17 research outputs found

    Optimal Reconstruction of Graphs under the Additive Model

    Get PDF
    Article dans revue scientifique avec comité de lecture.We study the problem of reconstructing unknown graphs under the additive combinatorial search model. The main result concerns the reconstruction of {\em bounded degree} \/graphs, i.e.\ graphs with the degree of all vertices bounded by a constant dd. We show that such graphs can be reconstructed in O(dn)O(dn) non--adaptive queries, which matches the information--theoretic lower bound. The proof is based on the technique of se\-pa\-rating matrices. A central result here is a new upper bound for a general class of separating matrices. As a particular case, we obtain a tight upper bound for the class of dd--separating matrices, which settles an open question stated by Lindström in~\cite{Lindstrom75}. Finally, we consider several particular classes of graphs. We show how an optimal non--adaptive solution of O(n2/logn)O(n^2/\log n) queries for general graphs can be obtained. We also prove that trees with unbounded vertex degree can be reconstructed in a linear number of queries by a non--adaptive algorithm

    Optimal Nested Test Plan for Combinatorial Quantitative Group Testing

    Full text link
    We consider the quantitative group testing problem where the objective is to identify defective items in a given population based on results of tests performed on subsets of the population. Under the quantitative group testing model, the result of each test reveals the number of defective items in the tested group. The minimum number of tests achievable by nested test plans was established by Aigner and Schughart in 1985 within a minimax framework. The optimal nested test plan offering this performance, however, was not obtained. In this work, we establish the optimal nested test plan in closed form. This optimal nested test plan is also order optimal among all test plans as the population size approaches infinity. Using heavy-hitter detection as a case study, we show via simulation examples orders of magnitude improvement of the group testing approach over two prevailing sampling-based approaches in detection accuracy and counter consumption. Other applications include anomaly detection and wideband spectrum sensing in cognitive radio systems

    Optimal Query Complexity for Reconstructing Hypergraphs

    Get PDF
    In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let GG be a weighted hidden hypergraph of constant rank with n vertices and mm hyperedges. For any mm there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlognlogm) O(\frac{m\log n}{\log m}) additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008]. When the weights of the hypergraph are integers that are less than O(poly(nd/m))O(poly(n^d/m)) where dd is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlogndmlogm). O(\frac{m\log \frac{n^d}{m}}{\log m}). additive queries. Using the information theoretic bound the above query complexities are tight

    Non-adaptive Group Testing on Graphs

    Full text link
    Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma

    Parallel Feature Selection Using Only Counts

    Get PDF
    Count queries belong to a class of summary statistics routinely used in basket analysis, inventory tracking, and study cohort finding. In this article, we demonstrate how it is possible to use simple count queries for parallelizing sequential data mining algorithms. Specifically, we parallelize a published algorithm for finding minimum sets of discriminating features and demonstrate that the parallel speedup is close to the expected optimum.&nbsp

    Deterministic Symmetry Breaking in Ring Networks

    Full text link
    We study a distributed coordination mechanism for uniform agents located on a circle. The agents perform their actions in synchronised rounds. At the beginning of each round an agent chooses the direction of its movement from clockwise, anticlockwise, or idle, and moves at unit speed during this round. Agents are not allowed to overpass, i.e., when an agent collides with another it instantly starts moving with the same speed in the opposite direction (without exchanging any information with the other agent). However, at the end of each round each agent has access to limited information regarding its trajectory of movement during this round. We assume that nn mobile agents are initially located on a circle unit circumference at arbitrary but distinct positions unknown to other agents. The agents are equipped with unique identifiers from a fixed range. The {\em location discovery} task to be performed by each agent is to determine the initial position of every other agent. Our main result states that, if the only available information about movement in a round is limited to %information about distance between the initial and the final position, then there is a superlinear lower bound on time needed to solve the location discovery problem. Interestingly, this result corresponds to a combinatorial symmetry breaking problem, which might be of independent interest. If, on the other hand, an agent has access to the distance to its first collision with another agent in a round, we design an asymptotically efficient and close to optimal solution for the location discovery problem.Comment: Conference version accepted to ICDCS 201

    Graph reconstruction with a betweenness oracle

    Get PDF
    corecore