1,499 research outputs found

    Optimal Parallel Construction of Hamiltonian Cycles and Spanning Trees in Random Graphs

    Get PDF
    We give tight bounds on the parallel complexity of some problems involving random graphs. Specifically, we show that a Hamiltonian cycle, a breadth first spanning tree, and a maximal matching can all be constructed in \Theta(log n) expected time using n= log n processors on the CRCW PRAM. This is a substantial improvement over the best previous algorithms, which required \Theta((log log n) 2 ) time and n log 2 n processors. We then introduce a technique which allows us to prove that constructing an edge cover of a random graph from its adjacency matrix requires \Omega\Gammaequ n) expected time on a CRCW PRAM with O(n) processors. Constructing an edge cover is implicit in constructing a spanning tree, a Hamiltonian cycle, and a maximal matching, so this lower bound holds for all these problems, showing that our algorithms are optimal. This new lower bound technique is one of the very few lower bound techniques known which apply to randomized CRCW PRAM algorithms, and it pro..

    Approximation Algorithms for the Asymmetric Traveling Salesman Problem : Describing two recent methods

    Full text link
    The paper provides a description of the two recent approximation algorithms for the Asymmetric Traveling Salesman Problem, giving the intuitive description of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves the previous O(logn)O(\log n) approximation algorithm, by improving the constant from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows an efficient reduction from ATSPP to ATSP. Combining both the results, they finally establish an approximation ratio of (43+ϵ)logn\left(\frac{4}{3}+\epsilon \right)\log n for ATSPP,\ considering a small ϵ>0\epsilon>0,\ improving the work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2], gives an O(lognloglogn)O\left(\frac{\log n}{\log \log n}\right) randomized algorithm for the ATSP, by symmetrizing and modifying the solution of the Held-Karp relaxation problem and then proving an exponential family distribution for probabilistically constructing a maximum entropy spanning tree from a spanning tree polytope and then finally defining the thin-ness property and transforming a thin spanning tree into an Eulerian walk.\ The optimization methods used in\ [2] are quite elegant and the approximation ratio could further be improved, by manipulating the thin-ness of the cuts.Comment: 12 page

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    Computational Complexity for Physicists

    Full text link
    These lecture notes are an informal introduction to the theory of computational complexity and its links to quantum computing and statistical mechanics.Comment: references updated, reprint available from http://itp.nat.uni-magdeburg.de/~mertens/papers/complexity.shtm

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page
    corecore