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Abstract
Graph reconstruction algorithms seek to learn a hidden graph by repeatedly querying a black-
box oracle for information about the graph structure. Perhaps the most well studied and applied
version of the problem uses a distance oracle, which can report the shortest path distance between
any pair of nodes.

We introduce and study the betweenness oracle, where bet(a,m, z) is true iff m lies on a
shortest path between a and z. This oracle is strictly weaker than a distance oracle, in the sense
that a betweenness query can be simulated by a constant number of distance queries, but not vice
versa. Despite this, we are able to develop betweenness reconstruction algorithms that match
the current state of the art for distance reconstruction, and even improve it for certain types of
graphs. We obtain the following algorithms:
1. Reconstruction of general graphs in O(n2) queries
2. Reconstruction of degree-bounded graphs in Õ(n3/2) queries
3. Reconstruction of geodetic degree-bounded graphs in Õ(n) queries
In addition to being a fundamental graph theoretic problem with some natural applications, our
new results shed light on some avenues for progress in the distance reconstruction problem.
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1 Introduction

Background and Applications

A major subfield of graph algorithms is that of graph reconstruction, in which one must
determine the edges of a hidden graph using a black-box oracle that reveals a certain type of
information about the graph. This model is typically used to study systems in which it is
costly or slow to make measurements on the graph; the subject of reconstruction research is
therefore to find strategies that learn the graph with low worst-case query complexity. The
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5:2 Graph Reconstruction with a Betweenness Oracle

offline computation time of these algorithms is not a central point of concern, although it is
generally expected to be polynomial.

This framework captures a number of important problems in computational biology. In
one well-studied example, researchers wish to learn evolutionary trees, but only have tools
to query for the distance in the unknown tree between an arbitrary pair of species (see
[25, 13, 16, 22] for work on this problem). Each of these queries requires some research effort,
and so one hopes to choose queries efficiently so as to maximize the information gained from
each one. Another reconstruction problem is implicitly studied in genome sequencing; in this
version, the underlying oracle takes a node subset S and reports whether or not this set is
independent (see [1, 2, 4, 3, 11] for work on this problem). Yet another version is central to
bioinformatics, in which the underlying oracle must count the number of internal edges in a
node subset S (see [6, 12] for work on this problem). There is also the network reconstruction
problem, in which one runs tests on a system to learn the topology of a decentralized network –
for example, one might hope to discover the graph of the internet by querying for connectivity
information between routers (see [5, 8, 9, 10] for work on this problem). Reconstruction
problems also appear in network tomography [7, 23], probability theory [19], and other fields.
In parallel, there has been work on the closely related graph verification problem in which
one must simply confirm that the oracle matches a graph taken on input. For some examples
of work on this problem, see [15, 5, 7, 10].

We introduce a new oracle in this paper, which is most similar to the distance oracle. We
will therefore proceed through this introduction with our attention restricted to the distance
reconstruction problem. If the reader is interested in more exposition on reconstruction/veri-
fication under the other oracles, we refer them to [15, 21, 3, 5, 1, 2, 4, 18] and the citations
therein.

Our New Oracle

We introduce and study the betweenness oracle, which is defined such that bet(a,m, z) is
true iff there is a shortest path between a and z that contains m.

There are a few reasons why we consider this oracle worthy of study. The first is that
this oracle generalizes the distance oracle due to the following equivalence:

bet(a,m, z) ⇔ dist(a,m) + dist(m, z) = dist(a, z)

It is therefore possible to simulate a betweenness query with a constant number of distance
queries, and so any query complexity obtained for the betweenness reconstruction problem
is automatically achieved for the distance reconstruction problem as well. It is not hard
to see that one cannot in general simulate a distance query with a constant number of
betweenness queries: in fact, given no other information about the graph, at least Ω(n)
betweenness queries are required to learn a single pairwise distance. In this sense, we regard
the betweenness oracle as much weaker than the distance oracle.

Given this intuition, it is very natural to expect that betweenness reconstruction would
require a higher query complexity than distance reconstruction. However, as of our new
results in this paper, this is not the case! We are able to match the most important state
of the art results for distance reconstruction, and even improve them for certain classes of
hidden graphs.

This surprise sheds some light on the central open problem [17, 15] of distance recon-
struction, which is to obtain an algorithm with query complexity n1+o(1) for degree-bounded
graphs. We are able to match the current best query complexity (Õ(n3/2) from [17]) for this
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problem using only a betweenness oracle. This suggests that the current distance reconstruc-
tion algorithms are unable to exploit the additional power of their oracle in a meaningful
way, and that further progress can perhaps be made through using this information in a
more careful manner.

Our second reason for studying this oracle is purely practical: it is useful to study
reconstruction problems in a context free of a distance model. For example, in the evolutionary
tree literature, the distance reconstruction approach asks biologists to devise a model of
evolutionary distance, and then use this to reconstruct the order of speciation events
[13]. There is no single definitive method for modeling evolutionary distance, and all
popular methods for measuring these distances are somewhat error-prone and require certain
underlying assumptions to be made (see [20] for a discussion of evolutionary distance
estimation). In contrast, the betweenness reconstruction approach allows one to reconstruct
the tree without having to worry about a model of evolutionary distance. Instead, one
only needs to answer yes-or-no betweenness queries about the tree structure. Per the
distance/betweenness relationship given above, this is a strictly easier task.

Our third reason for valuing the betweenness oracle is purely theoretical: intuitively,
we consider the betweenness oracle to be by far the weakest oracle under which nontrivial
reconstruction results have been obtained. Previously, this distinction belonged to the
distance oracle. All other oracles receiving significant attention had non-constant arity
and/or returned a polynomial number of bits on output, and the best reconstruction results
for these other oracles had significantly lower query complexity (typically Õ(n)) than was
known for distance oracles (O(n2) for general graphs); see [21] for a survey. Since our
betweenness oracle is strictly weaker than a distance oracle, it should be regarded as the new
weakest studied oracle.

Our Results

Our first main result is:

I Theorem. There is a betweenness reconstruction algorithm with a query complexity of
O(n2) (this algorithm makes no assumptions about the hidden graph).

For general graphs, the trivial brute force distance reconstruction algorithm uses O(n2)
queries, but the brute force betweenness reconstruction algorithm uses O(n3) queries, so
some cleverness is required to avoid making all possible queries. An interesting consequence
of our new oracle is apparent here: because our oracle returns only a single bit of information,
there is a simple matching information-theoretic lower bound matching this upper bound.
A graph encodes Θ(n2) bits of information, each betweenness query reports a single bit of
information, and so at least Ω(n2) queries are required in the worst case.

This particular argument fails for distance reconstruction, which reports logn bits of
information per query. However, a matching lower bound is still known. A simple lower
bound is a graph with n− 2 isolated vertices plus a pair of vertices connected by a single
edge; the only possible reconstruction algorithm here is a brute-force search for the missing
edge. To forbid this construction, it is common to assume that the hidden graph is connected.
However, this is still not enough: Reyzin & Srivastava [21] have exhibited a constant-depth
tree that requires Ω(n2) distance queries to reconstruct. This tree has a root of degree Ω(n);
therefore, the most natural way to forbid this construction is to parametrize the solution
quality on the maximum degree ∆ of the graph. In many natural applications ∆ is constant
or at most no(1) [17, 13], so in this parametrization it is considered much more important to
reduce the dependence on n than to reduce the dependence on ∆.

STACS 2016



5:4 Graph Reconstruction with a Betweenness Oracle

Our next main result fits within this parametrization. We prove:

I Theorem. When the hidden graph is connected with maximum degree ∆, there is a
betweenness reconstruction algorithm with a query complexity of Õ(n3/2 ·∆4).

This matches the query complexity obtained by Mathieu & Zhou [17] for distance recon-
struction. It is generally considered to be the foremost open problem [17, 15] to obtain
distance reconstruction for degree-bounded graphs with a query complexity of n1+o(1) · f(∆)
for any function f . We consider it quite interesting that the state-of-the-art against this open
problem can be achieved by our betweenness oracle: it suggests that the current algorithms
for this problem do not integrally exploit the fact that they receive full distance information,
and that an avenue for progress is to devise an algorithm that uses distance information in a
new way.

While this n3/2 bound remains unbroken, the problem has been solved for certain specific
types of graphs. In particular, degree-bounded distance reconstruction algorithms with query
complexities of Õ(n · f(∆)) are known when the hidden graph is outerplanar [17] or chordal
[15]. Our third main result is in this regime. We prove:

I Theorem. When the hidden graph is connected, geodetic (i.e., there is a unique shortest
path between every pair of nodes), and has maximum degree ∆, there is a betweenness
reconstruction algorithm with a query complexity of Õ

(
n ·∆3).

Geodetic graphs can be seen as a generalization of trees; in this vein, our upper bound comes
very close to the distance reconstruction lower bound of Ω̃(n ·∆) for trees given in [16]. Due
to the relationship between betweenness and distance queries discussed above, an identical
upper bound is immediate for distance reconstruction, thereby improving the distance query
complexity for these graphs by a factor of O(

√
n) over [17].

Finally, we remark that our algorithms in the two latter cases are Monte Carlo, and
that the error probability can be tuned to an arbitrarily small inverse polynomial in n by
increasing the hidden constant.

2 Terminology

We will first collect some previously used notations and definitions from the world of graph
theory that will be used repeatedly throughout the paper.

We reserve G = (V,E) to refer to the hidden graph being reconstructed, and |V | = n.
Unless otherwise noted, the graph is undirected and unweighted. Given a node subset U ⊂ V ,
G[U ] is the subgraph induced by U . The neighborhood of a node v (i.e. all nodes u such
that (v, u) ∈ E) is denoted by N(v). The neighborhood of a node set S (i.e. the union of
N(s)− S for all s ∈ S) is denoted by N(S).

I Definition 1 (Starshaped). A node subset X ⊂ V is starshaped with respect to a center
x ∈ X if, for all v ∈ X, every shortest path from x to v is entirely contained in X.

Note that the same subset may be starshaped with respect to several centers.

I Definition 2 (Layer Structure). Given a starshaped set X ⊂ V with center x, a node v ∈ X
is said to be in layer i of X if dist(x, v) = i. The set of nodes in layer i is denoted LX

i . The
X superscript is suppressed when clear from context. (See Figure 1.)

I Definition 3 (Spanning Tree). Given a starshaped set X ⊂ V with center x, a subgraph
TX of G[X] is a spanning tree of X if it is a tree with the property that for all v ∈ X, TX

includes a shortest path in X from x to v.
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L0

L1

L2

L3

Lk

...

x
X

Figure 1 The layer structure for a starshaped set X with center x, as well as the shortest path
graph.

I Definition 4 (Shortest Path Graph). Given a starshaped set X ⊂ V with center x, the
shortest path graph of X is the subgraph SX of G[X] defined by removing all edges (a, b)
where a and b are in the same layer of X.

By orienting all edges of the Shortest Path Graph away from x, one obtains a DAG with
source x, and thus, a notion of ancestry and parenthood between the vertices of X. We
formalize in the following way:

I Definition 5 (Tree Definitions). Let X be a starshaped set with center x. If v ∈ LX
i , then

u is a parent of v if u ∈ N(v) ∩ LX
i−1, or u is a child of v if u ∈ N(v) ∩ LX

i+1. The ancestor
relation is the transitive closure of the parent relation, and the descendant relation is the
transitive closure of the child relation. By convention, a node is both its own ancestor and its
own descendant. The set of descendants of a node v is denoted D(v), and the set of ancestors
of a node v is denoted A(v). A node is a leaf if it has no children.

I Definition 6 (Geodetic Graphs). A graph is geodetic if, for each node pair, there is a unique
shortest path between these nodes.

Note that, for a geodetic graph, there is a unique spanning tree of any starshaped set X,
and this spanning tree is also the shortest path graph.

I Definition 7 (Betweenness). We define the relation bet(·, ·, ·) such that bet(a,m, z) is true
iff there exists a shortest path in G between a and z that includes m.

I Definition 8 (Ancestry). For a “root node” r ∈ V , we define the relation ancr(·, ·) such
that ancr(u, v)↔ bet(r, u, v). We will sometimes use this query in place of a bet query to
emphasize that our goal is to test membership of u in A(v).

3 Reconstruction of General Graphs

There are Ω(n3) different betweenness queries that one can ask on any given graph. However,
we prove:

I Theorem 9. One can learn the edges of a hidden graph using O(n2) betweenness queries
(with no assumptions made about the hidden graph; G can be disconnected and have any
maximum degree).

STACS 2016



5:6 Graph Reconstruction with a Betweenness Oracle

Note that there is a simple matching information-theoretic lower bound for general graphs: a
graph encodes Ω(n2) bits of information, and since each betweenness query returns a single
bit of information, at least this many queries are required to learn the graph.

The upper bound proceeds in two steps. The first is to discover the connected components
of the graph:

I Claim 10. One can discover the connected components of a hidden graph using O(n2)
betweenness queries.

Proof. For all u, v ∈ V , query bet(u, u, v). The query will be true iff there exists a shortest
path between u and v, which holds only if u and v belong to the same connected component
of the graph. J

The second step in the upper bound is to discover the edges of a single connected
component. We will prove this result at a higher level of generality, as the techniques will be
useful again later in the paper.

I Claim 11. Given a starshaped set X with center x, as well as the shortest path graph of
X, one can decide whether or not there exists an edge between any two nodes u, v in the
hidden graph using O(1) betweenness queries.

Proof. If u, v belong to different layers, then the task is trivial: if there is an edge between
them, then it is in the shortest path graph, so one must simply consult the shortest path
graph and no queries need to be executed. So assume u, v are in the same layer. Let node
a be a least common ancestor of u and v; i.e. choose a node a ∈ A(u) ∩ A(v) with the
highest level. Since u, v are in the same layer, we then have dist(u, a) = dist(v, a) =: h.
Let b be a child of a along a shortest path between a and u. Then dist(b, u) = h − 1 and
dist(b, v) ∈ {h, h+1}. Query bet(v, a, b). If this query is true, then we have dist(b, v) = h+1,
which then implies that the edge (u, v) does not exist in the hidden graph. If this query is
false, then we have dist(b, v) = h. We then query bet(v, u, b), which will be true iff the edge
(u, v) exists in the hidden graph. J

I Claim 12. Let X ⊂ V be a starshaped set with center x. One can discover all edges in
G[X] in O(|X|2) betweenness queries.

Note that if X is an entire connected component of the graph, then it is trivially starshaped
with respect to any x ∈ X, and so along with Claim 10, this result implies Theorem 9.

Proof. The algorithm proceeds in two steps. First, we query ancx(u, v) for all u, v ∈ X, and
we claim that this information is sufficient to learn the shortest path graph SX . We can
learn the layers by the following recursive formula:

L0 = {x} ,

Li =

v ∈ (X −
⋃
j<i

Lj) | (A(v)− {v}) ⊂
⋃
j<i

Lj

 .

This formula states that if layers {0, . . . , i − 1} are known, then the ith layer can be
determined as the set of nodes v such that all ancestors (besides the node itself) belong to
these first layers. Once the layers are known, for any node v ∈ Li, we can determine its
neighbors in Li−1 as the set

N(v) ∩ Li−1 = A(v) ∩ Li−1 .
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Applied to all v ∈ X, this is sufficient to learn every edge in SX . We can now use Claim 11
on all pairs of edges in the graph to detect the existence/nonexistence of every possible edge
in O(|X|2) queries. J

4 Finding Splitting Nodes

For the rest of this paper, we will assume that G is connected with maximum degree ∆.

I Lemma 13. Every starshaped set X with center x has a node s ∈ X with the property⌈
|X|
3∆

⌉
≤ |D(s)| ≤

⌈
|X|
3

⌉
.

Proof. Let ` be a leaf of X. We then have

|D(`)| = |{`}| = 1.

And so if |X| ≤ 3∆, then ` satisfies the property. Otherwise, assume |X| > 3∆.
We will now proceed with an intermediate value type argument. Initialize a node p← x,

and then repeatedly find the child cmax of p with the greatest number of descendants and set
p← cmax. Stop this process once p is set to a leaf. At each step, we have∣∣∣∣∣∣

⋃
c is a child of p

D(c)

∣∣∣∣∣∣ = |D(p)− {p}| = |D(p)| − 1.

Since p has at most ∆ children, the union is taken over ∆ elements, and so by a (inverse)
union bound, the average child has at least (|D(p)| − 1)/∆ descendants, and so cmax has at
least this many descendants. So if

|D(p)| >
⌈
|X|
3

⌉
then

|D(cmax)| ≥
⌈⌈
|X|
3

⌉
/∆
⌉
≥
⌈
|X|
3∆

⌉
.

Note that the size of the set {v ∈ X | ancx(p, v)} is strictly decreasing in each step. Its initial
value is |X| and its final value is 1. Therefore, at some point during this process, we have

|D(p)| >
⌈
|X|
3

⌉
and |D(cmax)| ≤

⌈
|X|
3

⌉
.

From the above argument, we also have

|D(cmax)| ≥
⌈
|X|
3∆

⌉
.

and so cmax satisfies our property. J

A node is a splitting node if it satisfies a relaxed version of this condition (see Figure 2).

I Definition 14. A node s satisfying⌈
|X|
4∆

⌉
≤ |D(s)| ≤

⌈
|X|
2

⌉
is called a splitting node.

STACS 2016



5:8 Graph Reconstruction with a Betweenness Oracle

L0

L1

L2

L3

Lk

x
X

s

D(s)

|D(s)| ≈ |X|∆

Figure 2 A representation of a splitting node s of the starshaped set X.

I Lemma 15. Given a starshaped set X with center x with hidden edges, there is a randomized
algorithm that uses Õ(|X| ·∆) betweenness queries1 and, with high probability, finds a splitting
node s ∈ X.

Proof. Iterate over each node v ∈ X. Let R be a uniform random sample S of k · log |X| ·
log log |X| ·∆ nodes, where k is a constant whose size determines the probability of success.
We then query ancx(v, r) for each r ∈ R, and we estimate |D(v)| as:

|̂D(v)| = |D(v) ∩R| · |X|
|R|

By standard Chernoff bounds, for sufficiently large k, we have

|D(v)| − |X|29∆ ≤ |̂D(v)| ≤ |D(v)|+ |X|29∆
with high probability. We then accept v as a splitting node iff⌈

|X|
3.5∆

⌉
≤ |̂D(v)| ≤

⌈
|X|
2.5

⌉
.

Then, for an accepted node v, if |X| is sufficiently large then the following inequalities hold
with high probability:⌈

|X|
4∆

⌉
<

⌈
|X|

3.5∆

⌉
− |X|29∆ ≤ |D(v)| ≤

⌈
|X|
2.5

⌉
+ |X|29∆ <

⌈
|X|
2

⌉
,

and hence v is a splitting node with high probability. Similarly, we see that a non-splitting
node is rejected with high probability. Additionally, with high probability, we will accept any
node satisfying the condition in Lemma 13. Since at least one such node exists, this process
will find a splitting node with high probability.

We use O(log |X| · log log |X| ·∆) queries per node in X, so the total number of queries
used by this process is O(|X| · log |X| · log log |X| ·∆). J

In the context of graph reconstruction, the technique of random sampling and querying over
the sample for the sake of set size estimation was first used by Mathieu & Zhou in [17] for a
different purpose.

1 When the notation Õ(f(|X|)) is used, the Õ hides polylog(|X|) factors, not polylog(n).
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5 Reconstruction of Spanning Trees

We next prove:

I Lemma 16. Given a starshaped set X with center x, there is a randomized algorithm that
uses Õ(|X| ·∆2) betweenness queries to learn a spanning tree of X.

We first need the following technical results:

I Claim 17. Let X be a starshaped set with center x, and let v ∈ X. Then D(v) is starshaped
with center v.

Proof. Let u ∈ D(v), let ρ(u, v) be any shortest path between u and v, and let w ∈
ρ(u, v). We then have dist(v, w) + dist(w, u) = dist(v, u). Since u ∈ D(v), we also have
dist(x, v) + dist(v, u) = dist(x, u), and so combining these equations, we have

dist(x, v) + dist(v, w) = dist(x, u)− dist(w, u).

By the triangle inequality, we have dist(x, u) ≤ dist(x,w) + dist(w, u), and so

dist(x, v) + dist(v, w) ≤ dist(x,w).

Again by the triangle inequality, we also have

dist(x, v) + dist(v, w) ≥ dist(x,w)

and so

dist(x, v) + dist(v, w) = dist(x,w).

This implies that w ∈ D(v), and so D(v) is starshaped with center v. J

We omit the proofs of the following claims, as they are generally similar to the previous
one.

I Claim 18. Let X be a starshaped set with center x, and let v ∈ X. Then X − D(v) is
starshaped with center x.

I Claim 19. Let X be a starshaped set with center x, and let v ∈ X. Then (X −D(v))∪{v}
is starshaped with center x.

These allow us to prove the following result:

I Claim 20. Let X be a starshaped set with center x, and let v ∈ X. Let T(X−D(v))∪{v} be
a spanning tree of the set (X −D(v)) ∪ {v} with center x, and let TD(v) be a spanning tree
of D(v) with center v. Then T(X−D(v))∪{v} ∪ TD(v) is a spanning tree of X.

Proof. First, note that T(X−D(v))∪{v} and TD(v) have only the node v in common; therefore,
their union is a tree.

Let u ∈ X. If u /∈ D(v), then (by Claim 19) every shortest path between u and x is
contained in (X −D(v)) ∪ {v}, and so T(X−D(v))∪{v} contains a shortest path between u
and x.

Otherwise, suppose u ∈ D(v). Then TD(v) contains a shortest path between v and u, and
T(X−D(v))∪{v} contains a shortest path between x and v. Since u is a descendant of v, we
have dist(x, u) = dist(x, v) + dist(v, u). Therefore, the union of these two shortest paths is a
shortest path between x and u.

We then have that T(X−D(v))∪{v} ∪ TD(v) is a tree that contains a shortest path between
x and any v ∈ X, so it is a spanning tree of X. J

STACS 2016



5:10 Graph Reconstruction with a Betweenness Oracle

We can now return to Lemma 16.

Proof of Lemma 16. The algorithm is by recursive divide-and-conquer. The base case is
when X consists of 2∆ or fewer nodes; in this case, it is possible to learn all edges of X in
O(∆2) queries using Claim 12, and then find a spanning tree within these edges without any
additional queries.

Repeat the following process. Use Lemma 15 to find a splitting node s ∈ X in Õ(|X| ·∆)
queries. Next, query ancx(s, v) for all v ∈ X in order to determine the set D(s). Next,
recursively compute a spanning tree of the sets D(s) and (X −D(s)) ∪ {s} (these sets are
starshaped by Claims 17 and 19), and then return the union of these two spanning trees. By
Claim 20, this is a spanning tree of X.

The size of each set decreases by at least a factor of (1 − Θ( 1
∆ )) at each round of the

recursion, and so the recursion depth is O(log |X| ·∆). The number of top-level queries in
each round is Õ(|X| ·∆). This implies that Õ(|X| ·∆2) queries in total are used. J

I Remark. We note that the unweightedness of the hidden graph has not been exploited
in any way, and therefore, Lemma 16 applies even if the hidden graph is weighted. More
specifically, it is impossible for a betweenness query to learn the weight of a weighted edge,
but one can find the edge set of a spanning tree using only Õ(|X| ·∆2) betweenness queries.

6 Reconstruction of Degree-Bounded Graphs

We closely follow the algorithm developed by Mathieu & Zhou in [17] for distance reconstruc-
tion. At a high level our algorithm is exactly the same as theirs (which is, in turn, based
on techniques from [14] and [24]); our contribution is that we are able to use two of our
previously established techniques to replace their distance queries with betweenness queries.

We prove:

I Theorem 21. One can learn the edges of a hidden connected graph with maximum degree
∆ in Õ(n3/2 ·∆4) betweenness queries.

The following definition is critical to the proof:

I Definition 22 (Cluster, [24]). Given a set of “centers” A ⊂ V and a node w ∈ V , the
cluster of w, denoted CA(w), is defined as {v ∈ V | dist(w, v) < dist(A, v)}.2

Mathieu & Zhou prove the following reduction (it is implicit in their Lemma 2):

I Lemma 23 ([17]). Let s be a parameter. Suppose there is an algorithm that learns the
distance from a node v to each other node in a hidden graph, and that this algorithm uses
≤ f(n,∆) queries of some type. Then there is a randomized algorithm on this hidden graph
that, with high probability, produces a set A of size O(s logn) such that CA(w) = O(n/s) for
all w ∈ V . This randomized algorithm uses Õ(f(n,∆) · s) queries of the same type.

Mathieu & Zhou use distance queries, and so trivially f(n,∆) ≤ n. However, our
Lemma 16 implies that for betweenness queries, we have f(n,∆) = Õ(n · ∆2). We can
therefore find a set A as in Lemma 23 using Õ(n ·∆2 · s) betweenness queries. The first step
in the proof of Theorem 21 is to find A as in Lemma 23, and to find all pairwise distances in
A× V .

We next borrow some more methodology from Mathieu & Zhou.

2 Where dist(A, v) is a shorthand for min
a∈A

dist(a, v).
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I Definition 24 ([17]). For each a ∈ A, define C(a) as

{v ∈ V | dist(v, a) < dist(v, a′) + 2 for all a′ ∈ A \ {a}}

I Claim 25 ([17]). For all (hidden) edges (u, v) ∈ G, there exists an a ∈ A such that
u, v ∈ C(a).

I Claim 26 ([17]). |C(a)| = O(n/s ·∆2)/

The next claim is ours:

I Claim 27. For all a ∈ A, the set C(a) is starshaped with center a.

Proof. Let u ∈ C(a), let ρ(a, u) be a shortest path between a and u, and let w ∈ ρ(a, u).
Suppose towards a contradiction that w /∈ C(a); that is, there exists a′ ∈ A such that
dist(a,w) ≥ dist(a′, w) + 2. We then have dist(a, u) = dist(a,w) + dist(w, u), and by the
triangle inequality, dist(a′, u) ≤ dist(a′, w) + dist(w, u). Combining these equations, we have

dist(a, u)− dist(a,w) ≥ dist(a′, u)− dist(a′, w)
≥ dist(a′, u)− (dist(a,w)− 2),

and hence dist(a, u) ≥ dist(a′, u) + 2. Therefore u /∈ C(a), which is a contradiction. We then
have w ∈ C(a), and so C(a) is starshaped. J

We now return to Theorem 21.

Proof of Theorem 21. Compute the set A as in Lemma 23; by Lemma 16 this requires
Õ(n ·∆2 ·s) betweenness queries. Once again use Lemma 16 to compute all pairwise distances
in A × V , and use this information to compute C(a) for all a ∈ A. Next, since each C(a)
is starshaped (Claim 27), we can invoke Claim 12 to learn all edges in each set C(a). By
Claim 26, the query complexity of this step is |A| · Õ(n2/s2 ·∆4) = Õ(n2/s ·∆6). So the
total query complexity of this process is Õ(n ·∆2 · s) + Õ(n2/s ·∆6). The claim now follows
by setting s = n1/2∆2. J

I Remark. A reasonable objection that can be made here is that we should model ∆ as an
unknown quantity, and so it is unfair to choose the value of s based on ∆. There is a way
around this: one can make the assumption ∆ = 2 and run the algorithm as stated, aborting
as soon as the runtime bound corresponding to ∆ = 2 is exceeded. If the bound is exceeded,
then double the value of ∆ and try again until the algorithm terminates successfully.

7 Reconstruction of Geodetic Graphs

Recall that a graph is geodetic if there is a unique shortest path between every pair of nodes.
We next prove:

I Theorem 28. One can learn the edges of a hidden geodetic connected graph with maximum
degree ∆ in Õ(n ·∆3) betweenness queries.

This result was previously unknown, even for distance oracles.
We begin with a reduction of the problem. The input of our new problem is a starshaped

set X with center x, a node s ∈ X, and a node v ∈ (X −D(s)). Additionally, we are given
the shortest path graph of X. The problem is to learn all edges with one endpoint at v and
the other in D(s). We call this the boundary edge problem. Our reduction to this problem is
as follows:

STACS 2016



5:12 Graph Reconstruction with a Betweenness Oracle

I Lemma 29. Assume G is geodetic. Suppose there is a (possibly randomized) algorithm
that solves the boundary edge problem using f(|X|,∆) betweenness queries in the worst case.
Then there is a randomized algorithm that, given a starshaped set X with center x, learns all
edges in G[X] using Õ(|X| ·∆3 · f(|X|,∆)) betweenness queries.

Proof. We can learn the graph as follows. Use Lemma 16 to construct a spanning tree of
X using Õ(|X| ·∆2) queries. Because the graph is geodetic, the spanning tree is also the
shortest path graph of X. Next, find a splitting node s of X, using the algorithm outlined in
Lemma 15. Solve the boundary edge problem for each node v ∈ (X −D(s)); this requires
O(|X| · f(|X|,∆)) queries. We have now learned all edges with one endpoint in D(s) and the
other endpoint in X −D(s); we still need to learn the edges with both endpoints in D(s) or
both endpoints in X −D(s). We know that D(s) is starshaped with center s, and X −D(s)
is starshaped with center x (by Claims 17 and 18), so this can be done recursively.

In each round of the recursion, we partition the node set into two subsets, each of
which has at most a 1 − Θ(1/∆) fraction as many nodes as in the previous round of the
recursion. Therefore, the maximum recursion depth is Õ(∆). The number of top-level queries
made is Õ(|X| ·∆2 + |X| · f(|X|,∆)) and so the total query complexity of the algorithm is
Õ(|X| ·∆3 + |X| ·∆ · f(|X|,∆)). J

What remains is to place bounds on f(|X|,∆), the query complexity of the boundary
edge problem. To this end, the following claims are useful:

I Claim 30. If the hidden graph is geodetic, then any edge (v, u) with v ∈ (X −D(s)) and
u ∈ D(s) are in the same layer in the set X.

Proof. Let u ∈ D(s) be a neighbor of v. Let LX
u be the layer of u, and let LX

v be the layer
of v. By the triangle inequality, we have that (1) LX

u = LX
v + 1, or (2) LX

u = LX
v , or (3)

LX
u + 1 = LX

v . In fact, (3) is impossible because it implies that v ∈ D(s) and we have
assumed v ∈ (X−D(s)). Additionally, (1) is impossible because the hidden graph is geodetic.
Specifically, since u ∈ D(s) there is a shortest path from x to u that passes through s; since
LX

v + 1 = LX
u there is another shortest path from x to u that passes through v (and therefore

doesn’t pass through s, since v /∈ D(s)); these shortest paths must be distinct. So (2) is the
only possible case: we have LX

u = LX
v . J

I Claim 31. If the hidden graph is geodetic, then for any edge (v, u) with v ∈ (X −D(s))
and u ∈ D(s), we have dist(v, s) = dist(u, s) + 1.

Proof. Let Lu = Lv be the layer of u and v (these are the same by Claim 30), and let Ls be
the layer of s. Since u ∈ D(s), we have dist(u, s) = Lu−Ls. Therefore, it cannot be the case
that dist(v, s) = dist(u, s)− 1: this would imply that dist(v, s) = Lv −Ls− 1, which violates
the triangle inequality. Additionally, it cannot be the case that dist(v, s) = dist(u, s): this
would imply that dist(v, s) = Lv − Ls, and so v ∈ D(s), which we have assumed is not true.
The only possibility that remains is that dist(v, s) = dist(u, s) + 1. J

I Claim 32. If the hidden graph is geodetic, then each node u ∈ (X −D(s)) has at most one
incident edge in D(s).

Proof. Let v be a neighbor of u inD(s). From Claim 31, we have that dist(u, s) = dist(v, s)+1,
and so u lies on a shortest path from v to s. If there are two distinct neighbors u, u′ ∈ D(s)
of u, then both of these neighbors lie on a shortest path from v to s, implying the existence
of two distinct shortest paths from v to s. This violates our geodetic assumption. J
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We can now prove:

I Lemma 33. The boundary edge problem can be solved for hidden geodetic graphs in Õ(∆)
betweenness queries.

Proof. The algorithm runs in two stages. First, we use Õ(∆) betweenness queries to find
a “candidate node” u, which is defined to be the node in D(s) furthest from x that lies on
the shortest path between v and s. Note that if there exists an edge (v, u) with u ∈ D(s),
then u will certainly be the candidate node by Claim 31. Therefore, once we have identified
a candidate node u, it only remains to test whether or not the edge (u, v) is in the hidden
graph, and we have detected the unique edge from v into D(s) or refuted its existence.

We can find the candidate node using our standard splitting node technique. Find a
splitting node t of D(s) (we already have a shortest path graph of X, of which the shortest
path graph of D(s) is a subgraph, so this can be computed offline and requires no queries).
Query bet(v, t, s). If true, then we recurse on the starshaped set D(t); if false, then we
recurse on the starshaped set D(s) − D(t), and repeat until only one node remains; this
node is our candidate node. As usual, the recursion depth is Õ(∆), and so we use this many
betweenness queries.

Once we have our candidate node u, we can test for the existence of the edge (u, v) in a
constant number of queries using Claim 11. J

Jointly, Lemmas 29 and 33 imply Theorem 28.
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