for the channel assignment

problem (where ∆ is the maximum vertex degree on the MCCG) and has a time complexity

of O(N2Hmax) (where Hmax is the maximum number of available channels on a BS).

Proof. Due to the way how the MCCG is constructed, the channel assignment problem

can be transformed to the maximum weight independent set problem on an MCCG. It

has been shown in [71] that a greedy algorithm that selects a vertex with the maximum

weight-to-degree ratio has an approximation ratio of 1
∆
for the maximum weight independent

set problem. Hence, our algorithm offers the same approximation ratio for the channel

assignment problem.

Every time, it takes O(NHmax) to assign channel for one BS. Hence, the overall time

complexity of the proposed algorithm is O(N2Hmax). This completes the proof.

4.3.2 Load Allocation Algorithms

After the channel assignment is determined, we can solve the load allocation subproblem.

First, we construct a directed auxiliary graphGf (VO

∪
VB

∪
{s, z}, Ef ) to assist computation.

In this graph, each vertex u ∈ VO corresponds to a BS-MVNO pair (i, k) and each pair of

vertices vinj , voutj ∈ VB correspond to a BS j. There is a directed edge from each vertex

u = (i, k) ∈ VO to vinj ∈ VB (corresponding to BS j) if j ∈ Si, where Si is the neighbor set of

BS i defined above. The cost and capacity of such an edge e are set to we = 0 and Ce =∞

respectively. Moreover, there is a directed edge from each vinj ∈ VB to voutj ∈ VB, whose cost

and capacity are set to Bh
j and Ch

j respectively. where Bh
j is the load coefficient in the power

consumption function of BS j and Ch
j is the capacity of BS j when using assigned channel

h. In addition, we create a virtual sink z and there is a directed edge from each voutj ∈ VB to
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z, whose cost and capacity are set to 0 and ∞ respectively. We also create a virtual source

s and there is a directed edge from s to each u ∈ VO, whose cost and capacity are set to 0

and Lik respectively.

Next, we use an example in Fig. 4-1 to show how to construct this graph. In this example,

we have 2 MVNOs and 4 BSs which are assigned channels 1, 2, 3 and 4 respectively. In

addition, both neighbor sets S1 and S2 include BSs 1 and 2.

Figure 4-1: An auxiliary flow graph

With this auxiliary flow graph, the load allocation problem can be transformed to a

min-cost flow problem in this graph. Specifically, for the power-proportional case where the

power consumption of each BS i is Bh
i ∗ li, then there is no need to turn off any BS and

the load allocation problem becomes a traditional min-cost flow problem [2], which can be

formulated as the following LP problem, in which fe specifies the amount of flow over edge

e.
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LP-Flow-PP:

min
⟨fe⟩

∑
e∈E

wefe (3.1)

∑
e∈Eout

s

fe = Ltotal; (3.2)

∑
e∈Ein

v

fe =
∑

e∈Eout
v

fe, ∀v ∈ VO

∪
VB; (3.3)

fe ≤ Ce, ∀e ∈ Ef . (3.4)

In the formulation, we and Ce are the cost and capacity of edge e respectively. Eout
v and

Eout
v are the set of edges going out from v and into v respectively. Ltotal is the total load of

all MVNOs, i.e., Ltotal =
∑N

i=1

∑K
k=1 Lik. We present an algorithm for this special case of

load allocation problem in the following.

Algorithm 20: The Min-Cost-Flow-Based Load Allocation Algorithm for the Power-
Proportional Case

Step 1 Construct the auxiliary flow graph Gf ;

Step 2 Find a min-cost s− t flow allocation ⟨fe⟩ on Gf by solving the LP-Flow-PP;

Step 3 forall e = (u, vinj ), where u = (i, k) ∈ VO and vinj ∈ VB

Ljh
ik = fe, where h is the channel assigned

to BS j;
endforall
return ⟨Ljh

ik ⟩.

Theorem 5. The min-cost-flow-based algorithm optimally solves the power-proportional

case of the load allocation problem in polynomial time.

Proof. Constraint (3.2) ensures the total amount of s − t flow is equal to the total load

demand. Since the capacity of each link e going out from s to u = (i, k) ∈ VO is set to
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Ce = Lik, constraint (3.2) ensures the load demand of each MVNO k on every BS i is

satisfied. Moreover, due to the way how the capacity of each link e between vinj , voutj ∈ VB

is set (i.e., Ce = Ch
j ), constraints (3.4) make sure that each BS j has sufficient capacity to

support all loads allocated to it. The objective function (3.1) minimizes the total cost of

flow, which is equivalent to minimizing the total power consumption since the costs of all

edges are set to 0 except that those between vinj , voutj ∈ VB are set to the load coefficient Bh
i

of the power consumption function.

This LP problem has no more than (N(K + 2) + N2K) variables and no more than

(2N(K +2)+N2K +1) constraints since Gf has (N(K +2)+ 2) vertices and no more than

(N(K + 2) +N2K) edges. Hence, it can be solved in polynomial time. This completes the

proof.

For the general case where there is a non-zero idle power for each BS, the load allocation

problem can also be formulated as another flow problem on Gf , in which fe specifies the

amount of flow over edge e; and ze is an integer decision variable that indicate if edge e is

activated (ze = 1) or not (ze = 0).

MILP-Flow:

min
⟨fe,ze⟩

∑
e∈E

(aeze + wefe) (3.5)

∑
e∈Eout

s

fe = Ltotal;

∑
e∈Ein

v

fe =
∑

e∈Eout
v

fe, ∀v ∈ VO

∪
VB;

fe ≤ zeCe, ∀e ∈ Eintra
f ; (3.6)

fe ≤ Ce, ∀e ∈ Ef \ Eintra
f . (3.7)

In this formulation, Eintra
f is the set of edges between vinj , voutj ∈ VB, j ∈ {1, · · · , N}.
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ae = Aj for e ∈ Eintra
f (corresponding to BS j) and ae = 0 for all the other edges. ze = 0

indicates that the corresponding BS is turned off. The objective (3.5) is to minimize total

power consumption based on the general power consumption model with non-zero idle power.

Unlike the power-proportional case, the flow problem presented above is known to be the

Fixed Charge Network Flow (FCNF) problem [64] that has been shown to be NP-hard. So

we can only have polynomial-time heuristic algorithms that give suboptimal solutions. We

present an algorithm for the general load allocation problem in the following.

Algorithm 21: The Bilinear Relaxation Based Algorithm

Step 1 Construct the auxiliary flow graph Gf .

Step 2 Solve the problem specified by the MILP-Flow using the bilinear relaxation based
algorithm in [64].

Step 3 forall e = (u, vinj ), where u = (i, k) ∈ VO and vinj ∈ VB

Ljh
ik = fe, where h is the channel assigned

to BS j;
endforall
return ⟨Ljh

ik ⟩.

To the best of our knowledge, the bilinear relaxation based algorithm presented in [64] is

the best algorithm for the FCNF problem. The basic idea of this algorithm is to approximate

the objective function of the FCNF problem by a piecewise linear one, and construct a

Concave Piecewise Linear Network Flow (CPLNF) problem (which can be formulated as an

LP problem and solved in polynomial time). A proper choice of parameters in the CPLNF

problem can guarantee the equivalence between these two problems. Solving the FCNF

problem needs to solve a sequence of CPLNF problems. The algorithm in [64] employs the

the bilinear relaxation based algorithm presented in [63], to find a solution to a CPLNF

problem. More details can be found in [63] and [64].

We also present a simple algorithm, the iterative shutdown algorithm, to solve the load

allocation problem without constructing the auxiliary flow graph.

LP-Load(R)
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Algorithm 22: The Iterative Shutdown Algorithm

Step 1 R = {1, · · · , N};
Set li :=

∑K
k=1 Lik,∀i ∈ {1, · · · , N} ;

Step 2 while (1)

jmin := argminj∈R
lj

|Sj
∩

R| ;

R := R− {jmin};
Solve LP-Load(R);
if (No feasible solution) or (total power increases)

R := R + {jmin};
break;

endif
Update li :=

∑K
k=1

∑
j:i∈Sj

∩
R lijk,

∀i ∈ {1, · · · , N} where ⟨lijk⟩ is
the solution returned by solving the LP-Load;

endwhile

Step 3 return R and ⟨ljik⟩.

min
⟨ljik⟩

∑
i∈R

(Ai +Bi(
K∑
k=1

∑
j:i∈Sj

∩
R

lijk)) (3.8)

Subject to:

∑
j∈Si

∩
R

ljik = Lik, ∀i ∈ {1, · · · , N},

∀k ∈ {1, · · · , K}; (3.9)

K∑
k=1

∑
j:i∈Sj

∩
R

lijk ≤ Ci, ∀i ∈ {1, · · · , N}. (3.10)

In the algorithm, R and li keep track of the set of active BSs and the load of each BS

i respectively. The algorithm keeps trying to turning off a BS until not possible. Every

time, a BS jmin with smallest load-to-neighbor-number-ratio is selected and the LP-Load is

used to test if a feasible load allocation can still be found by shutting down BS jmin. The

algorithm makes such a selection because it is likely that such a BS can be shut down and
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its load can be migrated to other active BSs in its neighborhood. The LP-Load is similar

to the MILP-Green except that it does not include channel assignment variables yhi and the

related constraints. Here the superscript h is removed from load allocation variables ⟨iihjk⟩

since the channel assignment is given as input for this algorithm.

4.4 Joint Algorithm

In this section, we present an effective algorithm to jointly solve the channel assignment and

load allocation problems. The basic idea of this algorithm is to deal with BS one by one

in the descending order of their traffic demands and every time, try to find a feasible load

allocation and channel assignment that can lead to minimum power consumption without

changing the existing decisions. The algorithm is formally presented as follows.

LP-Load-Local (i, R, ⟨Ĉj⟩)

min
⟨ljik⟩

∑
j∈Si

∩
R

(Aj +Bj

K∑
k=1

ljik) (4.1)

Subject to:

∑
j∈Si

∩
R

ljik = Lik, ∀k ∈ {1, · · · , K}; (4.2)

K∑
k=1

ljik ≤ Ĉj, ∀j ∈ Si

∩
R. (4.3)

In this algorithm, R keeps track of the set of BSs which has been determined (by the

algorithm) to power on. Ĉj gives the residual capacity of BS j. ⟨ljik⟩ specify load allocation

and superscript h is removed since the channel assignment of BS in R have already been

determined. The algorithm goes through the BS list in the descending of their demands.

Every time, the algorithm deals with only one BS. It first check if all its traffic loads can

be migrated to BSs in Si

∩
R by solving the LP-Load-Local. If so, BS i will be turned off

and its load will be migrated to its active neighboring BSs. The algorithm examines this
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Algorithm 23: The Joint Algorithm

Step 1 Sort all the BSs in the descending order of its loads and store the sorted list in Q;
R := Ø;
Set all ⟨Ĉj⟩ := 0;
Set all ⟨yhi ⟩ := 0;

Step 2 forall i ∈ Q
Solve LP-Load-Local(i, R, ⟨Ĉj⟩)
if (Found a feasible solution ⟨ljik⟩)

Ĉj := Ĉj −
∑K

k=1 l
j
ik, ∀j ∈ Si

∩
R;

continue;
endif
R := R + {i};
hmin = argminh∈Hi

LP-Load-Local(i, R, ⟨Ĉj⟩),
where ⟨Ĉj⟩ := ⟨Ch

j ⟩;
if (None of LP-Load-Local returns a

feasible solution)
return FAILED;

endif
yhmin
i := 1;
Hj := Hj − {hmin}, ∀j ∈ Ii;

Ĉj := Ĉj −
∑K

k=1 l
j
ik, ∀j ∈ Si

∩
R;

endforall

Step 3 return ⟨yhi ⟩, R, ⟨ljik⟩.

option first because the idle power usually contributes significantly to the total power usage

of a BS (over 50% in most cases), therefore, it is desirable to shut it down if at all possible.

Otherwise, the algorithm turns on this BS and finds a channel assignment that can lead to

minimum power consumption as well as a load allocation using the same LP. This is a greedy

algorithm which makes on/off, channel assignment, and load allocation decisions for a BS in

one iteration and will not change them in the following iterations.

The first step of the algorithm can be done in O(N logN) time. In the 2nd step, even

though the LP-Load-Local needs to be solved O(NHmax) times, where Hmax is the maximum

number of available channels on a BS, the LP only includes a small number of variables and

constraints since this LP only involves the neighbors of the BS in question. Hence, it can be
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solved very efficiently.

4.5 Simulation Results

In the simulation, the target region was chosen as a square area with a size of 15 × 15

km2. N BSs were randomly placed in the region, whose locations follow a two-dimensional

uniform distribution. The effective/maximum transmission ranges were set to r = 2km and

rmax = 2r = 4km, which are quite typical in a cellular network [69]. Similar as in [69], the

neighbor set of BS i was defined as Si = {j : d(j, i) ≤ (rmax + r), j ∈ {1, · · · , N}}. We used

a relatively conservative method to define the interference set Ii of BS i as Ii = {j : d(j, i) ≤

2rmax, j ∈ {1, · · · , N}} − {i}.

The total number of available channels was set to 50 and each channel has a bandwidth

50MHz. They were evenly distributed in a portion of spectrum centered at 2GHz. In the

simulation, 15 Primary Users (PUs) were randomly placed in the target area. Each PU

randomly chose one channel to use. If the distance between a PU and a CR BS is less than

the interference range 2rmax = 8km, then the CR BS cannot be assigned the channel used

by the PU. As described above, the capacity of a BS depends on the channel assigned to it.

Similar as in [11], the capacity of a BS using the channel at 2GHz was set to 50Mbps. We

used the widely-used free-space propagation model [70] and the Shannon’s theorem to derive

the BS capacities on other channels. To avoid overloading caused by serving migrated traffic

loads, we conservatively set the capacity of each BS to 80% of the calculated value.

We used Equation (2.1) to calculate power consumption of a BS. We followed the power

consumption settings in [69]. Specifically, we set A = 2100W for each BS. The load coefficient

Bf was set to 6 for the channel at f = 2GHz [69]. As described above this coefficient is

channel dependent. Bf consists of two parts: the frequency dependent part B̂f and the

frequency independent part. The value of the frequency dependent part at frequency f can
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be calculated using the following equation:

B̂f = B2Gγ +B2G(1− γ)
µ2G

µf
, (5.1)

where µf is the efficiency of the material at frequency f and γ is the percentage of channel

dependent part, which was set to 0.51 according to [73]. We assumed that LMR-200 [58]

is the material used for antenna and transmission line. Then µf can be obtained by using

the attenuation and power handling calculator [8]. Using this equation, we can find out the

values of Bf on different channels.

In all simulation scenarios, the total power consumption of BSs was used as the perfor-

mance metric and the algorithm presented in Section 4.3.1 was used for determining channel

assignment. We used the Gurobi Optimizer 5.0 [36] to solve the MILP-Green to obtain

optimal solutions (labeled as “Optimal”). Moreover, we compared our algorithm against a

baseline algorithm which uses our algorithm for channel assignment but does not migrate

loads or consolidate BSs. All the results presented in the following figures are average over

10 runs and in each run, a different seed was used for random generation of traffic loads.

In this first two scenarios, we evaluated the performance of the min-cost-flow-based al-

gorithm (labeled as “Min-Cost-Flow”) for the power-proportional case (Ai = 0). In scenario

1, we fixed the number of MVNO K = 3 and changed the number of BSs N from 30 to

80 with a step size of 10. In scenario 2, we fixed the number of BSs N = 50 and changed

the number of MVNOs K from 1 to 6. In these two scenarios, the load of an MVNO on a

BS followed a Gaussian distribution with a mean of 5Mbps and a variance of 1Mbps. The

simulation results were presented in Figs. 4-2–4-3.

We can make the following observations from these results:

1) The proposed algorithm consistently outperforms the baseline algorithm. On average,

it achieves 10% power savings. This shows that even for the power proportional case, mi-

grating traffic loads to more power-efficient BSs can save power. Moreover, the proposed
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Figure 4-2: Scenario 1: varying BS number (N), power-proportional
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Figure 4-3: Scenario 2: varying MVNO number (K), power-proportional

algorithm produces close-to-optimal solutions since it spends only 1% more power than the

optimal on average.

2) No matter which algorithm was used, the power consumption increases linearly with

the number of BSs and the number of MVNOs because of the linear power consumption

model with Ai = 0.

In the next three scenarios, we evaluated the performance of the bilinear relaxation based

algorithm (labeled as “Bilinear”), the iterative shutdown algorithm (labeled as “Iterative”)

and the joint algorithm (labeled as “Joint”). The simulation settings of scenarios 3 and 4
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were the same as those of scenarios 1 and 2 respectively. We had an additional scenario,

scenario 5, in which we fixed N = 40 and K = 6, and we changed the load of each BS from

10% ∗ l to 100% ∗ l with a step size of 10% ∗ l, where l is the MVNO load on a BS generated

using the method described above. The simulation results were presented in Figs. 4-4–4-6.
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Figure 4-4: Scenario 3: varying BS number (N), the general case
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Figure 4-5: Scenario 4: varying MVNO number (K), the general case

We can make the following observations from these results:

1) All the proposed algorithms perform similarly and they all significantly outperform

the baseline algorithm. On average, the bilinear relaxation based algorithm, the iterative

shutdown algorithm and the joint algorithm, achieve 47%, 46% and 45% power savings
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Figure 4-6: Scenario 5: varying MVNO loads, the general case

respectively, which are more significant than those in the power-proportional case. This

show that BS consolidation via load migrations can save power significantly, which well

justifies the motivation of this work.

2) From Fig. 4-6, we can see all the proposed algorithms yield close-to-optimal perfor-

mance. Specifically, they spend only 4% more power than the optimal.

3) By increasing the number of BS, the number of MVNOs or MVNO loads (directly),

we essentially increase the loads in the network. As expected, the total power consumption

increases with the loads no matter which algorithm was used. However, an interesting

observation is that the total power consumption does not increases linearly with the loads

as what we observed in the power-proportional case. This shows that in the general case,

significant power savings come from shutting down BSs because idle power contributes a

significant portion of power consumption.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis, we first envisioned the emerging trend of wireless network evolution from

3G/4G to 5G and discussed the requirements and prospects of next generation wireless com-

munications. We introduced some of promising key technologies in 5G and then explained

the importance of addressing energy-efficiency. We presented our research works that fo-

cused on enabling a greener wireless network by embracing some key promising technologies

in 5G. We considered various network design scenarios including both offline planning and

online resource allocation. We proposed effective solutions to save power consumption for

both wireless infrastucture and UEs.

In Chapter 2, we first studied the SNR-Aware Green (SAG) relay placement problem,

which sought the multi-hop relay node placement with channel capacity and SNR con-

straints in wireless relay networks. This problem was further divided into two sub-problems,

Lower-tier Coverage Relay Allocation (LCRA) problem and Upper-tier Connectivity Relay

Allocation (UCRA) problem. For LCRA problem, we provided two approximation algorithms,

SAMC and PRO, to solve the problem in two phases. Similarly, for UCRA problem, we pro-

posed a solution consisting of a minimum spanning tree based approximation algorithm
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MBMC and an optimal power optimization algorithm UCPO. With solutions to the lower-

tier and upper-tier, we combined these solutions of the LCRA and UCRA and presented a

solution framework of SAG. Extensive numerical results have been conducted to support our

theoretical analysis and showed good performances of our solutions.

In the second part of Chapter 2, we proposed a new perspective on Green Wireless

Networking. Without turning off BSs, our proposal was to deploy small cells to offload

traffic from macrocell BSs to achieve power saving. We proposed the GREAN problem to

find a joint solution for RS placement and RS/BS power consumption to save total network

energy. An approximation algorithm was presented for a special case problem GREAG. Then

a (1 + α)-approximation algorithm was presented for the GREAN problem. This work also

studied the MC-BAPS problem for multi-cell scenarios. Extensive numerical results have been

conducted to support our theoretical analysis and showed that our schemes can provide up

to 52% network power consumption compared to traditional wireless macro cell networks.

Besides the offline network planning, we also studied the online network design opti-

mization problems in this thesis. In Chapter 3, we studied green D2D communications in

OFDMA-based wireless networks. We formally defined an optimization problem based on a

practical model of link data rate, whose objective was to minimize total power consumption

while ensuring link data rate requirements. We then presented two joint mode selection,

power assignment and channel allocation algorithms, which both solved the problem effec-

tively in polynomial time. Via extensive simulation results, we showed that the proposed

algorithms can achieve over 68% power savings, compared to several baseline methods.

In Chapter 4, we considered a power-efficient network planning problem in virtualized

CRNs. First, we presented an MILP to provide optimal solutions. Then we presented

a general optimization framework to guide algorithm design, which solved two subprob-

lems, channel assignment and load allocation, in sequence. We presented a channel assign-

ment algorithm with an approximation ratio of ( 1
∆
). For load allocation, we presented a

polynomial-time optimal algorithm for the power-proportional case as well as two effective
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heuristic algorithms for the general case. In addition, we presented a heuristic algorithm

that jointly solved the two subproblems. It has been shown by simulation results that the

proposed algorithms produced close-to-optimal solutions, and moreover, achieved over 10%

and 45% power savings in the power proportional and general cases respectively, compared

to a baseline algorithm that did not migrate loads or consolidate BSs.

5.2 Future Research Directions

In this section, we point out future research directions:

• Resource allocation in heterogenous cellular networks

In this thesis, we discussed the base/relay station placement in heterogenous cellular

networks, which is a part of offline network planning. However, in online resource allo-

cation, effective and efficient resource allocation schemes need to be developed. Partic-

ularly, the resource allocation and interference management in heterogenous networks

are even more complicated since both small cells and macrocells share the common

cellular spectrum that is very limited to every mobile network operator. Thus, how to

address the efficiency of resource allocation in heterogenous networks becomes signifi-

cant and is worth study.

• D2D relay in cooperative communications and networking

In addition to enabling direct proximal communications, there is also an interesting

use case: D2D relay, where a device with better geometry to the BS acts as a relay for

another nearby device. A large number of devices, including those in the sleep state,

can potentially act as relays and therefore exploit multiuser shadow-diversity. D2D

relay introduces new technical problems to be solved, such as discovery of candidate

relays, opportunistic relay selection, interference management, multiplexing between

access and backhaul links, and minimization of relay power consumption [12]. D2D
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relay is in essence a special example of two-hop communication, and the concept can

be extended to enable multihop and more advanced cooperative communication and

networking.

• Resource scheduling in wireless network virtualization

Virtualization has emerged as a useful technology for improving resource utilization

and power efficiency. However, research on wireless resource virtualization is still in its

infancy. In the last part of this thesis, we studied a power-efficient network planning

problem in virtualized cognitive radio networks where multiple mobile virtual network

operators (MVNOs) can be supported over a shared physical wireless infrastructure.

Each BS can provide service to multiple MVNOs simultanously and meet their traffic

demands separately. However, how to schedule radio resource per BS to MVNOs with

different demands and how to effectively distribute resource to MVNOs across a field

of multiple BSs need to be carefully studied and designed. It is a significant research

direction since wireless network virtualization is promised to take place in the near

future.
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