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ABSTRACT 
In this paper, the theory and design of a class of PR cosine- 
modulated nonuniform filter bank is proposed. It is based on a 
structure previously proposed by Cox, where the outputs of a 
uniform filter bank is combined or merged by means of the 
synthesis section of another filter bank with smaller channel 
number. Simplifications are imposed on this structure so that the 
design procedure can be considerably simplified. Due to the use 
of CMFB as the original and recombination filter banks, 
excellent filter quality and low design and implementation 
complexities can be achieved. Problems with these merging 
techniques such as spectrum inversion, equivalent filter 
representations and protrusion cancellation are also addressed. 
As the merging is performed after the decimation, the arithmetic 
complexity is lower than other conventional approaches. Design 
examples show that PR nonuniform filter banks with high 
stopband attenuation and low design and implementation 
complexities can be obtained by the proposed method. 

I. INTRODUCTION 

M-channel uniform filter banks with perfect reconstruction (PR) 
property have been extensively studied [I ] .  In some applications 
such as audio coding and subband adaptive filtering, a 
nonuniform frequency partitioning may be preferred. Efficient 
structure and design procedure for general nonuniform PR filter 
banks are therefore desirable. PR nonuniform filter bank has 
been studied in [3]-[SI, [ IO-121. Interested readers are referred 
to [ I  I ]  for an excellent review of the topic. The PR condition of 
nonuniform filterbank was first studied by Hoang and 
Vaidyanathan [ 3 ] ,  where a structure for P-band nonuniform 
Q M F  filter bank was proposed (Figure 1). Unlike the uniform 
tilterbanks. the decimation ratios M ,  ’s are in general 
nonidentical. For critical sampling, they have to satisfy the 

condition C ( I / M , )  = I . Due to the structure in Figure 1. the 

analysis tilters in the P-channel uniform filter banks are 
dependent and are somewhat constrained. Therefore, i t  is not 
always possible to construct a PR system [3]. More recently, 
design methods based on the cosine-modulated filter banks 
(CMFB) were proposed [8,10,12]. The pseudo PR nonuniform 
filterbank in [8] is obtained by combining directly some of the 
decimated branches of the CMFB. Merging of filter bank 
outputs to obtain nonuniform filter banks has been known for 
some time. In [6],  Cox has proposed a two-stage structure for 
nonuniform filter bank, where certain channels in an M-channel 
uniform filter bank are combined or merged together using the 
synthesis filters of another filterbank with smaller channel 
number. Here we shall call this method the indirect or 
recombination (merging) method, and the resulting filter shown 
in Figure 2 illustrates the concept of this method. In this 
particular example, the first mt channels of an M-channel 
filterbank. H ,  ( z )  , are combined using the synthesis filters of an 
m, -channel uniform filterbank, G,,,(z) . The sampling rate 

after merging is reduced by a factor of m, / M . In the synthesis 

K-1 

k =O 
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filters of the nonuniform filter bank, the analysis section of the 
m, -channel uniform filter bank, Gi,,(z), is used to produce 

the m, subband coefficients for the M-channel uniform filter 
bank. In Cox’s work, the analysis and synthesis filter banks 
were derived from the pseudo-quadrature mirror filters similar 
to the CMFB, but they are not PR. It can be seen that if 
G,,,(z) and GL,,(z) form an m, -channel perfect 
reconstruction filter bank, then the merging and decomposing 
parts in Figure 2,  which are enclosed with dotted lines, 
constitute a perfect reconstruction transmultiplexer. This is 
equivalent to introducing a certain delay, due to  the 
transmultiplexer, in the first mk channels of the original M- 
channel filter bank. If this delay is compensated in the other 
branches of the M-channel filter bank, the entire system is PR. 
Therefore, it is relatively simple to maintain the PR condition 
in such system. Another advantage of this structure is that it is 
possible to employ efficient filter structure such as the CMFB, 
as the original uniform filter bank as well as the recombination 
filter bank, as we shall see later in this paper. Also, as the 
merging is done after the decimators of the M-channel filter 
bank, the additional computational complexity of the merging 
process is greatly reduced. This is different from the recent 
work of Kok et a1 [ IO]  and [I21 where the outputs of the 
analysis filters before decimation are combined. As the 
combining is performed before the decimation, higher 
arithmetic complexity is expected. Also, fast implementation 
of conventional CMFB is usually performed in the decimated 
domain, i t  is not clear whether such fast algorithm can still be 
applied. Some of the disadvantages of Cox’s original structure 
are their relatively large system delay and the lack of an 
equivalent filter representation as in the M-channel uniform 
filter bank. In fact, the system is a linear-time periodic varying 
system satisfying PR condition. Therefore, it is very difficult 
to setup a proper objective function to perform the 
minimization. Because of this reason, the two stages of the 
filter banks are usually designed separately. In [4], Kovacevic 
and Vetterli have proposed another structure, called the direct 
structure, or nonuniform filter bank. The advantage of this 
direct structure is that it has an equivalent filter representation. 
Therefore, i t  has more control over the quality of the filters. 

In this paper, we present the theory and design of a class 
of PR nonuniform filter bank using the CMFB. It is based on 
Cox’s StruCNre with some simplification so that the design 
procedure can be considerably simplified. Due to the use of 
CMFB as the original and recombination filter banks, 
excellent filter quality, efficient design and low 
implementation complexity can be achieved. 

LM, /+/ f MO F,(z) 

c 

tf H p - , ( z )  tw/ JM,. ,  LM,_, t+Gq-L 
Figure I :  Nonuniform filter bank structure in [ I ]  
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Analysis filters Synthesis filters 
Figure 2: Structure of Recombination Nonuniform PR filter bank (only the first m, branches are plotted) 

Figure 3: Direct structure in [4]. ( p , , q t )  are coprime, and 

The structure and theory of the proposed nonuniform filter 
banks will be described in Section 11. Section 111 is devoted to 
the problem of protrusion cancellation that is encountered in 
designing such filter banks. Design procedure and several 
design examples are given in Section IV to illustrate the 
usefulness of the proposed method. Finally, we summarize the 
results in the conclusion. 

11. COSINE-MODULATED NONUNIFORM FB 
As mentioned in Section 1, the recombination nonuniform filter 
banks do not generally have an equivalent filter representation 
like the direct structure shown in Figure 3.  However, it  can be 
shown that [4] if M is coprime to m, , then the recombination 
structure admits an equivalent filter representation as in Figure 
4. For simplicity, the first subscript of the recombination filters 
CO, ( z )  is dropped. Actually, if M is coprime to m, , then the 

decimators and the interpolators can be interchanged. 

f i ,  (Z)J+J--+ 

(a) 

G,(z) 

GI ( 2 )  

(b) 
Figure 4: Equivalent structures when M and m, are coprime. 

Using the Noble identity [ I ] ,  one gets, 
,",-I 

H , M =  CH,(Z ' "* )G, (Z~) .  (1) 
,=O 

I t  should be noted that if M is a power of two and all the m, 
are odd numbers, then the coprime assumption is automatically 
satisfied. The structure so obtained is not so restrictive as M 
can be chosen to be sufficiently large to approximate a given 
band splitting in practice. The remaining problem that we need 
to solve is the possible spectrum inversion found in the merged 

subbands. Supposed that we are going to  merge the m, 

subbands starting from the I -th (P = OJ, ...,A4 -1) channel of 
the M-channel uniform filter bank. It can be shown that even 
for ideal filters, there will be spectrum inversion in the merged 
subbands, if I is not an even numbers 141. This seems to be a 
very restrictive requirement. But careful examination reveals 
that if is odd, then the output spectrum is merely inverted. 
This can easily be corrected by multiplying the merged output 
with the sequence before the upsamplers [6] .  The 
resulting structure is shown in Figure 5 .  Therefore, it i s  
possible to start the merging at any channel of the M-channel 
uniform filter bank. From ( l ) ,  it can be noted that the filter 
quality of H,(z) depends on the frequency responses of 

H, ( z )  and G, (2). In general, a joint optimization of H ,  ( z )  
and G, (z) has to be performed so that 2, ( z )  will have good 
frequency characteristics. Due to the good performance, low 
design and implementation complexities of CMFB, it is 
employed in the proposed nonuniform filter banks. In the 
following section, the theory of CMFB and a problem called 
protrusion cancellation which we have encountered in 
designing such cosine-modulated nonuniform filter banks are 
described. 

111. THEORY OF CMFB AND PROTRUSION 
CANCELLATION 

In CMFB, the analysis and synthesis filter banks h,(n) and 
f, ( n )  are obtained respectively by modulating the prototype 
filter h(n) with a cosine modulation as follows 

(n--)+(-l)'- , (2) "1 4 ( 2 k + 1 ) ~  N - 1  
2 

2M-I  

where N is the length of the filters. Let H ( z )  = ~ Z - ~ < ( Z * ~ )  

be the type-1 polyphase decomposition [ I ]  of the prototype 
filter, it can be shown [ 2 ]  that the PR conditions are given by: 

4'0 

~ ( z ) ~ M - , - , ( z ) + p ~ + ~ ( z ) p M _ , _ l ( z ) = ~ .  2-" (4) 
k = O , I (  ..., M - I .  

Since H , ( z )  is frequency shifted version of the prototype 
filter N ( z )  , it is only necessary to  minimize H ( z )  in the 
stopband, when the CMFB is orthogonal. In this case, 
h(n) will be linear-phase. The problem can be formulated as 
the following constrained optimization 

505 



~m ~ , , , , - ~ ( z )  

Figure 5: A solution to the spectrum inversion problem 

(5) 

subjected to the PR constraint in (4). The value of the cut-off 
frequency w, depends on the desired transition bandwidth. I t  

should be between z / 2 M  and z /M . Since the number of 
design variables is much less than the general M-channel 
uniform filter bank, the design complexity is greatly reduced. 
In this work, both the original M-channel uniform filter bank 
and the recombination filter bank are implemented using the 
CMFB. 

Intuitively, the parameters of H, (z) and G; ( 2 )  have to be 

jointly optimized so that optimal performance of H k ( z )  can be 
achieved. If two independent CMFB with good stopband 
attenuation are merged together, protrusions or dumps will 
appear in the stopband of d, ( 2 )  . This is illustrated in Figure 
6 for a two-channel nonuniform filter bank with decimation 
factors ( 2/5,3/5 ). Here, the first two channels of a 5-channel 
CMFB with a filter length of 50 are merged by a 2-channel 
filter bank with filter length 20. The remaining three channels 
are merged by a 3-channel filter bank with filter length 30. 
The solid lines in Figures 6(a) and 6(b) show the frequency 
responses of the interpolated filters H , ( z 2 )  and H I  ( 2 ' ) .  The 

frequency responses of the interpolated filters Go(z') and 

GI ( z ' )  are also shown in dotted lines. Due to the mismatch 
in the transition bands of the filters, (note the overlaps of 
H , ( z 2 )  and G,(z5) , and that of H , ( z * )  and G,(z')  in 

Figures 6(a) and 6(b)) H,(z) will exhibit protrusion in the 
transition bands of the interpolated filters, Figure 6(c). We  
found that the protrusion can be reduced by adjusting the 
stopband cutoff frequencies of the interpolated filters H i  ( z )  
and G, ( z )  . By adjusting their stopband cutoff frequencies, it 
can be seen that the protrusion can be suppressed and good 
stop band attenuation can be obtained. Details of the design 
procedure and more design examples will be given in the next 
section. 

IV. DESIGN PROCEDURES 
As mentioned earlier, a joint optimization of the coefficients of 
the prototype filter H ( z )  and those of the Gi, j (z)  can give the 
best performance. It is, however, very complicated. Here, we 
shall design H ( t )  separately by minimizing its stopband 
attenuation subjected to the PR condition in (4). The 
recombination filters are then designed to minimize the 
stopband attenuation of the equivalent filters G 7 , ( z )  . To 
minimize the dump in the stopband, the cut-off frequency of 
the prototype filter g,(n) associated with G , , j ( z )  are chosen 

properly to match that of H ( r )  . 
Let the prototype filters be matched to each other in the 

process of designing the uniform filter banks. The problem of 

designing g,(n) can be formulated as the following 
constrained optimization 

m i n a  = ~,opbnndlf ic(e~w)12dw ( 6 )  

subject to the PR condition (4) for g,(n) . 
Here g, is the vector containing the impulse response of the 
prototype filter g,(n) . In practice, we found that it is also 
possible to minimize the stopband attenuation of g, (n) , if their 
cut-off frequencies are properly chosen as suggested by the 
following procedure. 

Given the decimation ratios (m, / M I ,  k = O,l, ..., K - 1 , with 
K-l 

m, coprime to M and x m ,  = M  
k=O 

Design an M-channel uniform CMFB with stopband cutoff 
frequency w, , using equation 5. 

(1) Design an mx -channel CMFB using equation ( 6 )  or (5) .  
The transition band of the m, -channel uniform CMFB, 
after interpolation, should be equal to that of the M- 
channel uniform CMFB, after interpolation as suggested 
by equation ( I ) .  The M-channel CMFB is interpolated by 
m, , while the mk -channel CMFB is interpolated by M. 

( 2 )  If all starting indices 1 are even, the CMFB can be 
merged by the synthesis filter banks. 

(3) If any f! is odd, the sequence (-1)" should be multiplied 
to the corresponding channels before the subband 
merging. 

The performance of the proposed method is evaluated using 
several design examples. Figure 7 shows a 2-channel 
nonuniform filter bank with rational sampling factors of 
(4/7,3/7). The lowpass filter is obtained by merging the first 4 
channels of a 7-channel uniform CMEB using another 4- 
channel CMFB. While the highpass filter is obtained by 
merging the remaining 3 channels of the 7-channel uniform 
CMFB. Figure 7(a) show the frequency responses of the 
analysis filters before interpolation. The frequency responses 
of the nonuniform filter banks are shown in Figure 7(b). The 
filter length of the 7-channel, 4-channel, and 3-channel uniform 
CMFB are 70, 40, and 30 respectively. Figure 8 and Figure 9 
show two other nonuniform filter banks with sampling factors 
(4/9, 5/9) and (6/11, 5/11) designed by the proposed method. 
The filter length of the 4-channe1, 5-channel. 6-channel, 9- 
channel, and 1 I-channel are respectively 40, 50, 60, 90, and 
110. It can be seen that perfect reconstruction nonuniform 
filter banks with very high stopband attenuation and low design 
and implementation complexities can be obtained by the 
proposed method. 

0 

(a) H , ( z ' )  -solid line 

Go(z ' )  - dotted line. 

M M l l  F n q m  

(b) H , ( z ' )  -solid line 

G , ( z ' )  - dotted line. 
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(c) f i , ( z )  ( 4  G d z )  
Figure 6: The protrusion cancellation in an (2/5,3/5) 

nonuniform filter bank. Frequency responses of (a) H , ( t )  and 

G,(z) after interpolation, (b) H ,  (2) and G, ( 2 )  after interpolation; 

Frequency responses of (c) Go( 2) before adjusting cutoff frequencies, 
(d) after adjusting cutoff frequency. 
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(b) 
Figure 7: Nonuniform filter bank with rational sampling factors 
(4/7.3/7). (a) frequency responses of filters before interpolation, (b) 
frequency response of the nonuniform filter bank (after interpolation). 
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(b) 
Figure 8: Nonuniform filter bank with rational sampling factors 
(4/9,5/9). (a) frequency response of filters before interpolation, (b) 
frequency response of the nonuniform filter bank (after interpolation). 

(a) (b) 
Figure 9: Nonuniform filter bank with rational sampling factors 

(6/11,5/11). (a) frequency response of filters before interpolation (b) 
frequency response of the nonuniform filter bank (after intepolarion). 

V. CONCLUSION 
In this paper, the theory and design of a class of PR cosine- 
modulated nonuniform filter bank is presented. It is based on a 
structure previously proposed by Cox, where the outputs of a 
uniform filter bank is combined or merged by means of the 
synthesis section of another filter bank with smaller channel 
number. Simplifications are imposed on this structure so that 
the design procedure can be considerably simplified. Due to  
the use of CMFB as the original and recombination filter 
banks, excellent filter quality and low design and 
implementation complexities can be achieved. Problems with 
these merging techniques such as spectrum inversion, 
equivalent filter representations and protrusion cancellation are 
also addressed. As the merging is performed after the 
decimation, the arithmetic complexity is lower than other 
conventional approaches. Design examples show that PR 
nonuniform filter banks with high stopband attenuation and 
low design and implementation complexities can be obtained 
by the proposed method. 
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