23 research outputs found

    A Physics-Based Approach to Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems

    Full text link
    Given that observational and numerical climate data are being produced at ever more prodigious rates, increasingly sophisticated and automated analysis techniques have become essential. Deep learning is quickly becoming a standard approach for such analyses and, while great progress is being made, major challenges remain. Unlike commercial applications in which deep learning has led to surprising successes, scientific data is highly complex and typically unlabeled. Moreover, interpretability and detecting new mechanisms are key to scientific discovery. To enhance discovery we present a complementary physics-based, data-driven approach that exploits the causal nature of spatiotemporal data sets generated by local dynamics (e.g. hydrodynamic flows). We illustrate how novel patterns and coherent structures can be discovered in cellular automata and outline the path from them to climate data.Comment: 4 pages, 1 figure; http://csc.ucdavis.edu/~cmg/compmech/pubs/ci2017_Rupe_et_al.ht

    Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction

    Full text link
    We introduce 'mixed LICORS', an algorithm for learning nonlinear, high-dimensional dynamics from spatio-temporal data, suitable for both prediction and simulation. Mixed LICORS extends the recent LICORS algorithm (Goerg and Shalizi, 2012) from hard clustering of predictive distributions to a non-parametric, EM-like soft clustering. This retains the asymptotic predictive optimality of LICORS, but, as we show in simulations, greatly improves out-of-sample forecasts with limited data. The new method is implemented in the publicly-available R package "LICORS" (http://cran.r-project.org/web/packages/LICORS/).Comment: 11 pages; AISTATS 201

    Quantifying the complexity of random Boolean networks

    Full text link
    We study two measures of the complexity of heterogeneous extended systems, taking random Boolean networks as prototypical cases. A measure defined by Shalizi et al. for cellular automata, based on a criterion for optimal statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)], does not distinguish between the spatial inhomogeneity of the ordered phase and the dynamical inhomogeneity of the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical regimes and for highly disordered networks, peaking somewhere in the disordered regime. Individual nodes with high complexity are the ones that pass the most information from the past to the future, a quantity that depends in a nontrivial way on both the Boolean function of a given node and its location within the network.Comment: 8 pages, 4 figure

    Towards Unsupervised Segmentation of Extreme Weather Events

    Full text link
    Extreme weather is one of the main mechanisms through which climate change will directly impact human society. Coping with such change as a global community requires markedly improved understanding of how global warming drives extreme weather events. While alternative climate scenarios can be simulated using sophisticated models, identifying extreme weather events in these simulations requires automation due to the vast amounts of complex high-dimensional data produced. Atmospheric dynamics, and hydrodynamic flows more generally, are highly structured and largely organize around a lower dimensional skeleton of coherent structures. Indeed, extreme weather events are a special case of more general hydrodynamic coherent structures. We present a scalable physics-based representation learning method that decomposes spatiotemporal systems into their structurally relevant components, which are captured by latent variables known as local causal states. For complex fluid flows we show our method is capable of capturing known coherent structures, and with promising segmentation results on CAM5.1 water vapor data we outline the path to extreme weather identification from unlabeled climate model simulation data

    Towards Automatic Feature-based Visualization

    Get PDF
    Visualizations are well suited to communicate large amounts of complex data. With increasing resolution in the spatial and temporal domain simple imaging techniques meet their limits, as it is quite difficult to display multiple variables in 3D or analyze long video sequences. Feature detection techniques reduce the data-set to the essential structures and allow for a highly abstracted representation of the data. However, current feature detection algorithms commonly rely on a detailed description of each individual feature. In this paper, we present a feature-based visualization technique that is solely based on the data. Using concepts from computational mechanics and information theory, a measure, local statistical complexity, is defined that extracts distinctive structures in the data-set. Local statistical complexity assigns each position in the (multivariate) data-set a scalar value indicating regions with extraordinary behavior. Local structures with high local statistical complexity form the features of the data-set. Volume-rendering and iso-surfacing are used to visualize the automatically extracted features of the data-set. To illustrate the ability of the technique, we use examples from diffusion, and flow simulations in two and three dimensions
    corecore