The paper provides a description of the two recent approximation algorithms
for the Asymmetric Traveling Salesman Problem, giving the intuitive description
of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves
the previous O(logn) approximation algorithm, by improving the constant
from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows
an efficient reduction from ATSPP to ATSP. Combining both the results, they
finally establish an approximation ratio of (34+ϵ)logn for ATSPP,\ considering a small ϵ>0,\ improving the
work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2],
gives an O(loglognlogn) randomized algorithm for
the ATSP, by symmetrizing and modifying the solution of the Held-Karp
relaxation problem and then proving an exponential family distribution for
probabilistically constructing a maximum entropy spanning tree from a spanning
tree polytope and then finally defining the thin-ness property and transforming
a thin spanning tree into an Eulerian walk.\ The optimization methods used in\
[2] are quite elegant and the approximation ratio could further be improved, by
manipulating the thin-ness of the cuts.Comment: 12 page