619 research outputs found

    Optimal cosine modulated nonuniform linear phase FIR filter bank design via stretching and shifting frequency response of prototype filter

    Get PDF
    This paper proposes an optimal cosine modulated nonuniform linear phase finite impulse response (FIR) filter bank design. The frequency responses of all the analysis filters and the synthesis filters of the filter bank are derived based on both stretching and shifting the frequency response of the prototype filter. The total aliasing error of the filter bank is minimized subject to a specification on the maximum amplitude distortion of the filter bank as well as specifications on both the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter. This filter bank design problem is actually a functional inequality constrained optimization problem. Our recently developed integration approach is employed for solving the problem. Computer numerical simulation results show that our proposed design method outperforms existing design methods

    An Iterative Design with Variable Step Prototype Filter for Cosine Modulated Filter Bank

    Get PDF
    A systematic and self controlled prototype filter design approach for multichannel Cosine Modulated Near Perfect Reconstruction (NPR) filter bank is proposed in this paper. The primary goal is to design a prototype filter with enhanced performance i.e., minimum amplitude distortion and aliasing error. This algorithm approximates 3dB cutoff frequency very close to π/2M. This is achieved by selecting suitable step size which is a function of transition width. If the selection of step size is too fine, the objective function oscillates. Whereas, if step size is coarse, 3dB cutoff frequency will not be close to π/2M. This will degrade the overall performance of the prototype filter. Thus by choosing the step size as a function of transition width and varying the step size from coarser to finer level, the minimum amplitude distortion and aliasing error can be definitely achieved. The proposed filter is designed using two input parameters: number of subbands M and attenuation A and all other system parameters are derived from it to avoid heuristic inputs. Simulation results indicate better performance with reference to algorithms existing in literature. In addition, the design approach is systematic and self controlled

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Theory and design of a class of cosine-modulated non-uniform filter banks

    Get PDF
    In this paper, the theory and design of a class of PR cosine-modulated nonuniform filter bank is proposed. It is based on a structure previously proposed by Cox, where the outputs of a uniform filter bank is combined or merged by means of the synthesis section of another filter bank with smaller channel number. Simplifications are imposed on this structure so that the design procedure can be considerably simplified. Due to the use of CMFB as the original and recombination filter banks, excellent filter quality and low design and implementation complexities can be achieved. Problems with these merging techniques such as spectrum inversion, equivalent filter representations and protrusion cancellation are also addressed. As the merging is performed after the decimation, the arithmetic complexity is lower than other conventional approaches. Design examples show that PR nonuniform filter banks with high stopband attenuation and low design and implementation complexities can be obtained by the proposed method.published_or_final_versio

    On the design of nearly-PR and PR FIR cosine modulated filter banks having approximate cosine-rolloff transition band

    Get PDF
    This paper proposes an efficient method for designing nearly perfect reconstruction (NPR) and perfect reconstruction (PR) cosine modulated filter banks (CMFBs) with prototype filters having an approximate cosine-rolloff (CR) transition band. It is shown that the flatness condition required for an NPR CMFB can be automatically satisfied by using a prototype filter with a CR transition band. The design problem is then formulated as a convex minimax optimization problem, and it can be solved by second-order cone programming (SOCP). By using the NPR CMFB so obtained as an initial guess to nonlinear optimizers such as Fmincon in Matlab, high-quality PR CMFBs can be obtained. The advantages of the proposed method are that it does not require a user-supplied initial guess of the prototype filter and bumps in the passband of the analysis filters can be effectively suppressed. © 2008 IEEE.published_or_final_versio

    Design and implementation of a nonuniform subband audio coder

    Get PDF

    Design of near-perfect-reconstructed transmultiplexer using different modulation techniques: A comparative study

    Get PDF
    AbstractIn this paper, an efficient iterative method for design of near-perfect reconstructed transmultiplexer (NPR TMUX) is proposed for the prescribed roll-off factor (RF) and stop band attenuation (As). In this method, windowing technique has been used for the design of prototype filter, and different modulation techniques have been exploited for designing multi-channel transmultiplexer (TMUX). In this method, inter-channel interference (ICI) is iteratively minimized so that it approximately reduces to ideal value zero. Design example is given to illustrate the superiority of the proposed method over earlier reported work. A comparative study of the performance of different modulation techniques for designing TMUX is also presented

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme
    corecore