152 research outputs found

    Timing Analysis of the FlexRay Communication Protocol

    Get PDF
    FlexRay will very likely become the de-facto standard for in-vehicle communications. However, before it can be successfully used for safety-critical applications that require predictability, timing analysis techniques are necessary for providing bounds for the message communication times. In this paper, we propose techniques for determining the timing properties of messages transmitted in both the static (ST) and the dynamic (DYN) segments of a FlexRay communication cycle. The analysis techniques for messages are integrated in the context of a holistic schedulability analysis that computes the worst-case response times of all the tasks and messages in the system. We have evaluated the proposed analysis techniques using extensive experiments. 1

    Bus Access Optimisation for FlexRay-based Distributed Embedded Systems

    Get PDF

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Distributed System Control with FlexRay Nodes in Commercial Vehicles

    Get PDF
    Most vehicles today use some kind of hydraulic brake system in order to stop the vehicle. There are other techniques that will not only decrease the stop length, but also create a more stable vehicle; an example of such system is the Electromechanical braking system. The problem with such a system is that the requirements of data transmission and reliability are different from the system that is used today. To be able to implement such a system, a relatively new network protocol called FlexRay can be used. Different design alternatives will be introduced and one important subject is how the local nodes in the wheels can take over calculations, in a distributed way, from more central nodes. The best design was simulated using Matlab and a library called TrueTime to investigate if it is possible to implement such a system. The results from the simulation shows that it is possible to implement the system and that there is a lot of free space on the network for other tasks. An animation shows how the different nodes exchange redundancy responsibilities. One conclusion was that it is better to choose a simple design of the system instead of an advanced one where the nodes are connected to several networks to add redundancy. Once again the expression 'less is more' is valid

    Extensible FlexRay communication controller for FPGA-based automotive systems

    Get PDF
    Modern vehicles incorporate an increasing number of distributed compute nodes, resulting in the need for faster and more reliable in-vehicle networks. Time-triggered protocols such as FlexRay have been gaining ground as the standard for high-speed reliable communications in the automotive industry, marking a shift away from the event-triggered medium access used in controller area networks (CANs). These new standards enable the higher levels of determinism and reliability demanded from next-generation safety-critical applications. Advanced applications can benefit from tight coupling of the embedded computing units with the communication interface, thereby providing functionality beyond the FlexRay standard. Such an approach is highly suited to implementation on reconfigurable architectures. This paper describes a field-programmable gate array (FPGA)-based communication controller (CC) that features configurable extensions to provide functionality that is unavailable with standard implementations or off-the-shelf devices. It is implemented and verified on a Xilinx Spartan 6 FPGA, integrated with both a logic-based hardware ECU and a fully fledged processor-based electronic control unit (ECU). Results show that the platform-centric implementation generates a highly efficient core in terms of power, performance, and resource utilization. We demonstrate that the flexible extensions help enable advanced applications that integrate features such as fault tolerance, timeliness, and security, with practical case studies. This tight integration between the controller, computational functions, and flexible extensions on the controller enables enhancements that open the door for exciting applications in future vehicles
    • …
    corecore