10,603 research outputs found

    Vulnerability Analysis of Modern Electric Grids: A Mathematical Optimization Approach

    Get PDF
    Electrical power must be transmitted through a vast and complicated network of interconnected grids to arrive at one’s fingertips. The US electric grid network and its components are rapidly advancing and adapting to the advent of smart technologies. Production of electricity is transitioning to sustainable processes derived from renewable energy sources like wind and solar power to decrease dependence on nonrenewable fossil fuels. These newly pervasive natures of smart technology and the variable power supply of renewable energy introduce previously unexamined vulnerabilities into the modern electric grid. Disruption of grid operations is not uncommon, and the effects can be economically and societally severe. Thus, a vulnerability analysis can provide decision makers with the ability to characterize points of improvement in the networks they supervise. This thesis performs a vulnerability analysis of electric grid operations including storage. This vulnerability analysis is achieved through a set of numerical experiments on a multi-period optimal power flow model including storage and variable demand. This model resulted in an analysis indicating storage is helpful in increasing resilience in networks with excess generation, no matter how severe the disruption. Networks with constrained generation benefit little, if at all, from storage. This analysis allows us to conclude careful implementation is the best way to improve electric grid security in the face of widespread use of renewable energy and smart technology

    A New Efficient Stochastic Energy Management Technique for Interconnected AC Microgrids

    Full text link
    Cooperating interconnected microgrids with the Distribution System Operation (DSO) can lead to an improvement in terms of operation and reliability. This paper investigates the optimal operation and scheduling of interconnected microgrids highly penetrated by renewable energy resources (DERs). Moreover, an efficient stochastic framework based on the Unscented Transform (UT) method is proposed to model uncertainties associated with the hourly market price, hourly load demand and DERs output power. Prior to the energy management, a newly developed linearization technique is employed to linearize nodal equations extracted from the AC power flow. The proposed stochastic problem is formulated as a single-objective optimization problem minimizing the interconnected AC MGs cost function. In order to validate the proposed technique, a modified IEEE 69 bus network is studied as the test case

    Risk-Averse Model Predictive Operation Control of Islanded Microgrids

    Full text link
    In this paper we present a risk-averse model predictive control (MPC) scheme for the operation of islanded microgrids with very high share of renewable energy sources. The proposed scheme mitigates the effect of errors in the determination of the probability distribution of renewable infeed and load. This allows to use less complex and less accurate forecasting methods and to formulate low-dimensional scenario-based optimisation problems which are suitable for control applications. Additionally, the designer may trade performance for safety by interpolating between the conventional stochastic and worst-case MPC formulations. The presented risk-averse MPC problem is formulated as a mixed-integer quadratically-constrained quadratic problem and its favourable characteristics are demonstrated in a case study. This includes a sensitivity analysis that illustrates the robustness to load and renewable power prediction errors

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Ultracapacitors for port crane applications: Sizing and techno-economic analysis

    Get PDF
    The use of energy storage with high power density and fast response time at container terminals (CTs) with a power demand of tens of megawatts is one of the most critical factors for peak reduction and economic benefits. Peak shaving can balance the load demand and facilitate the participation of small power units in generation based on renewable energies. Therefore, in this paper, the economic efficiency of peak demand reduction in ship to shore (STS) cranes based on the ultracapacitor (UC) energy storage sizing has been investigated. The results show the UC energy storage significantly reduce the peak demand, increasing the load factor, load leveling, and most importantly, an outstanding reduction in power and energy cost. In fact, the suggested approach is the start point to improve reliability and reduce peak demand energy consumption
    corecore