
The Complexity of All-switches Strategy Improvement∗

John Fearnley†and Rahul Savani‡

Abstract
Strategy improvement is a widely-used and well-studied class
of algorithms for solving graph-based infinite games. These
algorithms are parametrized by a switching rule, and one
of the most natural rules is “all switches” which switches as
many edges as possible in each iteration. Continuing a recent
line of work, we study all-switches strategy improvement
from the perspective of computational complexity. We
consider two natural decision problems, both of which have
as input a game G, a starting strategy s, and an edge e. The
problems are: 1. The edge switch problem, namely, is the
edge e ever switched by all-switches strategy improvement
when it is started from s on game G? 2. The optimal
strategy problem, namely, is the edge e used in the final
strategy that is found by strategy improvement when it is
started from s on game G? We show PSPACE-completeness
of the edge switch problem and optimal strategy problem
for the following settings: Parity games with the discrete
strategy improvement algorithm of Vöge and Jurdziński;
mean-payoff games with the gain-bias algorithm [11, 33];
and discounted-payoff games and simple stochastic games
with their standard strategy improvement algorithms. We
also show PSPACE-completeness of an analogous problem to
edge switch for the bottom-antipodal algorithm for Acyclic
Unique Sink Orientations on Cubes.

1 Introduction

In this paper we study strategy improvement algo-
rithms for solving two-player games such as parity
games, mean-payoff games, discounted games, and sim-
ple stochastic games [21,33,39]. These games are inter-
esting both because of their important applications and
their unusual complexity status. Parity games, for ex-
ample, arise in several areas of theoretical computer sci-
ence, for example, in relation to the emptiness problem
for tree automata [5,19] and as an algorithmic formula-
tion of model checking for the modal µ-calculus [6, 37].
Moreover, all of these problems are in NP ∩ coNP, and
even UP ∩ coUP [2, 23], so they are unlikely to be NP-
complete. However, despite much effort from the com-
munity, none of these problems are known to be in P,
and whether there exists a polynomial-time algorithm to
solve these games is a very important and long-standing
open problem.

∗This work was supported by EPSRC grant EP/L011018/1

“Algorithms for Finding Approximate Nash Equilibria.” The
full version of this paper, will full proofs, is available at

http://arxiv.org/abs/1507.04500
†University of Liverpool
‡University of Liverpool

Strategy improvement is a well-studied method for
solving these games [21, 33, 39]. It is an extension of
the well-known policy iteration algorithms for Markov
decision processes. The algorithm selects one of the
two players to be the strategy improver. Each strategy
of the improver has a set of switchable edges, and
switching any subset of these edges produces a strictly
better strategy. So, the algorithm proceeds by first
choosing an arbitrary starting strategy, and then in each
iteration, switching some subset of the switchable edges.
Eventually this process will find a strategy with no
switchable edges, and it can be shown that this strategy
is an optimal strategy for the improver.

To completely specify the algorithm, a switching
rule is needed to pick the subset of switchable edges in
each iteration (this is analogous to the pivot rule used in
the simplex method). Many switching rules have been
proposed and studied [8,20,26,27,34]. One of the most
natural rules, and the one that we consider in this pa-
per, is the all-switches rule, which always switches a
vertex if it has a switchable edge. In particular, we con-
sider greedy all-switches, which chooses the best edge
whenever more than one edge is switchable at a vertex
(ties are broken arbitrarily). For a long time, the all-
switches variant of the discrete strategy improvement
algorithm of Vöge and Jurdzinski [39], was considered
the best candidate for a polynomial-time algorithm to
solve parity games. Indeed no example was known that
required a super-linear number of iterations. However,
these hopes were dashed when Friedmann showed an
exponential lower bound for greedy all-switches strat-
egy improvement for parity games [12]. In the same
paper, he showed that his result extends to strategy im-
provement algorithms for discounted games, and simple
stochastic games. Friedmann’s lower bound triggered a
flurry of work into related problems, that lead to expo-
nential lower bounds on policy iteration algorithm for
Markov decision processes [7], and ultimately to a num-
ber of new lower bounds for various simplex pivoting
algorithms [13,15].

The computational power of pivot algo-
rithms. In this paper, we follow a recent line of work
that seeks to explain the poor theoretical performance of
pivoting algorithms using a complexity theoretic point
of view. The first results in this direction were proved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for problems in PPAD and PLS. It is known that, if a
problem is tight-PLS-complete then computing the so-
lution found by the natural improvement algorithm is
PSPACE-complete [22]. Similarly, for the canonical PPAD-
complete problem end-of-the-line, computing the solu-
tion that is found by the natural line following algo-
rithm is PSPACE-complete [31]. This has recently been
extended to show that is PSPACE-complete to compute
any of the solutions that can be found by the Lemke-
Howson algorithm [18], a pivoting algorithm that solves
the PPAD-complete problem of finding a Nash equilib-
rium of a bimatrix game.

Until recently, results of this type were only known
for algorithms for problems that are unlikely to lie
in P. However, a recent series of papers has shown
that similar results hold even for the simplex method
for linear programming! Adler, Papadimitriou and
Rubinstein [1] showed that there exists an artificially
contrived pivot rule for which is PSPACE-complete to
decide if a given basis is on the path of bases visited by
the simplex algorithm with this pivot rule. Disser and
Skutella [4] studied the natural pivot rule that Dantzig
proposed when he introduced the simplex method,
and they showed that it is NP-hard to decide whether
a given variable enters the basis when the simplex
method is run with this pivot rule. Finally, Fearnley
and Savani strengthened both these results by showing
that the decision problem that Disser and Skutella
considered is actually PSPACE-complete [10], and they
also showed that determining if a given variable is used
in the final optimal solution found by the algorithm
is PSPACE-complete. This result exploited a known
connection between single-switch policy iteration for
Markov Decision Processes (MDPs) and the simplex
method for a corresponding LP. The result was first
proved for a greedy variant of single-switch policy
iteration, which then implied the result for the simplex
method with Dantzig’s pivot rule.

All of the results on linear programming are mo-
tivated by the quest to find a strongly polynomial al-
gorithm for linear programming, which was included in
Smale’s list of great unsolved problems of the 21st cen-
tury [36]. One way of resolving this problem would be
to design a polynomial-time pivot rule for the simplex
method, and if we are to do this, then it is crucial to
understand why existing pivot rules fail. The PSPACE-
completeness indicate that they fail not because they
are stupid, but in fact because they are capable of solv-
ing any problem that can be computed in polynomial
space.

We face a similar quest to find a polynomial-
time algorithm for the games studied in this paper.
Strategy improvement is a prominent algorithm for

solving these games, and indeed it is one of the only
algorithms for solving discounted and simple stochastic
games. So, devising a polynomial-time switching rule
is an obvious direction for further study. It may in
fact be easier to devise a polynomial time switching
rule, because there is a lot more freedom in each
step of the algorithm: simplex pivot rules correspond
to switching rules that can only switch a single edge,
whereas strategy improvement rules can switch any
subset of edges. Indeed, it may be the case that the
polynomial Hirsch conjecture fails, ruling out a strongly
polynomial simplex method, but the analogue of the
Hirsch conjecture for strategy improvement is known to
be true: one can always reach an optimal strategy in at
most n strategy improvement iterations, where n is the
number of vertices.

Our contribution. Our main results are that, for
greedy all-switches strategy improvement, determining
whether the algorithm switches a given edge is PSPACE-
complete, and determining whether the optimal strat-
egy found by the algorithm uses a particular edge is
PSPACE-complete. One of the key features that strat-
egy improvement has is the ability to switch multiple
switchable edges at the same time, rather than just
one as in the simplex method. Our results show that
naively using this power does not help to avoid the
PSPACE-completeness results that now seem to be en-
demic among pivoting algorithms.

The proof primarily focuses on the strategy im-
provement algorithm of Vöge and Jurdziński for solving
parity games [39]. We now give a short overview of the
algorithm so that we can explain our results, while a for-
mal definition will be given in Section 2. A parity game
is played by two players on a finite graph. The vertices
are partitioned between the two players, who are called
Odd and Even. A strategy for one of the two players
chooses an outgoing edge at each vertex belonging to
that player. The strategy improvement algorithm takes
the point of view of player Even. It starts with an arbi-
trarily chosen player Even strategy. In each iteration it
computes a set of switchable edges, and as we have men-
tioned, switching any subset of switchable edges yields
an improved strategy. The greedy all-switches variant
of strategy improvement always switches every vertex
that has a switchable edge, and if a vertex has more
than one switchable edge, it selects the “best” switch-
able edge (according to a valuation function that we
will be defined formally later.) The following definition
formalises the problem that we are interested in.

Definition 1.1. Let G be a game, and let e be an
edge and σ be a player Even strategy. The problem
EdgeSwitch(G, σ, e) is to decide if the edge e is ever
switched by greedy all-switches strategy improvement

when it is applied to G starting from σ.

The main technical contribution of the paper is to show
the following theorem.

Theorem 1.1. EdgeSwitch for Vöge and Jur-
dziński’s algorithm is PSPACE-complete.

We use this theorem to show similar results for
other games. For mean-payoff games, our results ap-
ply to the gain-bias algorithm [11]; and for discounted
and simple stochastic games our results apply to the
standard strategy improvement algorithms [3, 32]. We
utilise the well-known polynomial-time reductions from
parity games to mean-payoff games [32], mean-payoff
games to discounted games, and from discounted games
to simple stochastic games [40]. The parity games we
construct have the property that when they are reduced
to the other games mentioned above strategy improve-
ment will behave in the same way (for discounted and
simple stochastic games this was already observed by
Friedmann [12]), so we get the following corollary of
Theorem 1.1.

Corollary 1.1. EdgeSwitch for the gain-bias al-
gorithm, and the standard strategy improvement al-
gorithms for discounted-payoff and simple stochastic
games is PSPACE-complete.

Theorem 1.1 proves a property about the path taken
by strategy improvement during its computation. Pre-
vious results have also studied the complexity of finding
the optimal strategy that is produced by strategy im-
provement, which we encode in the following problem.

Definition 1.2. Let G be a game, and let e be an
edge and σ be a player Even strategy. The problem
OptimalStrategy(G, σ, e) is to decide if the edge e
is used in the optimal strategy that is found by greedy
all-switches strategy improvement when applied to G
starting from σ.

Augmenting our construction for parity games with an
extra gadget gives the following theorem.

Theorem 1.2. OptimalStrategy for Vöge and Ju-
rdziński’s algorithm is PSPACE-complete.

This result requires that the parity game has mul-
tiple optimal solutions because otherwise the PSPACE

hardness of OptimalStrategy would imply NP ∩
coNP = PSPACE. With further modifications, we can
again extend this result to strategy improvement algo-
rithms for other games.

Corollary 1.2. OptimalStrategy for the gain-
bias algorithm, and the standard strategy improvement
algorithms for discounted-payoff and simple stochastic
games is PSPACE-complete.

Our results can also be applied to unique sink ori-
entations (USOs.) A USO of an n-dimensional hyper-
cube is an orientation of its edges such that every face
has a unique sink [38]. The fundamental algorithmic
problem for USOs is to find the global sink assuming
oracle access to the edge orientation. The design and
analysis of algorithms for this problem is an active re-
search area [14,15,17,20,29,35], in particular for acyclic
orientations (AUSOs). The BottomAntipodal algo-
rithm [35] for AUSOs on cubes starts at an arbitrary
vertex and in each iteration jumps to the antipodal ver-
tex in the sub-cube spanned by the outgoing edges at
the current vertex.

For binary games, where vertices have outdegree at
most two, and no two strategies have the same value,
the valuation functions used by strategy improvement
induce an AUSO on a cube, and all-switches strategy
improvement corresponds to BottomAntipodal on
this AUSO. For non-binary games we instead get an
AUSO on a grid [16], so our results immediately give
a PSPACE-hardness result for grid USOs for a problem
analogous to EdgeSwitch. To get a similar result for
AUSOs on cubes we turn our construction into a binary
parity game, and we get the following.

Corollary 1.3. Let C be a d-dimensional cube
AUSO, specified by a poly(d)-sized circuit that computes
the edge orientations for each vertex of C. Given a di-
mension k ∈ {1, . . . , d}, and a vertex v, it is PSPACE-
complete to decide if BottomAntipodal started at v,
ever switches the kth coordinate.

Since a USO has a unique solution, by definition, we
cannot hope to get a result for AUSOs that is analogous
to OptimalStrategy, since, as noted above, PSPACE-
hardness of OptimalStrategy requires multiple op-
timal solutions under standard complexity-theoretic as-
sumptions.

Related work. The techniques used in this work
can be compared to the techniques used to show PSPACE-
hardness results for the simplex algorithm equipped
with Dantzig’s pivoting rule [10]. In that work, the
lower bound was ultimately shown for policy iteration
algorithms for Markov decision processes. The reduc-
tion used there shares some similarities with the con-
struction that we present in this paper: both construc-
tions are based on simulating a circuit iteration problem
using Not and Or gates, and in both cases the whole
construction is driven by a clock gadget.

The main difference is that, while Dantzig’s pivot
rule only switches one vertex in each iteration, the
greedy all-switches rule switches every vertex that has a
switchable edge. This necessitates a radically different
construction, where, as we will explain, the circuit
gadgets must be capable of being switched in every
iteration. Also, we must use two separate clock gadgets,
which must be carefully synchronised.

We now discuss other related work. The best known
algorithms for parity games games have subexponen-
tial running time: the random facet strategy improve-
ment algorithms combine strategy improvement with
the random-facet algorithm for LPs [26–28]. Following
the work of Friedmann [12] that we build on heavily
in this paper, Friedmann, Hansen, and Zwick showed a
sub-exponential lower bound for the random facet strat-
egy improvement algorithm [14]. They also used a con-
struction of Fearnley [7] to extend the bound to the
random facet pivot rule for the simplex method [15].
For parity games, a deterministic subexponential-time
algorithm is known [24].

2 Preliminaries

2.1 Parity games

A parity game is a tuple G = (V, VEven, VOdd, E, pri),
where (V,E) is a directed graph. The sets VEven

and VOdd partition V into the vertices belonging to
player Even, and the vertices belonging to player Odd,
respectively. The priority function pri : V → N assigns
a natural number to each vertex. We assume that every
vertex has at least one outgoing edge. The algorithm of
Vöge and Jurdziński also requires that we assume that
every priority is assigned to at most one vertex.

A strategy for Even is a function σ : VEven → V
such that, for each v ∈ VEven we have that (v, σ(v)) ∈ E.
Strategies for player Odd are defined analogously. We
use ΣEven and ΣOdd to denote the set of strategies for
players Even and Odd, respectively.

A play is a sequence v0, v1, . . . such that for all
i ∈ N we have vi ∈ V and (vi, vi+1) ∈ E. Given
a pair of strategies σ ∈ ΣEven and τ ∈ ΣOdd, and a
starting vertex v0, there is a unique play that starts
at v0 and follows both of the strategies. So, we define
Play(v0, σ, τ) = v0, v1, . . . , where for each i ∈ N we have
vi+1 = σ(vi) if vi ∈ VEven, and vi+1 = τ(vi) if vi ∈ VOdd.

Given a play π = v0, v1, . . . we define MaxIo(π) =
max{p : ∃ infinitely many i ∈ N s.t. pri(vi) = p},
to be the maximum priority that occurs infinitely often
along π. We say that a play π is winning for player
Even if MaxIo(π) is even, and we say that π is winning
for Odd if MaxIo(π) is odd. A strategy σ ∈ ΣEven

is a winning strategy for a vertex v ∈ V if, for every
strategy τ ∈ ΣOdd, we have that Play(v, σ, τ) is winning

for player Even. Likewise, a strategy τ ∈ ΣOdd is a
winning strategy for v if, for every strategy σ ∈ ΣEven,
we have that Play(v, σ, τ) is winning for player Odd.
The following fundamental theorem states that parity
games are determined.

Theorem 2.1. ([5, 30]) In every parity game, the
set V can be partitioned into sets (W0,W1), where Even
has a winning strategy for all v ∈ W0, and Odd has a
winning strategy for all v ∈W1.

2.2 Strategy improvement

Our main theorem is about the strategy improvement
algorithm of Vöge and Jurdziński [39] for solving parity
games. Friedmann observed that, for the purposes of
showing lower bounds, the algorithm can be greatly
simplified. Here, we present only the simplified version.
A description of the complete algorithm can be found
in the full version of the paper.

One-sink games. The simplified algorithm only
works if the input is a one-sink game. These games
contain a sink vertex s ∈ V such that pri(s) = 1 and
(s, s) ∈ E is the only outgoing edge from s. An even
strategy σ ∈ ΣEven is a terminating strategy if, for
every vertex v, the path that starts at v and follows σ
eventually reaches the sink, no matter how the opponent
plays. A parity game is a one-sink parity game if the
following conditions hold. Firstly, there should be a
sink vertex s which satisfies the properties given above.
Secondly, there should be no vertex v with pri(v) = 0.
Thirdly, there should exist at least one terminating
strategy. Finally, player Even should not win the parity
game, ie., W0 = ∅.

Valuations. The algorithm assigns a valuation to
each vertex v under every terminating strategy σ ∈
ΣEven and every strategy τ ∈ ΣOdd. Since σ is ter-
minating, for every vertex v we know that Play(v, σ, τ)
consists of a finite path P (v, σ, τ) that ends at the sink.
We define the valuation function Valσ,τ (v) = {pri(u) :
u ∈ P (v, σ, τ) and pri(u) > 1}. That is, the valuation
of v is the set of priorities on the path from v to the sink.
Next we define an order on these sets. Let P,Q ⊂ N. We
first define: MaxDiff(P,Q) = max

(
(P \ Q) ∪ (Q \ P)

)
.

If d = MaxDiff(P,Q) then we define P @ Q to hold
if one of the following conditions holds: d is even and
d ∈ Q, or d is odd and d ∈ P . Furthermore, we have
that P v Q if either P = Q or P @ Q.

Intuitively, the v ordering describes the following
preferences. Player Even prefers to see large even pri-
orities, and prefers to avoid seeing large odd priorities.
Thus, the valuation considers the largest priority that
is not shared by the two valuations, and then decides
based on its parity. Therefore, if we want to make a

path desirable according to the valuation, we can place
a large even priority on it, while if we want to make it
undesirable, we can place a large odd priority on it.

Best responses. Given a strategy σ ∈ ΣEven, we
can find a best response strategy for player Odd. To
do so, we first eliminate the player Odd strategies τ
in which, when played against σ, there is an cycle of
even parity. These cannot be best responses, because
in a terminating strategy player Odd can always reach
an odd cycle by forcing play to the sink. Let ΣσOdd be
the set of Odd strategies that do not form even cycles
when played against σ. Then, we select the strategy
τ∗ ∈ ΣσOdd such that, for every τ ∈ ΣσOdd and every

vertex v we have: Valσ,τ (v) v Valσ,τ
∗
(v). Vöge and

Jurdziński showed that a best response can always be
computed in polynomial time. We define Br(σ) to be
an arbitrarily chosen best response strategy against σ.
Furthermore, we define Valσ(v) = Valσ,Br(σ)(v).

Switchable edges. Let σ ∈ ΣEven be a strategy
for the Even player and (v, u) ∈ E be an edge such
that σ(v) 6= u. We say that (v, u) is switchable in
σ if Valσ(σ(v)) @ Valσ(u). Furthermore, we define
a most appealing outgoing edge at a vertex v to be
an edge (v, u) such that, for all edges (v, u′) we have
Valσ(u′) v Valσ(u).

There are two fundamental properties of switchable
edges. Firstly, switching any subset of the switchable
edges produces an improved strategy. Let σ be a
strategy, and let W ⊆ E be a set of switchable edges in
σ such that, for each vertex v, there is at most one edge
of the form (v, u) ∈W . Switching W in σ creates a new
strategy σ[W] where for all v we have: σ[W](v) = u if
(v, u) ∈ W , and σ[W](v) = σ(v) otherwise. Secondly, a
strategy with no switchable edges is optimal: a strategy
σ ∈ ΣEven is optimal if for every vertex v and every

strategy σ′ ∈ ΣEven we have Valσ
′
(v) v Valσ(v).

Lemma 2.1. ([39]) We have:

1. Let σ be a terminating strategy and let W ⊆ E be
a set of switchable edges in σ such that, for each
vertex v, there is at most one edge of the form
(v, u) ∈W . Then, σ[W] is terminating, and for ev-

ery vertex v we have Valσ(v) v Valσ[W](v). More-
over, there exists a vertex v for which Valσ(v) @
Valσ[W](v).

2. A strategy with no switchable edges is optimal.

The algorithm. These properties give rise to an
obvious strategy improvement algorithm that finds an
optimal strategy. The algorithm begins by selecting
an arbitrary terminating strategy σ ∈ ΣEven. In each
iteration, the algorithm performs the following steps:

1. If there are no switchable edges, then terminate.

2. Otherwise, select a set W ⊆ E of switchable edges
in σ such that, for each vertex v, there is at most
one edge of the form (v, u) ∈ W . Set σ := σ[W]
and go to step 1.

By the first property, each iteration of this algorithm
produces a strictly better strategy according to the v
ordering, and therefore the algorithm must eventually
terminate. However, the algorithm can only terminate
when there are no switchable edges, and therefore the
second property implies that the algorithm will always
find an optimal strategy.

To get a complete algorithm, we must specify a
switching rule, that chooses which subset of switchable
edges should be chosen in each iteration. In this paper,
we focus on the greedy all-switches switching rule.
This rule switches every vertex that has a switchable
edge, and if there is more than one switchable edge, it
arbitrarily picks one of the most appealing edges.

2.3 Circuit iteration problems

The problems. To prove our PSPACE-
completeness results, we will reduce from circuit
iteration problems, which we now define. A cir-
cuit iteration instance is a triple (F,B, z), where:
F : {0, 1}n → {0, 1}n is a function represented as a
boolean circuit C, B ∈ {0, 1}n is an initial bit-string,
and z is an integer such that 1 ≤ z ≤ n. We use stan-
dard notation for function iteration: given a bit-string
B ∈ {0, 1}n, we recursively define F 1(B) = F (B), and
F i(B) = F (F i−1(B)) for all i > 1.

We now define two problems that will be used as
the starting point for our reduction. Both are decision
problems that take as input a circuit iteration instance
(F,B, z).

• BitSwitch(F,B, z): decide whether there exists
an even i ≤ 2n such that the z-th bit of F i(B) is 1.

• CircuitValue(F,B, z): decide whether the z-th
bit of F 2n(B) is 1.

The requirement for i to be even in BitSwitch is a
technical requirement that is necessary in order to make
our reduction to strategy improvement work.

It has been shown that both of these problems
are PSPACE-complete [10]. This should not be too
surprising, because F can simulate a single step of a
space-bounded Turing machine, so when F is iterated,
it simulates a run of the space-bounded Turing machine.

For our reduction, we will make a number of tech-
nical assumptions about the circuits used to represent
F , which are discussed in the full version of the paper.

Here we highlight some of the most important assump-
tions. Firstly, we assume that the circuits contain only
Not and Or gates. Secondly, we assume that the cir-
cuits are presented in negated form, which means that
the ith output of the circuit is 1 on input B if and only
if F (B)i = 0.

3 The Construction

The main technical result of the paper is to show that
EdgeSwitch is PSPACE-complete by reducing from the
circuit iteration problem BitSwitch. Let (F,B, z) be
a circuit iteration instance, and let C be the negated
form of the circuit that computes F . We construct
a parity game that forces greedy all-switches strategy
improvement to compute F i(B) for each i.

The construction will contain two copies of the
circuit C, which are numbered 0 and 1. The circuits
take turns in computing F . First circuit 0 computes
F (B), then circuit 1 computes F 2(B), then circuit 0
computes F 3(B), and so on.

Each circuit is equipped with its own clock, which
dictates when the circuit should be computing. To do
this, each clock has two special vertices r and s. Most
of the time, the valuation of r is much larger than the
valuation of s. However, every so often the clock ticks,
and there is a single iteration in which the valuation of
s is much larger than the valuation of r. This signal
causes the circuit to start computing.

When the circuits compute, the gates are evaluated
in depth order. In particular, we transform our circuits
so that both inputs to an Or-gate have the same depth.
Then, in the first iteration the gates that read from
inputs are evaluated, in the second iteration the gates
of depth 2 are evaluated, and so on. Thus, if d(C)
denotes the depth of the circuit, then after d(C) strategy
improvement iterations the output of the circuit will be
evaluated. We then spend one extra iteration to store
each output bit in a special Input/Output gadget.

The Input/Output gadgets play a crucial role
in the construction, because they move between the
circuits. As we have described so far, the clock for
Circuit 0 ticks, and after spending d(C) + 1 iterations
computing, the output of the circuit will be stored in the
Input/Output gadgets for Circuit 0. Then, in some
later iteration, the clock for Circuit 1 ticks. At this
point, the Input/Output gadgets in Circuit 0 move to
Circuit 1, where they act as input gates, which output
their stored values to the gates of depth 1. In other
words, during a computation in Circuit j, we have that
the Input/Output gadgets in Circuit 1−j are in input
mode, where they feed their stored values into Circuit j,
meanwhile the Input/Output gadgets in Circuit j are
in output mode, where they read the output and then

store it.
In this way, we force greedy all-switches strategy

improvement to compute F i(B) for increasingly large
values of i. Each Input/Output gadget contains a
specific edge that is switched only when the bit stored
by the gadget is a 1. Thus, we can choose the particular
edge e that corresponds to the zth output bit, and use
this edge to monitor whether F i(B)z is ever 1. Note
that, since there are two circuits, each Input/Output
gadget only holds F i(B)z for either every even i, or
every odd i. This is why we needed the technical
restriction on BitSwitch to only consider F i(B) for
every even i. Hence, we show that EdgeSwitch is
PSPACE-complete. In what follows, we give more details
on how each of the gadgets is implemented.

The clock. For the clocks, we adapt Friedmann’s
construction [12]. In order to show that greedy-all
switches strategy improvement can take exponential
time, Friedmann constructed an example that forces
greedy all-switches strategy improvement to simulate a
binary counter. The example contains n bit gadgets,
each of which stores a single bit. Each strategy in
the example encodes a binary string of length n, and
Friedmann showed that greedy all-switches strategy
improvement must pass through one strategy for each
possible bit-string, thus giving a 2n lower bound on the
running time of the algorithm.

One key property of Friedmann’s construction is
that the number of strategy improvement iterations
between one bit-string and the next can be made
arbitrarily large. We exploit this in order to use the
construction as a clock. We setup each clock so that it
ticks precisely when it moves from one bit-string to the
next, and the delay between bit-strings is configured so
that there is enough time for both circuits to compute
their output.

As we have mentioned, the construction contains
two independent clocks, which control their respective
circuits. In order for the construction to work, these two
clocks must be carefully synchronised. In particular,
Clock 0 must always tick at least k + 1 iterations after
Clock 1, and likewise Clock 1 must always tick at least
k+1 iterations after Clock 0. If this is not the case, then
there will not be enough time for a circuit to compute
its output before the next circuit starts computing.

Circuits. Each gate in each circuit will be repre-
sented by a gadget. The gadget for gate i in circuit j
has an output state that will be denoted by oji . The val-
uation of this output state will represent the output of
the gate. In particular, the valuations of these output
vertices will follow three rules.

• Before the gate is evaluated, the valuation of oji will
be small.

• If the gate is evaluated to false, then the valuation
of oji will remain small.

• If the gate is evaluated to true, then the valuation
of oji will become large.

Figure 1 shows all of the gadgets used in our construc-
tion. Box vertices belong to player Even while circle
vertices belong to player Odd. Since we are required to
assign each priority to at most one vertex, the actual
construction must use a complicated function to deter-
mine priorities. In the diagrams we use representative
priorities, which maintain the order and parity of the
priorities used in the gadgets. A complete formal spec-
ification of the construction, and a proof of correctness,
can be found in the full version of the paper. We now
give a high level overview of the design of these gadgets.

The or gate. The Or-gate gadget has a simple
design with a single state oji . It has edges to the clock
vertices r and s, and to the output-vertices of its two
inputs. Before the gate is evaluated, the state oji chooses

the edge to r. If both inputs evaluate to false, then oji
does not switch away from r. In both of these cases
the odd priority on oji ensures that the valuation of the
state remains low. On the other hand, if at least one
of the two inputs evaluates to true, then oji switches to
the corresponding input state, and the large valuation
of the input then causes the valuation of oji to also be
large.

The not gate. For the Not-gate gadget, we use
a modified version of the bit-gadget used by Friedmann
in his examples. The value of the bit is represented
by the strategy chosen at dji : the bit is 1 if dji chooses

the edge to eji , and it is 0 otherwise. The edge from

dji to eji is always switchable, but to prevent it from
switching, Friedmann uses a gadget that he calls a
deceleration lane. This gadget provides a series of
distracting switchable edges (to the vertices aji,l) that

are each more appealing than the edge from dji to eji .
Since greedy all-switches strategy improvement always
switches the most appealing edge, as long as there is a
distracting edge to the deceleration lane, the vertex dji
is prevented from switching to eji .

To turn this into a Not-gate, we use a modified de-
celeration lane. This deceleration lane provides distract-
ing switchable edges until the gate is evaluated. Then,
if the input gate is evaluated to true, the modified decel-
eration lane continues providing distracting switchable
edges, but if the input gate is evaluated to false, no more
distracting switchable edges are produced. In this way,
the edge from dji to eji is switched (ie., the bit flips to
1) if and only if the input gate evaluated to false. This
gives us a Not-gate.

To see that the gadget outputs the correct values,
observe that there is a large odd priority on oji , but an

even larger even priority on hji . If the edge from dji to eji
is not switched, then player Odd prefers not to use the
edge to hji , and the odd priority causes the valuation

of oji to be small. On the other hand, if the edge is
switched, Odd is forced to escape from the even cycle,
so then the even priority on hji causes the valuation of

oji to be large.
The input/output gadget. The input/output

gadget is the most complicated part of the construction,
because as we have mentioned, it plays two different
roles. At a high level, the gadget is a relocatable Not-
gate. When the gadget is in output mode, it is a Not-
gate of depth d(C)+1 in circuit j, and when the gadget
is in input mode, it is a Not-gate of depth 0 in circuit
1− j. The extra vertices added to the Not-gate and a
special modified deceleration lane perform the transition
between these two modes.

Since the gadget is used in both circuits, it must
be connected to both clocks. The special circuit mover
gadget plays an important role here. The vertices yj

and zj replace the clock-vertices rj and sj used in the
Not-gate gadget. The state yj will switch to r1−j when
clock 1− j ticks, which changes the mode of the gadget.

One critical property of the transition is that the
operation of the internal Not-gate should not be af-
fected. This is achieved by ensuring that all of the ver-
tices involved in the transition (yj , hji,0, and pji) switch
during the same iteration. Since the Not-gate gadget
only cares about the relative valuations of its outgoing
edges, if all of these edges are switched at once, then the
operation of the Not-gate is not affected. This ensures
that the data held in the Not-gate is not destroyed.

4 Other results

EdgeSwitch for other problems. Once we have
shown that EdgeSwitch is PSPACE-complete, we then
get several subsequent results. Firstly, we get that
EdgeSwitch is PSPACE-complete for the gain-bias al-
gorithm for mean-payoff games [11, 33], the standard
strategy improvement algorithm for discounted games,
and the standard strategy improvement algorithm for
simple-stochastic games. The results concerning dis-
counted and simple-stochastic games follow from a re-
sult of Friedmann [12], which shows that, for a one-
sink parity game, after applying the standard reduction
from parity games to discounted and simple-stochastic
games, the standard strategy improvement algorithms
for these games switch exactly the same edges as the
parity game strategy improvement algorithm. For the
result concerning mean-payoff games, we observe that

oji
1

rj

sj

oj
I1(i)

oj
I2(i)

(a) The Or gate.

. . .tj
i,d(i)−1

tj
i,d(i)

tj
i,d(i)+1

. . .

aj
i,d(i)−1

aj
i,d(i)

aj
i,d(i)+1

oj
I(i)

rj sjrj sj

(b) Modified deceleration lane for Not gate i in circuit j.

dji
3

eji
4

oji
15

hj
i

16

aji,1aji,2
. . .aji,m

sj

rj

(c) Not gate with index i in circuit j.

yj : 4 zj : 2

sjrjr1−j

(d) Circuit mover gadget for circuit j.

dji
3

eji
4

oji
15

qji,0
6

qji,1
32

r1−j

4

hj
i,0
2

hj
i,1
30

hj
i,2
12

aji,1aji,2
. . .aji,m

zj

yj

r1−j

rj

(e) Input/Output gate with index i in circuit j.

. . .tj
i,d(C)−1

tj
i,d(C)

tj
i,d(C)+1

. . .

aj
i,d(C)−1

aj
i,d(C)

aj
i,d(C)+1

pji
2

oj
I(i)

pji,1
14

r1−j

yj zjyj zj

(f) Modified deceleration lane for an Input/Output gate i
in circuit j.

Figure 1: The gadgets used in our construction.

the same property holds after applying the standard re-
duction from parity games to mean-payoff games.

We also get a result for the bottom-antipodal al-
gorithm for acyclic unique sink orientations on hyper-
cubes. This result requires more work, because it re-
quires us to transform the game into a binary parity
game, which requires that every vertex has exactly two
outgoing edges. Friedmann has already shown that his
example can be transformed into a binary game. The
clocks and Not-gates in our construction can use the
same transformation. For the Or-gates, we use a re-
designed gadget. This gadget takes up to two-iterations
to evaluate the gate after all of the inputs have been
evaluated, so we must slightly alter the construction to
allow for two-iterations to evaluate each level of gates.
After applying this transformation, we obtain a binary
parity game, which then gives the result for USOs on
hypercubes.

OptimalStrategy for parity games. Our con-
struction can be modified to prove that Optimal-
Strategy is PSPACE-complete for parity games. The
idea here is to run the construction until F 2n(B) has
been computed. At this point, the strategy choice made
at a particular vertex d in one of the Input/Output
gadgets will encode whether the zth bit of F 2n(B) is 1
or 0. We use an extra gadget that makes d permanently
indifferent between all of its outgoing edges. Since strat-
egy improvement never switches an indifferent edge, the
strategy chosen at d in the optimal strategy will encode
F 2n(B), as required. It should be noted that this re-
sult must be carried out in Vöge and Jurdziński’s orig-
inal algorithm, rather than the simplified one used for
EdgeSwitch, because it is not possible for a vertex to
be indifferent in a one-sink game.

The extra gadget consists of a third clock. This
clock is modified so that, after 2n iterations, a particular
state f gets a very large valuation. Each edge (d, u) is
replaced with three edges (d, vu), (vu, u), and (vu, f),
where vu is a new state for player Even that can either
move to u, or to f . The idea is that each state vu chooses
the edge to u as normal for the first 2n iterations, and
then once the valuation of f becomes large, they all
simultaneously switch to f , and make d permanently
indifferent.

OptimalStrategy for other games. The result
for OptimalStrategy can also be generalised to
the gain-bias algorithm for mean-payoff games, and
the standard strategy improvement algorithms for dis-
counted and simple-stochastic games. Once again, the
standard reduction from parity games is applied, but
some small extra modifications are required (in partic-
ular, the rewards on the vertices vu must be set to 0)
to ensure that d1z remains indifferent in the valuations

used by these algorithms.

5 Open problems

There are several open problems that arise from this
work. Strategy improvement generalizes policy iteration
which solves mean-payoff and discounted-payoff Markov
decision processes [33]. The exponential lower bounds
for greedy all-switches have been extended to MDPs:
Fearnley showed that the second player in Friedmann’s
construction [12] can be simulated by a probabilistic
action, and used this to show an exponential lower
bound for the all-switches variant of policy iteration
of average-reward MDPs [7]. This technique cannot
be applied to the construction in this paper, because
we use additional Odd player vertices (in particular the
vertices qji,1) that cannot be translated in this way. Can
our PSPACE-hardness results be extended to all-switches
strategy improvement for MDPs?

Also, there are other pivoting algorithms for par-
ity games that deserve attention. It has been shown
that Lemke’s algorithm and the Cottle-Dantzig algo-
rithm for the P-matrix linear complementarity problem
(LCP) can be applied to parity, mean-payoff, and dis-
counted games [9, 25]. It would be interesting to come
up with similar PSPACE-completeness results for these
algorithms, which would also then apply to the more
general P-matrix LCP problem.

References

[1] I. Adler, C. H. Papadimitriou, and A. Rubinstein. On
simplex pivoting rules and complexity theory. In Proc.
of IPCO, pages 13–24, 2014.

[2] A. Condon. The complexity of stochastic games.
Information and Computation, 96(2):203–224, 1992.

[3] A. Condon. On algorithms for simple stochastic games.
In Advances in Computational Complexity Theory, vol-
ume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 51–73. Amer-
ican Mathematical Society, 1993.

[4] Y. Disser and M. Skutella. The simplex algorithm is
np-mighty. In Proc. of SODA, pages 858–872, 2015.

[5] E. A. Emerson and C. S. Jutla. Tree automata, mu-
calculus and determinacy. In Proc. of FOCS, pages
368–377, 1991.

[6] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-
checking for fragments of µ-calculus. In Proc. of CAV,
1993.

[7] J. Fearnley. Exponential lower bounds for policy
iteration. In Proc. of ICALP, pages 551–562, 2010.

[8] J. Fearnley. Non-oblivious strategy improvement. In
Proc. of LPAR, 2010.

[9] J. Fearnley, M. Jurdziński, and R. Savani. Linear
complementarity algorithms for infinite games. In
Proc. of SOFSEM, pages 382–393, 2010.

[10] J. Fearnley and R. Savani. The complexity of the

simplex method. In Proc. of STOC, pages 201–208,
2015.

[11] J. Filar and K. Vrieze. Competitive Markov Decision
Processes. Springer, 1997.

[12] O. Friedmann. An exponential lower bound for the lat-
est deterministic strategy iteration algorithms. Logical
Methods in Computer Science, 7(3), 2011.

[13] O. Friedmann. A subexponential lower bound for
Zadeh’s pivoting rule for solving linear programs and
games. In Proc. of IPCO, pages 192–206, 2011.

[14] O. Friedmann, T. D. Hansen, and U. Zwick. A subex-
ponential lower bound for the random facet algorithm
for parity games. In Proc. of SODA, pages 202–216,
2011.

[15] O. Friedmann, T. D. Hansen, and U. Zwick. Subex-
ponential lower bounds for randomized pivoting rules
for the simplex algorithm. In Proc. of STOC, pages
283–292, 2011.

[16] B. Gärtner, W. D. J. Morris, and L. Rüst. Unique
sink orientations of grids. Algorithmica, 51(2):200–235,
2008.

[17] B. Gärtner and I. Schurr. Linear programming and
unique sink orientations. In Proc. of SODA, pages 749–
757, 2006.

[18] P. W. Goldberg, C. H. Papadimitriou, and R. Savani.
The complexity of the homotopy method, equilibrium
selection, and Lemke-Howson solutions. ACM Trans.
Economics and Comput., 1(2):9, 2013.

[19] E. Grädel, W. Thomas, and T. Wilke, editors. Au-
tomata, Logics, and Infinite Games. A Guide to Cur-
rent Research, volume 2500 of LNCS. Springer, 2002.

[20] T. D. Hansen, M. Paterson, and U. Zwick. Improved
upper bounds for random-edge and random-jump on
abstract cubes. In Proc. of SODA, pages 874–881,
2014.

[21] A. J. Hoffman and R. M. Karp. On nonterminating
stochastic games. Management Science, 12(5):359–
370, 1966.

[22] D. S. Johnson, C. H. Papadimitriou, and M. Yan-
nakakis. How easy is local search? J. Comput. Syst.
Sci., 37(1):79–100, 1988.

[23] M. Jurdziński. Deciding the winner in parity games
is in UP ∩ co-UP. Information Processing Letters,
68(3):119–124, 1998.

[24] M. Jurdziński, M. Paterson, and U. Zwick. A deter-
ministic subexponential algorithm for solving parity
games. In Proc. of SODA, pages 117–123, 2006.

[25] M. Jurdziński and R. Savani. A simple P-matrix linear
complementarity problem for discounted games. In
Proc. of CiE, pages 283–293, 2008.

[26] G. Kalai. A subexponential randomized simplex algo-
rithm. In Proc. of STOC, pages 475–482, 1992.

[27] W. Ludwig. A subexponential randomized algorithm
for the simple stochastic game problem. Information
and Computation, 117(1):151–155, 1995.

[28] J. Matoušek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16(4–5):498–516, 1996.

[29] J. Matoušek and T. Szabó. Random edge can be
exponential on abstract cubes. In Proc. of FOCS,
pages 92–100, 2004.

[30] A. W. Mostowski. Games with forbidden positions.
Technical Report 78, University of Gdańsk, 1991.

[31] C. H. Papadimitriou. On the complexity of the parity
argument and other inefficient proofs of existence.
Journal of Computer and System Sciences, 48(3):498–
532, 1994.

[32] A. Puri. Theory of Hybrid Systems and Discrete
Event Systems. PhD thesis, University of California,
Berkeley, 1995.

[33] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc. New York, NY, USA, 2005.

[34] S. Schewe. An optimal strategy improvement algo-
rithm for solving parity and payoff games. In Proc.
of CSL, pages 369–384, 2008.

[35] I. Schurr and T. Szabó. Jumping doesn’t help in
abstract cubes. In Proc. of IPCO, pages 225–235, 2005.

[36] S. Smale. Mathematical problems for the next century.
The Mathematical Intelligencer, 20(2):7–15, 1998.

[37] C. Stirling. Local model checking games. In Proc. of
CONCUR, pages 1–11, 1995.

[38] T. Szabó and E. Welzl. Unique sink orientations of
cubes. In Proc. of FOCS, pages 547–555, 2001.

[39] J. Vöge and M. Jurdziński. A discrete strategy im-
provement algorithm for solving parity games. In Proc.
of CAV, pages 202–215, 2000.

[40] U. Zwick and M. S. Paterson. The complexity of mean
payoff games on graphs. Theoretical Computer Science,
158(1–2):343–359, 1996.

