477,171 research outputs found

    Tele-Autonomous control involving contact

    Get PDF
    Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed

    Dissections, orientations, and trees, with applications to optimal mesh encoding and to random sampling

    Full text link
    We present a bijection between some quadrangular dissections of an hexagon and unrooted binary trees, with interesting consequences for enumeration, mesh compression and graph sampling. Our bijection yields an efficient uniform random sampler for 3-connected planar graphs, which turns out to be determinant for the quadratic complexity of the current best known uniform random sampler for labelled planar graphs [{\bf Fusy, Analysis of Algorithms 2005}]. It also provides an encoding for the set P(n)\mathcal{P}(n) of nn-edge 3-connected planar graphs that matches the entropy bound 1nlog2P(n)=2+o(1)\frac1n\log_2|\mathcal{P}(n)|=2+o(1) bits per edge (bpe). This solves a theoretical problem recently raised in mesh compression, as these graphs abstract the combinatorial part of meshes with spherical topology. We also achieve the {optimal parametric rate} 1nlog2P(n,i,j)\frac1n\log_2|\mathcal{P}(n,i,j)| bpe for graphs of P(n)\mathcal{P}(n) with ii vertices and jj faces, matching in particular the optimal rate for triangulations. Our encoding relies on a linear time algorithm to compute an orientation associated to the minimal Schnyder wood of a 3-connected planar map. This algorithm is of independent interest, and it is for instance a key ingredient in a recent straight line drawing algorithm for 3-connected planar graphs [\bf Bonichon et al., Graph Drawing 2005]

    The Complexity of All-switches Strategy Improvement

    Get PDF
    Strategy improvement is a widely-used and well-studied class of algorithms for solving graph-based infinite games. These algorithms are parameterized by a switching rule, and one of the most natural rules is "all switches" which switches as many edges as possible in each iteration. Continuing a recent line of work, we study all-switches strategy improvement from the perspective of computational complexity. We consider two natural decision problems, both of which have as input a game GG, a starting strategy ss, and an edge ee. The problems are: 1.) The edge switch problem, namely, is the edge ee ever switched by all-switches strategy improvement when it is started from ss on game GG? 2.) The optimal strategy problem, namely, is the edge ee used in the final strategy that is found by strategy improvement when it is started from ss on game GG? We show PSPACE\mathtt{PSPACE}-completeness of the edge switch problem and optimal strategy problem for the following settings: Parity games with the discrete strategy improvement algorithm of V\"oge and Jurdzi\'nski; mean-payoff games with the gain-bias algorithm [14,37]; and discounted-payoff games and simple stochastic games with their standard strategy improvement algorithms. We also show PSPACE\mathtt{PSPACE}-completeness of an analogous problem to edge switch for the bottom-antipodal algorithm for finding the sink of an Acyclic Unique Sink Orientation on a cube

    Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station

    Get PDF
    The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance.  

    Progressive Reliability Method and Its Application to Offshore Mooring Systems

    Get PDF
    Assessing the reliability of complex systems (e.g. structures) is essential for a reliability-based optimal design that balances safety and costs of such systems. This paper proposes the Progressive Reliability Method (PRM) for the quantification of the reliability of complex systems. The proposed method is a closed-form solution for calculating the probability of failure. The new method is flexible to the definition of “failure” (i.e., can consider serviceability and ultimate-strength failures) and uses the rules of probability theory to estimate the failure probability of the system or its components. The method is first discussed in general and then illustrated in two examples, including a case study to find the safest configuration and orientation of a 12-line offshore mooring system. The PRM results are compared with results of a similar assessment based on the Monte Carlo simulations. It is shown in the example of two-component that using PRM, the importance of system components to system safety can be quantified and compared as input information for maintenance planning
    corecore