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Abstract—This paper proposes an optimal cosine modulated 
nonuniform linear phase finite impulse response (FIR) filter 
bank design. The frequency responses of all the analysis 
filters and the synthesis filters of the filter bank are derived 
based on both stretching and shifting the frequency 
response of the prototype filter. The total aliasing error of 
the filter bank is minimized subject to a specification on the 
maximum amplitude distortion of the filter bank as well as 
specifications on both the maximum passband ripple 
magnitude and the maximum stopband ripple magnitude of 
the prototype filter. This filter bank design problem is 
actually a functional inequality constrained optimization 
problem. Our recently developed integration approach is 
employed for solving the problem. Computer numerical 
simulation results show that our proposed design method 
outperforms existing design methods. 

I. INTRODUCTION 
Filter banks decompose input signals into component 

signals in different frequency bands. Operations are then 
applied to these component signals. As the operations 
could be tailor made according to the frequency 
characteristics of the component signals, performances of 
the filter banks are usually very good. Nonuniform filter 
banks are the filter banks with different decimation factors 
in different subband channels. This allows the 
decomposition of input signals into component signals 
with the component signals having different bandwidths. 
Hence, nonuniform filter banks enjoy better frequency 
decomposition compared to uniform filter banks. Finite 
impulse response (FIR) filter banks are the filter banks 
with all the analysis filters and the synthesis filters being 
FIR. As the stability of FIR filters is guaranteed, the 
stability of the FIR filter banks is also guaranteed. Linear 
phase filter banks are the filter banks with all the analysis 
filters and the synthesis filters being linear phase. Since all 
the analysis filters and the synthesis filters are linear 
phase, the phase distortion of the filter banks can be 
avoided. Cosine modulated filter banks are the filter banks 
that all the analysis filters and the synthesis filters are the 
cosine modulations of a single prototype filter. As only a 
single prototype filter is required to be designed, the 

computational effort for designing the cosine modulated 
filter banks is usually very low. As a result, cosine 
modulated nonuniform linear phase FIR filter banks find 
many applications in various engineering disciplines [1]-
[5]. 

To design cosine modulated nonuniform FIR filter 
banks, a single FIR prototype filter is first designed. Then 
a cosine modulated uniform FIR filter bank is constructed 
with all the analysis filters and the synthesis filters are the 
cosine modulations of the FIR prototype filter. Finally, 
several subband channels of the cosine modulated uniform 
FIR filter bank are merged together to obtain a cosine 
modulated nonuniform FIR filter bank [6]-[9]. Similar 
techniques have been proposed by using more than one 
single FIR prototype filters [10]. 

However, even though the FIR prototype filter is linear 
phase as well as all the analysis filters and the synthesis 
filters of the cosine modulated uniform FIR filter bank are 
linear phase [13], it is not guaranteed that all the analysis 
filters and the synthesis filters of the cosine modulated 
nonuniform FIR filter bank are linear phase if the cosine 
modulated nonuniform FIR filter bank is obtained by 
merging several subband channels of the cosine 
modulated uniform FIR filter bank together. This is 
because the filter merged by a symmetric filter and an 
anti-symmetric filter is not linear phase. Moreover, the 
amplitude distortion of the cosine modulated nonuniform 
filter bank as well as both the maximum passband ripple 
magnitude and the maximum stopband ripple magnitude 
of the analysis filters and the synthesis filters of the cosine 
modulated nonuniform filter bank are very large 
particularly at the transition bands of the analysis filters 
and the synthesis filters of the cosine modulated uniform 
filter bank. Hence, the specification on the maximum 
amplitude distortion of the cosine modulated nonuniform 
filter bank as well as the specifications on both the 
maximum passband ripple magnitude and the maximum 
stopband ripple magnitude of the analysis filters and the 
synthesis filters of the cosine modulated nonuniform filter 
bank are usually not satisfied. Furthermore, as the lengths 
of all the analysis filters and the synthesis filters of the 
cosine modulated uniform filter bank are the same, the 
lengths of all the analysis filters and the synthesis filters of 
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the cosine modulated nonuniform filter bank are the same 
too. However, a filter with a wider bandwidth should be 
designed with a shorter length and vice versa. Hence, 
these design methods are not effective. 

In this paper, a new direct optimal cosine modulated 
nonuniform linear phase FIR filter bank design is 
proposed based on both stretching and shifting the 
frequency response of a single linear phase FIR prototype 
filter. As stretching the frequency response of the 
prototype filter is equivalent to sampling the impulse 
response of the prototype filter if the prototype filter is 
band limited, the lengths of the analysis filters and the 
synthesis filters of the filter bank are no longer the same 
and the lengths are inversely proportional to the 
bandwidths of the filters. Hence, the proposed stretching 
technique could effectively design the analysis filters and 
the synthesis filters of the filter bank. Also, as all the 
analysis filters and the synthesis filters of the filter bank 
are derived from both stretching and shifting the 
frequency response of the prototype filter, both the 
maximum passband ripple magnitude and the maximum 
stopband ripple magnitude of all analysis filters and the 
synthesis filters of the filter bank are only dependent on 
the prototype filter and the corresponding decimation 
factors. Hence, by imposing the corresponding constraints 
on the prototype filter, the specifications on both the 
maximum passband ripple magnitude and the maximum 
stopband ripple magnitude of all the analysis filters and 
the synthesis filters of the filter bank are guaranteed to be 
satisfied. [ ]nx [ ]ny…
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Cosine modulated nonuniform linear phase FIR filter bank. 

Since aliasing of the cosine modulated nonuniform 
linear phase FIR filter banks could not be canceled if the 
set of the decimation factors forms an incompatible set 
[11], the maximum aliasing distortion of the filter banks 
could be very large. Hence, this paper minimizes the total 
aliasing error of the filter banks instead of controls the 
maximum aliasing distortion of the filter banks. In 
general, the maximum amplitude distortion of filter banks 
should be kept at a low value. Hence, a constraint is 
imposed on the maximum amplitude distortion of the filter 
banks. Also, as filter banks decompose input signals into 
component signals in different frequency bands, all the 
analysis filters and the synthesis filters of the filter banks 
should have good frequency selectivities. As discussed 
before, both the maximum passband ripple magnitude and 
the maximum stopband ripple magnitude of the analysis 
filters and the synthesis filters of the filter banks are 
dependent only on the prototype filter and the 
corresponding decimation factors, so constraints are 
imposed on both the maximum passband ripple magnitude 
and the maximum stopband ripple magnitude of the 
prototype filter. These constraints are defined in the 
frequency domain. However, as the frequency domain is a 
continuous set and a continuous set consists of an infinite 
number of elements, the optimization problem consists of 
an infinite number of constraints. Actually, this cosine 
modulated nonuniform linear phase FIR filter bank design 
problem is a functional inequality constrained 
optimization problem. In general, it is difficult to 
guarantee that these infinite numbers of constraints would 
be satisfied. Our recently developed integration approach 
[12] could be employed for solving the problem. 

The rest part of this paper is organized as follows. In 
Section II, the cosine modulated nonuniform linear phase 
FIR filter bank design problem is formulated as a 

functional inequality constrained optimization problem 
and our recently developed integration approach [12] is 
employed for solving the problem. In Section III, a design 
example of the filter banks is illustrated. Finally, a 
conclusion is drawn in Section IV. 

PROBLEM FORMULATION 
Consider an -channel nonuniform filter bank. Denote 

the impulse responses of the analysis filters and the 
synthesis filters of the nonuniform filter bank as 

N

[ ]nh  and i

[ ]nfi  for 1,,1,0 −= Ni L , respectively, frequency 
responses of the analysis filters and the synthesis filters of 
the nonuniform filter bank as ( )ωiH  and ( )ωiF  for 

1,,1,0 −= Ni L , respectively, and the decimators and the 
upsamplers as i↓  and i  for n n↑ 1,,1,0 −= Ni L , 
respectively. Here, we assume that the sampling factors 
are positive integers and the nonuniform filter bank is 
maximally decimated, that is n  for +Ζ∈i 1,,1,0 −= Ni L  

and 
1

0i i=

1 1
N

n

−

=∑ . The block diagram of the nonuniform filter 

bank is shown in Figure 1. 

Denote the impulse response and the frequency 
response of the linear phase FIR prototype filter as [ ]nh′  
and ( )ωH ′ , respectively. It is assumed that the prototype 

filter is a lowpass filter with the cutoff frequency 
cr

π , 

where c  is the least common multiple of the set of the 
scaled sampling factors defined as 

r

( )1210 ,2,,2, −−≡ NNc nnnnLCMr L . Since n  for +Ζ∈i

1,,1,0 −= Ni L , . As the prototype filter is a 
lowpass linear phase FIR filter, it is assumed that the 
prototype filter is symmetric. Let the filter length of the 
linear phase FIR prototype filter be 2 , where 

+Ζ∈cr

1+L L  is an 
integer multiple of r . Denote the transposition operator as 
the superscript T , the filter coefficients of the prototype 
filter as h

c
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Lh h′ ′≡x L  and 
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of positive integers qi′  for  such that 

c

1,,1,0 −= Ni L

rnq ≡′ 00 , cNN rnq ≡′ −− 11  and cii  for rnq ≡′2 2,,1 −= Ni L . 
Define the sampled, delayed and scaled impulse responses 
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for [ ]ππω ,−∈  and for . That is, 1,,1,0 −= Ni L ( )ωb
iH ′  

for  could be approximated by a linear 
phase modification and stretched version of 

1,,1,0 −= Ni L

( )ωH ′  with 
the stretched factor  if iq′ ( )ωH ′  is nearly band limited. As 
the cutoff frequency of ( )ωb

iH ′  for 1,,1,0 −= Ni L  is 

located at 
c

i

r
q π′  and the bandwidth of  is ( )ωb

iH ′ iq′  times 

that of ( )ωH ′ ,  can be interpreted as the 
corresponding baseband filter of the cosine modulated 
nonuniform liner phase FIR filter bank. 
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for . Then we have 1,,1,0 −= Ni L ( ) ( )xH ωω T
iiH ~=  and 

 for . Obviously, the centre 
frequencies of 

( ) ( )xF ωω T
iiF ~= 1,,1,0 −= Ni L

( )ωiH  and ( )ωiF  are located at iω  and iω−  
for , which are the desirable centre 
frequencies of the analysis filters and the synthesis filters 
of the cosine modulated nonuniform linear phase FIR 
filter bank. 
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for 1,2, , 1cj r= −L . Actually, ( )0κ ω  and ( )0κ ω∠  
correspond to the amplitude distortion and the phase 
distortion of the cosine modulated nonuniform linear 
phase FIR filter bank, respectively, and ( )jκ ω  for 

1,2, , 1cj r= −L  correspond to the aliasing distortion of 
the cosine modulated nonuniform linear phase FIR filter 
bank. 

To minimize the total aliasing error of the cosine 
modulated nonuniform linear phase FIR filter bank, 
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guarantee the maximum amplitude distortion of the cosine 
modulated nonuniform linear phase FIR filter bank to be 
under a certain level, a constraint is imposed on the 
maximum amplitude distortion of the filter bank. Denote 

Mδ  as the acceptable maximum amplitude distortion of 
the cosine modulated nonuniform linear phase FIR filter 
bank. Then we have the constraint ( ) Mδωκ ≤0
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guarantee all the analysis filters and the synthesis filters of 



the cosine modulated nonuniform linear phase FIR filter 
bank to have good frequency selectivities, constraints are 
imposed on the maximum passband ripple magnitude and 
the maximum stopband ripple magnitude of the prototype 
filter. Denote 

pB  and sB  as the passband and the stopband 
of the prototype filter, respectively, 

pδ  and sδ  as the 
acceptable maximum passband ripple magnitude and the 
acceptable maximum stopband ripple magnitude of the 
prototype filter, respectively, and ( )D ω  as the desirable 
magnitude response of the prototype filter. Then we have 

( ) ( ) p
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pB∈∀ω  and ( ) ( ) s
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sB∈∀ω . Hence, the cosine modulated nonuniform linear 
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the following functional inequality constrained 
optimization problem: 
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  ( ) ( ) p
T D δωω ≤−xξ  

pB∈∀ω  

and ( ) ( ) s
T D δωω ≤−xξ  sB∈∀ω . 

This functional inequality constrained optimization 
problem could be solved via our recently proposed 
integration approach [12]. 

ILLUSTRATIVE EXAMPLE III. 

}

As discussed in Section III that the maximum aliasing 
distortion of the cosine modulated nonuniform filter bank 
is very large if the set of the decimation factors forms an 
incompatible set [11], the cosine modulated nonuniform 
filter bank with an incompatible set of the decimation 
integers {  is designed to illustrate the effectiveness 
of the proposed method. In general, there is a tradeoff 
among the length, the transition band bandwidth, the 
maximum passband ripple magnitude and the maximum 
stopband ripple magnitude of the prototype filter as well 
as the maximum amplitude distortion of the cosine 
modulated nonuniform linear phase FIR filter bank. 
Hence, we choose , 

6,3,2

120L =

⎥⎦
⎤

⎢⎣
⎡ −−= ππππ 025.0

6
,

6
025.0pB , 

⎥⎦
⎤

⎢⎣
⎡ −−−⎥⎦

⎤
⎢⎣
⎡ += ππππππ 025.0

6
,,025.0

6
UsB , 0869.0=pδ , 

2068.0=sδ , ( )
1
0

p

s

B
D

B
ω

ω
ω

∈⎧
= ⎨ ∈⎩

 and 0505.0=Mδ , which 

are the most common values employed in the practical 
applications [1]-[5]. In order to achieve cosine modulated 
nonuniform linear phase FIR filter banks, 0=iφ  for 

 are selected [13]. The desirable overall 
gain of the cosine modulated nonuniform linear phase FIR 
filter bank is selected as  for a simplicity reason. 
Since the minimum delay of the cosine modulated 

nonuniform linear phase FIR filter bank is equal to 

1,,1,0 −= Ni L

1c =

L2 , 
the desirable delay of the cosine modulated nonuniform 
linear phase FIR filter bank is selected as . Based 
on the formulation discussed in Section II and the 
integration approach discussed in [12], the cosine 
modulated nonuniform linear phase FIR filter bank could 
be designed. 

Lm 20 =

A cosine modulated nonuniform FIR filter bank 
obtained by merging the subband channels [9] of the 
corresponding cosine modulated uniform linear phase FIR 
filter bank together [13] is designed for the comparison 
purpose. In order to have a fair comparison, the design 
based on the methods discussed in [13] and [9] is also 
formulated as a functional inequality constrained 
optimization problem with the same set of cost function 
and constraint functions as those discussed in Section II. 
Figures 2, Figure 3, Figure 4, Figure 5 and Figure 6 show 
the responses of the prototype filters, the responses of the 
analysis filters, the responses of the synthesis filters, the 
amplitude distortions of the filter banks, and the aliasing 
distortions of the filter banks, respectively. It can be seen 
from those figures that the specifications on both the 
maximum passband ripple magnitude and the maximum 
stopband ripple magnitude of the prototype filter as well 
as the specification on the maximum amplitude distortion 
of the filter bank designed using our proposed method are 
satisfied. In fact, the maximum passband ripple magnitude 
and the maximum stopband ripple magnitude of the 
prototype filter designed based on our proposed method 
could achieve 0.0869 and 0.2068, respectively, and the 
maximum amplitude distortion of the filter bank designed 
based on our proposed method could achieve 0.0505. On 
the other hand, the specifications on the maximum 
passband ripple magnitude and the maximum stopband 
ripple magnitude of the prototype filter as well as the 
specification on the maximum amplitude distortion of the 
filter bank designed based on the methods discussed in 
[13] and [9] are not satisfied. In fact, the maximum 
passband ripple magnitude and the maximum stopband 
ripple magnitude of the prototype filter designed based on 
the methods discussed in [13] and [9] could only achieve 
0.1063 and 0.2619, respectively, and the maximum 
amplitude distortion of the filter bank designed based on 
the methods discussed in [13] and [9] could only achieve 
0.1446. Moreover, both the maximum passband ripple 
magnitude and the maximum stopband ripple magnitude 
of the analysis filters and the synthesis filters as well as 
the maximum aliasing distortion of the filter bank 
designed based on our proposed method are much lower 
than that designed based on the methods discussed in [13] 
and [9]. Furthermore, it is worth noting that the analysis 
filters and the synthesis filters of the filter bank designed 
based on the methods discussed in [13] and [9] are not 
linear phase, while our design guarantees that all the 
analysis filters and the synthesis filters are linear phase. 
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Figure 2. Responses of the prototype filters of the nonuniform 

filter banks. 
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Figure 3. Responses of the analysis filters of the nonuniform 

filter banks. 
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Figure 4. Responses of the synthesis filters of the nonuniform 

filter banks. 
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Figure 5. Amplitude distortions of the nonuniform filter banks. 
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Figure 6. Aliasing distortions of the nonuniform filter banks. 

IV. CONCLUSION 
This paper proposes a new direct optimal cosine 

modulated nonuniform linear phase FIR filter bank design 
based on both stretching and shifting the frequency 
response of a single linear phase FIR prototype filter. The 
total aliasing error is minimized subject to a specification 
on the maximum amplitude distortion of the filter bank as 
well as both the maximum passband ripple magnitude and 
the maximum stopband ripple magnitude of the prototype 
filter. The design problem is actually a functional 
inequality constrained optimization problem and our 
recently proposed integration approach is employed for 
solving the problem. As the length of all the analysis 
filters and the synthesis filters are inversely proportional 
to the bandwidth of the filters, the proposed design 
method is more effective. Also, as the proposed design 
method is a direct design method, merging the subband 
channels of the cosine modulated uniform filter bank 
together is not required. Hence, our design could achieve a 
better performance on the maximum amplitude distortion 
of the filter bank as well as better performances on both 
the maximum passband ripple magnitude and the 
maximum stopband ripple magnitude of the prototype 
filter. 

ACKNOWLEDGMENTS 
The work obtained in this paper was supported by a 

research grant (project number G-YD26) from The Hong 
Kong Polytechnic University, the Centre for Multimedia 
Signal Processing, The Hong Kong Polytechnic 
University, the CRGC grant (project number PolyU 
5105\01E) from the Research Grants Council of Hong 
Kong and a research grant from the Australian Research 
Council. 

REFERENCES 
[1] Fabrizio Argenti and Enrico Del Re, “Eigenfilter design of real 

and complex coefficient QMF prototypes,” IEEE Transactions on 
Circuits and Systems ⎯II: Analog and Digital Signal Processing, 
vol. 47, no. 8, pp. 787-792, 2000. 

[2] Jacob D. Griesbach, Michael Lightner and Delores M. Etter, 
“Subband adaptive filtering decimation constraints for 
oversampled nonuniform filterbanks,” IEEE Transactions on 
Circuits and Systems ⎯II: Analog and Digital Signal Processing, 
vol. 49, no. 10, pp. 677-681, 2002. 

[3] Ng Chun Kiam and B. Farhang-Boroujeny, “New results on 
subband adaptive filters with nonuniform filter banks,” IEEE 
Region 10 Conference, TENCON, vol. 2, pp. 1010-1013, 15-17 
September 1999. 



[4] Yin H. Lam and Robert Stewart, “Perceptron-based residual 
analysis-synthesis system,” IEEE Conference on Acoustics, 
Speech, and Signal Processing, ICASSP, vol. 2, pp. 989-992, 15-
19 March 1999. 

[5] Unto K. Laine and Toomas Altosaar, “An orthogonal set of 
frequency and amplitude modulated (FAM) functions for variable 
resolution signal analysis,” IEEE Conference on Acoustics, 
Speech, and Signal Processing, ICASSP, vol. 3, pp. 1615-1618, 3-
6 April 1990. 

[6] X. M. Xie, S. C. Chan and T. I. Yuk, “Design of perfect-
reconstruction nonuniform recombination filter banks with 
flexible rational sampling factors,” IEEE Transactions on Circuits 
and Systems ⎯I: Regular Papers, vol. 52, no. 9, pp. 1965-1981, 
2005. 

[7] S. S. Yin, S. C. Chan, K. M. Tsui and X. M. Xie, “On the theory 
and design of a class of PR uniform and recombination 
nonuniform casual-stable IIR cosine modulated filter banks,” 
IEEE Transactions on Circuits and Systems ⎯II: Express Briefs, 
vol. 55, no. 8, pp. 776-780, 2008. 

[8] Jeong-Jin Lee and Byeong Gi Lee, “A design of nonuniform 
cosine modulated filter banks,” IEEE Transactions on Circuits 
and Systems ⎯II: Analog and Digital Signal Processing, vol. 42, 
no. 11, pp. 732-737, 1995. 

[9] Jianlin Li, Troung Q. Nguyen and Sawasd Tantaratana, “A simple 
design method for near-perfect-reconstruction nonuniform filter 
banks,” IEEE Transactions on Signal Processing, vol. 45, no. 8, 
pp. 2105-2109, 1997. 

[10] Fabrizio Argenti, Benedetto Brogelli and Enrico Del Re, “Design 
of pseudo-QMF banks with rational sampling factors using several 
prototype filters,” IEEE Transactions on Signal Processing, vol. 
46, no. 6, pp. 1709-1715, 1998. 

[11] Phuong-Quan Hoang and P. P. Vaidyanathan, “Non-uniform 
multirate filter banks: theory and design,” IEEE International 
Symposium on Circuits and Systems, vol. 1, pp. 371-374, 8-11 
May 1989. 

[12] Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling, Yan-Qun Liu, 
Peter Kwong-Shun Tam and Kok-Lay Teo, “Optimal design of 
magnitude responses of rational infinite impulse response filters,” 
IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 
4039-4046, 2006. 

[13] Yuan-Pei Lin and P. P. Vaidyanathan, “Linear phase cosine 
modulated maximally decimated filter banks with perfect 
reconstruction,” IEEE Transactions on Signal Processing, vol. 42, 
no. 11, pp. 2525-2539, 1995. 


	I. Introduction
	II. Problem Formulation
	III. Illustrative Example
	IV. Conclusion
	Acknowledgments
	References


