Cooperating interconnected microgrids with the Distribution System Operation
(DSO) can lead to an improvement in terms of operation and reliability. This
paper investigates the optimal operation and scheduling of interconnected
microgrids highly penetrated by renewable energy resources (DERs). Moreover, an
efficient stochastic framework based on the Unscented Transform (UT) method is
proposed to model uncertainties associated with the hourly market price, hourly
load demand and DERs output power. Prior to the energy management, a newly
developed linearization technique is employed to linearize nodal equations
extracted from the AC power flow. The proposed stochastic problem is formulated
as a single-objective optimization problem minimizing the interconnected AC MGs
cost function. In order to validate the proposed technique, a modified IEEE 69
bus network is studied as the test case