6,963 research outputs found

    Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

    Full text link
    Given a set Σ\Sigma of spheres in Ed\mathbb{E}^d, with d3d\ge{}3 and dd odd, having a fixed number of mm distinct radii ρ1,ρ2,...,ρm\rho_1,\rho_2,...,\rho_m, we show that the worst-case combinatorial complexity of the convex hull CHd(Σ)CH_d(\Sigma) of Σ\Sigma is Θ(1ijmninjd2)\Theta(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of spheres in Σ\Sigma with radius ρi\rho_i. To prove the lower bound, we construct a set of Θ(n1+n2)\Theta(n_1+n_2) spheres in Ed\mathbb{E}^d, with d3d\ge{}3 odd, where nin_i spheres have radius ρi\rho_i, i=1,2i=1,2, and ρ2ρ1\rho_2\ne\rho_1, such that their convex hull has combinatorial complexity Ω(n1n2d2+n2n1d2)\Omega(n_1n_2^{\lfloor\frac{d}{2}\rfloor}+n_2n_1^{\lfloor\frac{d}{2}\rfloor}). Our construction is then generalized to the case where the spheres have m3m\ge{}3 distinct radii. For the upper bound, we reduce the sphere convex hull problem to the problem of computing the worst-case combinatorial complexity of the convex hull of a set of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes in Ed+1\mathbb{E}^{d+1}, where d3d\ge{}3 odd, a problem which is of independent interest. More precisely, we show that the worst-case combinatorial complexity of the convex hull of a set {P1,P2,...,Pm}\{\mathcal{P}_1,\mathcal{P}_2,...,\mathcal{P}_m\} of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes of Ed+1\mathbb{E}^{d+1} is O(1ijmninjd2)O(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of vertices of Pi\mathcal{P}_i. We end with algorithmic considerations, and we show how our tight bounds for the parallel polytope convex hull problem, yield tight bounds on the combinatorial complexity of the Minkowski sum of two convex polytopes in Ed\mathbb{E}^d.Comment: 22 pages, 5 figures, new proof of upper bound for the complexity of the convex hull of parallel polytopes (the new proof gives upper bounds for all face numbers of the convex hull of the parallel polytopes

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Convex Hull of Points Lying on Lines in o(n log n) Time after Preprocessing

    Full text link
    Motivated by the desire to cope with data imprecision, we study methods for taking advantage of preliminary information about point sets in order to speed up the computation of certain structures associated with them. In particular, we study the following problem: given a set L of n lines in the plane, we wish to preprocess L such that later, upon receiving a set P of n points, each of which lies on a distinct line of L, we can construct the convex hull of P efficiently. We show that in quadratic time and space it is possible to construct a data structure on L that enables us to compute the convex hull of any such point set P in O(n alpha(n) log* n) expected time. If we further assume that the points are "oblivious" with respect to the data structure, the running time improves to O(n alpha(n)). The analysis applies almost verbatim when L is a set of line-segments, and yields similar asymptotic bounds. We present several extensions, including a trade-off between space and query time and an output-sensitive algorithm. We also study the "dual problem" where we show how to efficiently compute the (<= k)-level of n lines in the plane, each of which lies on a distinct point (given in advance). We complement our results by Omega(n log n) lower bounds under the algebraic computation tree model for several related problems, including sorting a set of points (according to, say, their x-order), each of which lies on a given line known in advance. Therefore, the convex hull problem under our setting is easier than sorting, contrary to the "standard" convex hull and sorting problems, in which the two problems require Theta(n log n) steps in the worst case (under the algebraic computation tree model).Comment: 26 pages, 5 figures, 1 appendix; a preliminary version appeared at SoCG 201

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs
    corecore