3,494 research outputs found

    Optimising for energy or robustness? Trade-offs for VM consolidation in virtualized datacenters under uncertainty

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11590-016-1065-xReducing the energy consumption of virtualized datacenters and the Cloud is very important in order to lower CO2 footprint and operational cost of a Cloud operator. However, there is a trade-off between energy consumption and perceived application performance. In order to save energy, Cloud operators want to consolidate as many Virtual Machines (VM) on the fewest possible physical servers, possibly involving overbooking of resources. However, that may involve SLA violations when many VMs run on peak load. Such consolidation is typically done using VM migration techniques, which stress the network. As a consequence, it is important to find the right balance between the energy consumption and the number of migrations to perform. Unfortunately, the resources that a VM requires are not precisely known in advance, which makes it very difficult to optimise the VM migration schedule. In this paper, we therefore propose a novel approach based on the theory of robust optimisation. We model the VM consolidation problem as a robust Mixed Integer Linear Program and allow to specify bounds for e.g. resource requirements of the VMs. We show that, by using our model, Cloud operators can effectively trade-off uncertainty of resource requirements with total energy consumption. Also, our model allows us to quantify the price of the robustness in terms of energy saving against resource requirement violations.Peer ReviewedPostprint (author's final draft

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Shift factor-based SCOPF topology control MIP formulations with substation configurations

    Full text link
    Topology control (TC) is an effective tool for managing congestion, contingency events, and overload control. The majority of TC research has focused on line and transformer switching. Substation reconfiguration is an additional TC action, which consists of opening or closing breakers not in series with lines or transformers. Some reconfiguration actions can be simpler to implement than branch opening, seen as a less invasive action. This paper introduces two formulations that incorporate substation reconfiguration with branch opening in a unified TC framework. The first method starts from a topology with all candidate breakers open, and breaker closing is emulated and optimized using virtual transactions. The second method takes the opposite approach, starting from a fully closed topology and optimizing breaker openings. We provide a theoretical framework for both methods and formulate security-constrained shift factor MIP TC formulations that incorporate both breaker and branch switching. By maintaining the shift factor formulation, we take advantage of its compactness, especially in the context of contingency constraints, and by focusing on reconfiguring substations, we hope to provide system operators additional flexibility in their TC decision processes. Simulation results on a subarea of PJM illustrate the application of the two formulations to realistic systems.The work was supported in part by the Advanced Research Projects Agency-Energy, U.S. Department of Energy, under Grant DE-AR0000223 and in part by the U.S. National Science Foundation Emerging Frontiers in Research and Innovation under Grant 1038230. Paper no. TPWRS-01497-2015. (DE-AR0000223 - Advanced Research Projects Agency-Energy, U.S. Department of Energy; 1038230 - U.S. National Science Foundation Emerging Frontiers in Research and Innovation)http://buprimo.hosted.exlibrisgroup.com/primo_library/libweb/action/openurl?date=2017&issue=2&isSerivcesPage=true&spage=1179&dscnt=2&url_ctx_fmt=null&vid=BU&volume=32&institution=bosu&issn=0885-8950&id=doi:10.1109/TPWRS.2016.2574324&dstmp=1522778516872&fromLogin=truePublished versio

    Orchestrating datacenters and networks to facilitate the telecom cloud

    Get PDF
    In the Internet of services, information technology (IT) infrastructure providers play a critical role in making the services accessible to end-users. IT infrastructure providers host platforms and services in their datacenters (DCs). The cloud initiative has been accompanied by the introduction of new computing paradigms, such as Infrastructure as a Service (IaaS) and Software as a Service (SaaS), which have dramatically reduced the time and costs required to develop and deploy a service. However, transport networks become crucial to make services accessible to the user and to operate DCs. Transport networks are currently configured with big static fat pipes based on capacity over-provisioning aiming at guaranteeing traffic demand and other parameters committed in Service Level Agreement (SLA) contracts. Notwithstanding, such over-dimensioning adds high operational costs for DC operators and service providers. Therefore, new mechanisms to provide reconfiguration and adaptability of the transport network to reduce the amount of over-provisioned bandwidth are required. Although cloud-ready transport network architecture was introduced to handle the dynamic cloud and network interaction and Elastic Optical Networks (EONs) can facilitate elastic network operations, orchestration between the cloud and the interconnection network is eventually required to coordinate resources in both strata in a coherent manner. In addition, the explosion of Internet Protocol (IP)-based services requiring not only dynamic cloud and network interaction, but also additional service-specific SLA parameters and the expected benefits of Network Functions Virtualization (NFV), open the opportunity to telecom operators to exploit that cloud-ready transport network and their current infrastructure, to efficiently satisfy network requirements from the services. In the telecom cloud, a pay-per-use model can be offered to support services requiring resources from the transport network and its infrastructure. In this thesis, we study connectivity requirements from representative cloud-based services and explore connectivity models, architectures and orchestration schemes to satisfy them aiming at facilitating the telecom cloud. The main objective of this thesis is demonstrating, by means of analytical models and simulation, the viability of orchestrating DCs and networks to facilitate the telecom cloud. To achieve the main goal we first study the connectivity requirements for DC interconnection and services on a number of scenarios that require connectivity from the transport network. Specifically, we focus on studying DC federations, live-TV distribution, and 5G mobile networks. Next, we study different connectivity schemes, algorithms, and architectures aiming at satisfying those connectivity requirements. In particular, we study polling-based models for dynamic inter-DC connectivity and propose a novel notification-based connectivity scheme where inter-DC connectivity can be delegated to the network operator. Additionally, we explore virtual network topology provisioning models to support services that require service-specific SLA parameters on the telecom cloud. Finally, we focus on studying DC and network orchestration to fulfill simultaneously SLA contracts for a set of customers requiring connectivity from the transport network.En la Internet de los servicios, los proveedores de recursos relacionados con tecnologías de la información juegan un papel crítico haciéndolos accesibles a los usuarios como servicios. Dichos proveedores, hospedan plataformas y servicios en centros de datos. La oferta plataformas y servicios en la nube ha introducido nuevos paradigmas de computación tales como ofrecer la infraestructura como servicio, conocido como IaaS de sus siglas en inglés, y el software como servicio, SaaS. La disponibilidad de recursos en la nube, ha contribuido a la reducción de tiempos y costes para desarrollar y desplegar un servicio. Sin embargo, para permitir el acceso de los usuarios a los servicios así como para operar los centros de datos, las redes de transporte resultan imprescindibles. Actualmente, las redes de transporte están configuradas con conexiones estáticas y su capacidad sobredimensionada para garantizar la demanda de tráfico así como los distintos parámetros relacionados con el nivel de servicio acordado. No obstante, debido a que el exceso de capacidad en las conexiones se traduce en un elevado coste tanto para los operadores de los centros de datos como para los proveedores de servicios, son necesarios nuevos mecanismos que permitan adaptar y reconfigurar la red de forma eficiente de acuerdo a las nuevas necesidades de los servicios a los que dan soporte. A pesar de la introducción de arquitecturas que permiten la gestión de redes de transporte y su interacción con los servicios en la nube de forma dinámica, y de la irrupción de las redes ópticas elásticas, la orquestación entre la nube y la red es necesaria para coordinar de forma coherente los recursos en los distintos estratos. Además, la explosión de servicios basados el Protocolo de Internet, IP, que requieren tanto interacción dinámica con la red como parámetros particulares en los niveles de servicio además de los habituales, así como los beneficios que se esperan de la virtualización de funciones de red, representan una oportunidad para los operadores de red para explotar sus recursos y su infraestructura. La nube de operador permite ofrecer recursos del operador de red a los servicios, de forma similar a un sistema basado en pago por uso. En esta Tesis, se estudian requisitos de conectividad de servicios basados en la nube y se exploran modelos de conectividad, arquitecturas y modelos de orquestación que contribuyan a la realización de la nube de operador. El objetivo principal de esta Tesis es demostrar la viabilidad de la orquestación de centros de datos y redes para facilitar la nube de operador, mediante modelos analíticos y simulaciones. Con el fin de cumplir dicho objetivo, primero estudiamos los requisitos de conectividad para la interconexión de centros de datos y servicios en distintos escenarios que requieren conectividad en la red de transporte. En particular, nos centramos en el estudio de escenarios basados en federaciones de centros de datos, distribución de televisión en directo y la evolución de las redes móviles hacia 5G. A continuación, estudiamos distintos modelos de conectividad, algoritmos y arquitecturas para satisfacer los requisitos de conectividad. Estudiamos modelos de conectividad basados en sondeos para la interconexión de centros de datos y proponemos un modelo basado en notificaciones donde la gestión de la conectividad entre centros de datos se delega al operador de red. Estudiamos la provisión de redes virtuales para soportar en la nube de operador servicios que requieren parámetros específicos en los acuerdos de nivel de servicio además de los habituales. Finalmente, nos centramos en el estudio de la orquestación de centros de datos y redes con el objetivo de satisfacer de forma simultánea requisitos para distintos servicios.Postprint (published version

    Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    Full text link
    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.Comment: 6 pages, 5 figures

    Migration energy aware reconfigurations of virtual network function instances in NFV architectures

    Get PDF
    Network function virtualization (NFV) is a new network architecture framework that implements network functions in software running on a pool of shared commodity servers. NFV can provide the infrastructure flexibility and agility needed to successfully compete in today's evolving communications landscape. Any service is represented by a service function chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFIs) that are software modules executed on virtual machines. This paper deals with the migration problem of the VNFIs needed in the low traffic periods to turn OFF servers and consequently to save energy consumption. Though the consolidation allows for energy saving, it has also negative effects as the quality of service degradation or the energy consumption needed for moving the memories associated to the VNFI to be migrated. We focus on cold migration in which virtual machines are redundant and suspended before performing migration. We propose a migration policy that determines when and where to migrate VNFI in response to changes to SFC request intensity. The objective is to minimize the total energy consumption given by the sum of the consolidation and migration energies. We formulate the energy aware VNFI migration problem and after proving that it is NP-hard, we propose a heuristic based on the Viterbi algorithm able to determine the migration policy with low computational complexity. The results obtained by the proposed heuristic show how the introduced policy allows for a reduction of the migration energy and consequently lower total energy consumption with respect to the traditional policies. The energy saving can be on the order of 40% with respect to a policy in which migration is not performed

    Energy-efficient electrical and silicon-photonic networks in many core systems

    Full text link
    Thesis (Ph.D.)--Boston UniversityDuring the past decade, the very large scale integration (VLSI) community has migrated towards incorporating multiple cores on a single chip to sustain the historic performance improvement in computing systems. As the core count continuously increases, the performance of network-on-chip (NoC), which is responsible for the communication between cores, caches and memory controllers, is increasingly becoming critical for sustaining the performance improvement. In this dissertation, we propose several methods to improve the energy efficiency of both electrical and silicon-photonic NoCs. Firstly, for electrical NoC, we propose a flow control technique, Express Virtual Channel with Taps (EVC-T), to transmit both broadcast and data packets efficiently in a mesh network. A low-latency notification tree network is included to maintain t he order of broadcast packets. The EVC-T technique improves the NoC latency by 24% and the system energy efficiency in terms of energy-delay product (EDP) by 13%. In the near future, the silicon-photonic links are projected to replace the electrical links for global on-chip communication due to their lower data-dependent power and higher bandwidth density, but the high laser power can more than offset these advantages. Therefore, we propose a silicon-photonic multi-bus NoC architecture and a methodology that can reduce the laser power by 49% on average through bandwidth reconfiguration at runtime based on the variations in bandwidth requirements of applications. We also propose a technique to reduce the laser power by dynamically activating/deactivating the 12 cache banks and switching ON/ OFF the corresponding silicon-photonic links in a crossbar NoC. This cache-reconfiguration based technique can save laser power by 23.8% and improves system EDP by 5.52% on average. In addition, we propose a methodology for placing and sharing on-chip laser sources by jointly considering the bandwidth requirements, thermal constraints and physical layout constraints. Our proposed methodology for placing and sharing of on-chip laser sources reduces laser power. In addition to reducing the laser power to improve the energy efficiency of silicon-photonic NoCs, we propose to leverage the large bandwidth provided by silicon-photonic NoC to share computing resources. The global sharing of floating-point units can save system area by 13.75% and system power by 10%
    corecore