

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Timing Analysis of the FlexRay Communication Protocol

Pop, Traian; Pop, Paul; Eles, Petru; Peng, Zebo

Published in:
Euromicro Conference on Real-Time Systems

Link to article, DOI:
10.1109/ECRTS.2006.31

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pop, T., Pop, P., Eles, P., & Peng, Z. (2006). Timing Analysis of the FlexRay Communication Protocol. In
Euromicro Conference on Real-Time Systems (pp. 203-213). DOI: 10.1109/ECRTS.2006.31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13721548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ECRTS.2006.31
http://orbit.dtu.dk/en/publications/timing-analysis-of-the-flexray-communication-protocol(488a49b4-e500-4a64-84bc-15b7f23321d2).html

Abstract

FlexRay will very likely become the de-facto standard for
in-vehicle communications. However, before it can be suc-
cessfully used for safety-critical applications that require
predictability, timing analysis techniques are necessary for
providing bounds for the message communication times.
In this paper, we propose techniques for determining the
timing properties of messages transmitted in both the stat-
ic (ST) and the dynamic (DYN) segments of a FlexRay
communication cycle. The analysis techniques for messag-
es are integrated in the context of a holistic schedulability
analysis that computes the worst-case response times of all
the tasks and messages in the system. We have evaluated
the proposed analysis techniques using extensive experi-
ments.

1. Introduction
Many safety-critical applications, following physical,
modularity or safety constraints, are implemented using
distributed architectures composed of several different
types of hardware units (called nodes), interconnected in a
network. For such systems, the communication between
functions implemented on different nodes has an impor-
tant impact on the overall system properties, such as
performance, cost and maintainability.

There are several communication protocols for real-
time networks. Among the protocols that have been pro-
posed for in-vehicle communication, only the Controller
Area Network (CAN) [4], the Local Interconnection Net-
work (LIN) [17], and SAE’s J1850 [30] are currently in
use on a large scale [20]. Moreover, only a few of the pro-
posed protocols are suitable for safety-critical applications
where predictability is mandatory [29].

Communication activities can be triggered either dy-
namically, in response to an event (event-driven), or
statically, at predetermined moments in time (time-driv-
en). Therefore, on one hand, there are protocols that
schedule the messages statically based on the progression
of time, such as the SAFEbus [13], SPIDER [19], TTCAN
[14], and Time-Triggered Protocol (TTP) [16]. The main
drawback of such protocols is their lack of flexibility. On
the other hand, there are communication protocols where
message scheduling is performed dynamically, such as
Byteflight [3] introduced by BMW for automotive appli-
cations, CAN [4], LonWorks [9] and Profibus [28].

A large consortium of automotive manufacturers and
suppliers has recently proposed a hybrid type of protocol,

namely the FlexRay communication protocol [11].
FlexRay allows the sharing of the bus among event-driven
(ET) and time-driven (TT) messages, thus offering the ad-
vantages of both worlds. FlexRay will very likely become
the de-facto standard for in-vehicle communications.1

However, before it can be successfully deployed in appli-
cations that require predictability, timing analysis
techniques are necessary to provide bounds for the mes-
sage communication times [20].

FlexRay is composed of static (ST) and dynamic
(DYN) segments, which are arranged to form a bus cycle
that is repeated periodically. The ST segment is similar to
TTP, and employs a generalized time-division multiple-ac-
cess (GTDMA) scheme. The DYN segment of the FlexRay
protocol is similar to Byteflight and uses a flexible TDMA
(FTDMA) bus access scheme.

Although researchers have proposed analysis tech-
niques for dynamic protocols such as CAN [32], TDMA
[33], ATM [10], Token Ring protocol [31], FDDI protocol
[1] and TTP [24], none of these analyses is applicable to the
DYN segment in FlexRay. In [7], the authors consider the
case of a hard real-time application implemented on a
FlexRay bus. However, in their discussion they restrict
themselves exclusively to the static segment, which means
that, in fact, only the classical problem of communication
scheduling over a TDMA bus [24, 12] is considered. The
performance analysis of the Byteflight protocol, which is
similar to the DYN segment of FlexRay, is analyzed in [5].
The authors assume a very restrictive “quasi-TDMA”
transmission scheme for time-critical messages, which ba-
sically means that the DYN segment would behave as an
ST (TDMA) segment in order to guarantee timeliness.

In this paper we present the first approach to timing
analysis of applications communicating over a FlexRay
bus, taking into consideration the specific aspects of this
protocol, including the DYN segment. More exactly, we
propose techniques for determining the timing properties of
messages transmitted in the static and the dynamic seg-
ments of a FlexRay communication cycle. We first briefly
present a static cyclic scheduling technique for TT messag-
es transmitted in the ST segment, which extends our
previous work on the TTP [23]. Then, we develop a worst-
case response time analysis for ET messages sent using the
DYN segment, thus providing predictability for messages
transmitted in this segment. The analysis techniques for
messages are integrated in the context of a holistic schedu-

1. Similar protocols exist in other industry areas. See
WorldFIP [34] or MVB [15] for example.

Timing Analysis of the FlexRay Communication Protocol

Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Alexandru Andrei
Computer and Information Science Dept., Linköping University, Sweden

E-mail: {trapo, paupo, petel, zebpe, alean}@ida.liu.se

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

lability analysis algorithm that computes the worst-case
response times of all the tasks and messages in the system.

This paper is organized in eight sections. Section 2 pre-
sents the system architecture considered, and Section 3
introduces the FlexRay media access control. In Section 4
we present the application model that we use. The main
part of the paper is concentrated in Section 5, where we
present our timing analysis for distributed real-time sys-
tems that use the FlexRay protocol. Section 6 extends the
analysis to capture the independent usage of the two
FlexRay channels. Section 7 presents the experimental re-
sults we have run in order to determine the efficiency of our
approaches. The last section presents our conclusions.

2. System Model
We consider architectures consisting of nodes connected
by one FlexRay communication channel1 (see Figure 1.a).
Each processing node connected to a FlexRay bus is com-
posed of two main components: a CPU and a
communication controller (see Figure 2.a) that are inter-
connected through a two-way controller-host interface
(CHI). The controller runs independently of the node’s
CPU and implements the FlexRay protocol services.

For the systems we are studying, we have designed a
software architecture which runs on the CPU of each node.
The main component of the software architecture is a real-
time kernel that contains two schedulers2, for static cyclic
scheduling (SCS) and fixed priority scheduling (FPS),
respectively.

When several tasks are ready on a node, the task with
the highest priority is activated, and preempts the other
tasks. Let us consider the example in Figure 1.b, where we
have six tasks sharing the same node. Tasks τ1 and τ6 are
scheduled using SCS, while the rest are scheduled with
FPS. The priorities of the FPS tasks are indicated in the fig-
ure. The arrival time of a task is depicted with an upwards
pointing arrow. Under these assumptions, Figure 1.b pre-

sents the worst-case response times of each task. SCS tasks
are non preemptable and their start time is off-line fixed in
the schedule table (they also have the highest priority, de-
noted with priority level “0” in the figure). FPS tasks can
only be executed in the slack of the SCS schedule table.

FPS tasks are scheduled based on priorities. Thus, a
higher priority task such as τ3 preempts a lower priority
task such as τ4. SCS activities are triggered based on a lo-
cal clock in each processing node. The synchronization of
local clocks throughout the system is provided by the com-
munication protocol [11].

3. The FlexRay Communication Protocol
In this section we will describe how messages generated
by the CPU reach the communication controller and how
they are transmitted on the bus. Let us consider the exam-
ple in Figure 2 where we have three nodes, N1 to N3
sending messages ma, mb,... mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic
cycles (Figure 2.b depicts two cycles of length Tbus). Each
cycle contains two time intervals with different bus access
policies: an ST segment and a DYN segment3. The ST and
DYN segment lengths can differ, but are fixed over the cy-
cles. We denote with STbus and DYNbus the length of these
segments. Both the ST and DYN segments are composed
of several slots. In the ST segment, the slots number is
fixed, and the slots have constant and equal length, regard-
less of whether ST messages are sent or not over the bus in
that cycle. The length of an ST slot is specified by the
FlexRay global configuration parameter gdStaticSlot [11].
In Figure 2 there are three static slots for the ST segment.

The length of the DYN segment is specified in number
of “minislots”, and is equal to gNumberOfMinislots. Thus,
during the DYN segment, if no message is to be sent during
a certain slot, then that slot will have a very small length
(equal to the length gdMinislot of a so called minislot), oth-
erwise the DYN slot will have a length equal with the
number of minislots needed for transmitting the whole
message [11]. This can be seen in Figure 2.b, where DYN
slot 2 has 3 minislots (4, 5, and 6) in the first bus cycle,
when message me is transmitted, and one minislot (denoted
with “MS” and corresponding to the minislot counter 2) in
the second bus cycle when no message is sent.

During any slot (ST or DYN), only one node is allowed
to send on the bus, and that is the node which holds the mes-
sage with the frame identifier (FrameID) equal to the current
value of the slot counter. There are two slot counters, corre-
sponding to the ST and DYN segments, respectively. The
assignment of frame identifiers to nodes is static and decided
offline, during the design phase. Each node that sends mes-

1. A dual-channel FlexRay bus is considered in Section 6
2. EDF can also be added, as presented by us in [27]

Figure 1. System Architecture Example

N1 N2 N3N1 N2 N3

FlexRay bus

a)

P4

P4 P4

P4

τ2

τ1

τ3

τ4

τ3

τ6

τ2
b)

Priority
0 (highest)

1

2

3 (lowest)

3. The FlexRay bus cycle contains also a symbol window
and a network idle time, but their size does not affect the
equations in our analysis. For simplicity, they will be
ignored during the examples throughout the paper.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

sages has one or more ST and/or DYN slots associated to it.
The bus conflicts are solved by allocating offline one slot to
at most one node, thus making it impossible for two nodes to
send during the same ST or DYN slot.

In Figure 2, node N1 has been allocated ST slot 2 and
DYN slot 3, N2 transmits through ST slots 1 and 3 and DYN
slots 2 and 4, while node N3 has DYN slots 1 and 5. For each
of these slots, the CHI reserves a buffer that can be written
by the CPU and read by the communication controller
(these buffers are read by the communication controller at
the beginning of each bus cycle, in order to prepare the
transmission of frames) The associated buffers in the CHI
are depicted in Figure 2.a. We denote with the
number of dynamic slots associated to a node Np (this
means that for N2 in Figure 2, = 2).

We use different approaches for ST and DYN messages
to decide which messages are transmitted during the allocat-
ed slots. For ST messages, we consider that the CPU in each
node holds a schedule table with the transmission times.
When the time comes for an ST message to be transmitted,
the CPU will place that message in its associated ST buffer
of the CHI. For example, ST message mb sent from node N1
has an entry “2/2” in the schedule table specifying that it
should be sent in the second slot of the second ST cycle.

For the DYN messages, the designer specifies their
FrameID. For example, DYN message me has the frame
identifier “2”. We assume that there can be several messages
sharing the same DYN FrameID1. For example, messages

mg and mf have both FrameID 4. If two messages with the
same frame identifier are ready to be sent in the same bus cy-
cle, a priority scheme is used to decide which message will
be sent first. Each DYN message mi has associated a priority
prioritymi

. Messages with the same FrameID will be placed
in an output queue ordered based on their priorities. The
message form the head of the priority queue is sent in the cur-
rent bus cycle. For example, message mf will be sent before
mg because it has a higher priority.

At the beginning of each communication cycle, the
communication controller of a node resets the slot and
minislot counters. At the beginning of each communica-
tion slot, the controller verifies if there are messages ready
for transmission (present in the CHI send buffers) and
packs them into frames2. In the example in Figure 2 we as-
sume that all messages are ready for transmission before
the first bus cycle.

Messages selected and packed into ST frames will be
transmitted during the bus cycle that is about to start ac-
cording to the schedule table. For example, in Figure 2,
messages ma and mc are placed into the associated ST buff-
ers in the CHI in order to be transmitted in the first bus
cycle. However, messages selected and packed into DYN
frames will be transmitted during the DYN segment of the

DYNSlotsNp

DYNSlotsN2

Figure 2. FlexRay Communication Cycle Example

Communication controller

N1 N2 N3

2 1 3 2 4 1 5

mb 2/2

mc 1/3

ma 1/1

mc 1/3

ma 1/1

mdmf

mg

mhme

ma

3

mc mbmd me mf mg mh

Tbus

Static segment Dynamic segment

Tbus

Static segment Dynamic segment

1 2 3 1 2 3

Static slot counter

1 2 3

Dynamic slot counter

4 5

Minislot counter

1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

M
S

M
S

M
S

M
S

M
S

M
S

Schedule
table

Priority
queues

C
on

tr
ol

le
r-

H
os

t
In

te
rf

ac
e

(C
H

I)
H

os
t

(C
PU

)

a)

b)

high

low

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

1. This assumption is not part of the FlexRay specification.
If messages are not sharing FrameIDs, this is handled
implicitly as a particular case of our analysis.

2. In this paper we do not address frame-packing [25], and
thus assume that one message is sent per frame.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

bus cycle only if there is enough time until the end of the
DYN segment. Such a situation is verified by comparing if,
in the moment the DYN slot counter reaches the value of
the FrameID for that message, the value of the minislot
counter is smaller than a given value pLatestTx. The value
pLatestTx is fixed for each node during the design phase,
depending on the size of the largest DYN frame that node
will have to send during run-time. For example, in
Figure 2, message mh is ready for transmission before the
first bus cycle starts, but, after message mf is transmitted,
there is not enough room left in the DYN segment. This
will delay the transmission of mh for the next bus cycle.

4. Application Model
We model an application A as a set of directed, acyclic, po-
lar graphs Gi(Vi, Ei) ∈ A. A node τij ∈ Vi represents the j-
th task or message in Gi. An edge eijk ∈ Ei from τij to τik
indicates that the output of τij is the input of τik. A task be-
comes ready after all its inputs have arrived and it issues
its outputs when it terminates. A message will become
ready after its sender task has finished, and becomes avail-
able for the receiver task after its transmission has ended.
The communication time between tasks mapped on the
same processor is considered to be part of the task worst-
case execution time and is not modeled explicitly. Com-
munication between tasks mapped to different processors
is performed by message passing over the bus. Such mes-
sage passing is modeled as a communication task inserted
on the arc connecting the sender and the receiver task.

We consider that the scheduling policy for each task is
known (either SCS or FPS), and we also know which mes-
sages are ST and which are DYN. For a task τij ∈ Vi,

 is the node to which τij is assigned for execution.
When executed on , a task τij has a known worst-
case execution time . We also consider that the size of
each message m is given, which can be directly converted
into communication time Cm on the particular bus, know-
ing the speed of the bus and the size of the frame that stores
the message:

Cm = Frame_size(m) / bus_speed. (1)
Tasks and messages activated based on events also

have a priority, . All tasks and messages belong-
ing to a task graph Gi have the same period = which

is the period of the process graph. A deadline is im-
posed on each task graph Gi. In addition, tasks can have
associated individual release times and deadlines. If com-
municating tasks are of different periods, they are
combined into a larger graph capturing all task activations
for the hyper-period (LCM of periods).

5. Timing Analysis
Given a distributed system based on FlexRay, as described
in the previous two sections, the tasks and messages have
to be scheduled. For the SCS tasks and ST messages, this
means building the schedule tables, while for the FPS
tasks and DYN messages we have to determine their worst
case response times.

The problem of finding a schedulable system has to
consider two aspects:
 1. When performing the schedulability analysis for the

FPS tasks and DYN messages, one has to take into
consideration the interference from the SCS activities.

 2. Among the possible correct schedules for SCS activi-
ties, it is important to build one which favours as much
as possible the schedulability of FPS activities.
Figure 3 presents the global scheduling and analysis al-

gorithm, in which the main loop consists of a list-
scheduling based algorithm [6] that iteratively builds the
static schedule table with start times for SCS tasks and ST
messages.

A ready list (TT_ready_list) contains all SCS tasks and
ST messages which are ready to be scheduled (they have no
predecessors or all their predecessors have already been
scheduled). From the ready list, tasks and messages are ex-
tracted one by one (Figure 3, line 2) to be scheduled on the
processor they are mapped to (line 4), or into a static bus-
slot associated to that processor on which the sender of the
message is executed (line 6), respectively. The priority
function which is used to select among ready tasks and
messages is a critical path metric, modified by us for the
particular goal of scheduling tasks mapped on distributed
systems [23]. Let us consider a particular task τij selected
from the ready list to be scheduled. We consider that

 is the earliest time moment which satisfies the
condition that all preceding activities (tasks or messages)
of τij are finished (line 10). With only the SCS tasks in the

Nodeτi j

Nodeτi j

Cτij

priorityτij

Tτi j
TGi

DGi

Figure 3. Global Scheduling Algorithm

GlobalSchedulingAlgorithm()
1 while TT_ready_list is not empty
2 select τij from TT_ready_list
3 if τij is a SCS task then
4 schedule_TT_task(τij, Nodeτij

)
5 else // τij is a ST message
6 schedule_ST_msg(τij, Nodeτij

)
7 end if
8 update TT_ready_list
9 end while

end StaticScheduling

schedule_TT_task(τij, Nodeτij
)

10 find first available time t moment after ASAPτij
 on Nodeτij11 schedule τij after t on Nodeτij,

 so that holistic analysis produces
minimal worst-case response times for FPS tasks and DYN messages

12 update ASAP for all τij successors
end schedule_TT_task
schedule_ST_msg(τij, Nodeτij

)
13 find first ST slot(Nodeτij

) available after ASAPτij14 schedule τij in that ST slot
15 update ASAP for all τij successors

end schedule_ST_msg

ASAPτij

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

system, the straightforward solution would be to schedule
τij at the first time moment after when is
free. Similarly, an ST message will be scheduled in the first
available ST slot associated with the node that runs the
sender task for that message.

As presented by us in [26], when scheduling SCS tasks,
one has to take into account the interference they produce
on FPS tasks. The function schedule_TT_task in Figure 3
places a SCS task in the static schedule in such a way that
the increase of worst-case response times for FPS tasks is
minimized. Such an increase is determined by comparing
the worst-case response times of FPS tasks obtained with
our holistic schedulability analysis before and after insert-
ing the new SCS task in the schedule [26].

The next subsection presents our solution for comput-
ing the worst case response times of DYN messages, while
in Section 5.2 we will integrate this solution into a holistic
schedulability analysis that determines the timing proper-
ties of both FPS tasks and DYN messages (which is called
in line 11, of schedule_TT_task presented in Figure 3).

5.1 Schedulability Analysis of DYN Messages

The worst case response time Rm of a DYN message m is
given by the following equation:

(2)
where Cm is the message communication time (see
Section 4), σm is the longest delay suffered during one bus
cycle if the message is generated by its sender task after its
slot has passed, and wm is the worst case delay caused by
the transmission of ST frames and higher priority DYN
messages during a given time interval t.

The communication controller decides what message is
to be sent on the bus in a certain communication slot at the
beginning of that slot. As a consequence, in the worst case,
a DYN message m is generated by its sender task immedi-

ately after the slot with the FrameIDm has started, forcing
message m to wait until the next bus cycle starts in order to
really start competing for the bus. In conclusion, in the
worst case, the delay σm has the value:

,
where STbus is the length of the ST segment.

What is now left to be determined is the value wm cor-
responding to the maximum amount of delay on the bus
that can be produced by interference from ST frames and
higher priority DYN messages. We start from the observa-
tions that the transmission of a ready DYN message m
during the DYN slot FrameIDm can be delayed because of
the following causes:
• local messages with higher priority, that use the same

frame identifier as m. We will denote this set of higher
priority local messages with hp(m). For example, in
Figure 2.a, messages mg and mf share FrameID 4, thus
hp(mg) = {mf}.

• any messages in the system that can use DYN slots
with lower frame identifiers than the one used by m.
We will denote this set of messages having lower
frame identifiers with lf(m). In Figure 2.a, lf(mg) =
{md, me}.

• unused DYN slots with frame identifiers lower than
the one used for sending m (though such slots are
unused, each of them still delays the transmission of m
for an interval of time equal with the length
gdMinislot of one minislot); we will denote the set of
such minislots with ms(m). Thus, in the example in
Figure 2.a, ms(mg) = {1, 2, 3}, and ms(mf) = {3}.
Determining the interference of DYN messages in

FlexRay is complicated by several factors. Let us consider
the example in Figure 4, where we have two nodes, N1 (with
FrameIDs 1 and 3) and N2 (with FrameID 2), and three
messages m1 to m3. N1 sends m1 and m3, and N2 sends mes-

ASAPτij
Nodeτi j

Rm t() σm wm t() Cm+ +=

σm Tbus STbus FrameIDm gdMinislot⋅+()–=

Figure 4. Transmission Scenarios for DYN Messages

ST STm1 m3 m2

M
S

M
S

Tbus

Tbus = 20

STbus = 8
C1 = 7
C2 = 6
C3 = 3gsMinislot = 1

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Node(m1) = 1
Node(m2) = 2
Node(m3) = 1

0

m1:
m2:
m3:

... ...

ST STm1 m3 m2

M
S

Tbus

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...

a)

DYN slot counter: 1 2 3

... ...

... ...

1 2

DYN slot counter: 1 2 3 1 2

1mpLatestTx = 9

2mpLatestTx = 6

3mpLatestTx = 9

3mR = 31

3mR = 19

2mw¢

1 2 3m m mFrameID = 1, FrameID = 2, FrameID = 3

1 2 3 1 3m m m m mFrameID = 1, FrameID = 2, FrameID = 1, priority > priority
b)

2 2m bus mBusCycles T (BusCycles 1)´ =

N1 N2

1 3 2

m2m3m1

N1 N2

1 2

m2

m3

m1

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

sage m2. Messages m1 and m2 have FrameIDs 1 and 2,
respectively. We consider two situations: Figure 4.a, where
m3 has a separate FrameID 3, and Figure 4.b, where m3
shares the same FrameID 1 with m1. The values of pLatest-
Tx for each node are depicted in the figure1.

In Figure 4.a, message m2 cannot be sent immediately
after message m1, because the value of the minislot
counter has exceeded the value when the val-
ue of the DYN slot counter becomes equal to 2. As a
consequence, the transmission of m2 will be delayed for
the next bus cycle. However, since in the moment when
the DYN slot counter becomes 3 the minislot counter does
not exceed the value , message m3 will fit in
the first bus cycle. Thus, a message (m3 in our case) can be
sent before another message with a lower FrameID (m2).
Such situations must be accounted for when building the
worst-case scenario.

In Figure 4.b, message m3 shares the same FrameID 1
with m1 but we consider that it has a lower priority, thus
hp(m3) = {m1}. In this case, m3 is sent in the first DYN slot
of the second bus cycle (the first slot of the first cycle is oc-
cupied with m1) and thus will delay the transmission of m2.
In this scenario, we notice that assigning a lower frame
identifier to a message does not necessarily reduce the
worst-case response time of that message (compare to the
situation in Figure 4.a, where m3 has FrameID = 3).

We next focus on determining the delay wm(t) in
Equation (2). The delay produced by all the elements in
hp(m), lf(m) and ms(m) can extend to one or more bus cy-
cles. As a consequence, Equation (2) for finding the worst
case response time Rm can be rewritten as:

(3)
where BusCyclesm(t) is the number of bus periods for
which the transmission of m is not possible because trans-
mission of messages from hp(m) and lf(m) and because of
minislots in ms(m). The delay denotes now the
time, in the last bus cycle, until m is sent, and is measured
from the beginning of the bus cycle in which message m is
sent until the actual transmission of m starts. For example,
in Figure 4.b, = 1 and = .
Note that both these terms are functions of time, computed
over an analyzed interval t. This means that when comput-
ing them we have to take into consideration all the

elements in hp(m), lp(m) and ms(m) that can appear during
such a given time interval t. Thus, we will consider the
multiset hp(m, t) containing all the occurrences over t of
elements in hp(m). The number of such occurrences for a
message is equal to: , where Tl is
the period of the message l and Jl is its worst-case jitter
(such a jitter is computed as the difference between the
worst-case and best-case response times of its sender task
s: [21]). Similarly, lf(m, t) and ms(m, t) con-
sider all the occurrences over t of elements in lf(m) and
ms(m) respectively.

The next two sections (5.1.1 and 5.1.2) present the op-
timal (i.e., exact) solutions for determining the values for
BusCyclesm(t) and , respectively. These, however,
can be intractable for larger problem sizes. Hence, in Sec-
tions 5.1.3 and 5.1.4 we propose heuristics that quickly
computer upper bounds (i.e., pessimistic) values for these
terms. Once for any given t we know how to obtain the val-
ues BusCycles(t) and , determining the worst case
response time for a message m becomes an iterative process
that computes Rm

k(Rm
k-1), starting from Rm

0 = Cm and fin-
ishing when Rm

k = Rm
k-1.

5.1.1 Optimal Solution for BusCyclesm

We start with the observation that a message m with
FrameIDm cannot be sent by a node Np during a bus cycle
b if at least one of the following conditions is fulfilled:
 1. There is too much interference from elements in lf(m)

and ms(m), so that the minislot counter exceeds the val-
ue , making impossible for Np to start the
transmission of m during b. For example in Figure 4.a,
message m2 cannot be sent during the first bus cycle
because the transmission of a higher priority message
m1 pushes the minislot counter over the value

.
 2. The DYN slot FrameIDm in b is used by another local

higher priority message from hp(m). For example, in
Figure 4.b, messages m1 and m3 share the same frame
identifier and hp(m3) = {m1}. Therefore, the transmis-
sion of m3 in the first bus cycle is not possible.
Whenever a bus cycle satisfies at least one of these two

conditions, it will be called “filled”, since it is unusable for
the transmission of the message m under analysis. In the
worst case, the value BusCyclesm(t) is then the maximum
number of bus cycles that can be filled using elements from
hp(m), lf(m) and ms(m).

1. We use pLatestTxm to denote pLatestTxN of the node N
sending message m.

pLatestTxm2

pLatestTxm3

Rm t() σm BusCyclesm t() T×
bus

w'm t() Cm+ + +=

w'm t()

BusCyclesm2
w'm2

t() STbus Cm3
+

l hp m()∈ Jl t+() Tl⁄

Jl Rs Rs
b–=

w'm t()

w'm t()

Figure 5. Worst Case Scenario for DYN frames

m em a m c m b m dm f m g

T bus

S tatic segm ent D ynam ic segm ent

T bus

Static segm ent D ynam ic segm ent

1 2 3

1

2 3

Static slo t counter

1 2 3

D ynam ic slot counter

4 5... 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

pLatestTxNp

pLatestTxN1

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

Since messages in hp(m, t) and lf(m, t) can become
ready at any point during the analyzed interval t, one can
notice that, in the worst case, each bus cycle which is filled
with an element from hp(m, t) will contain no messages
from lf(m, t). This means that in the worst case, each filled
bus cycle will contain either only messages from lf(m, t), or
only one message from hp(m, t). For example, considering
the same setup presented in Figure 2, the worst-case sce-
nario for message mg is when message mf is ready at the
beginning of the first bus cycle and messages md and me be-
come ready just before the start of their slots in the second
bus cycle (see Figure 5 for the worst-case scenario of mg).

This means that, in the worst case, the delay produced
by elements in lf(m, t) and ms(m, t) adds up to that produced
by messages in hp(m, t):

(4)

where we denote with BusCyclesm(hp(m, t)) the number of
bus cycles in which the delay of the message m under anal-
ysis is produced by messages in hp(m, t) (corresponding to
the second case presented above); similarly,
BusCyclesm(lf(m, t), ms(m, t)) is the number of “filled” bus
cycles in which the transmission of message m is delayed
by elements in lf(m, t) and ms(m, t) (corresponding to the
first condition presented above).

Since each message in hp(m, t) delays the transmission
of m with one bus cycle, the occurrences over t of messages
in hp(m) will produce a delay equal to the total number of
elements in hp(m, t):

 . (5)

The problem that remains to be solved is to determine
how many bus cycles can be “filled” according to the first
condition presented above using only elements in lf(m, t)
and ms(m, t). As we will discuss later, a simplified version
of this problem is equivalent to bin covering, which be-
longs to the family of NP-hard problems [8]. To obtain the
optimal solution, we have modelled the problem of com-
puting BusCyclesm(lf(m, t), ms(m, t)) as an integer linear
program (ILP). The model starts from the observation that,
considering we have n elements in lf(m, t), there are at most
n bus cycles that can be filled. For each such bus cycle we
create a binary variable yi=1..n that is set to 1 when the i-th
bus cycle is filled with elements from lf(m, t) and ms(m, t),
and to 0 if it is not filled (i.e., it can allow the transmission
of message m under analysis).

The goal of the ILP problem is to maximize the number
of filled bus cycles (i.e., to calculate the worst-case):

, (6)

subject to a set of conditions that set the variables yi to 1 or
0. Bellow we describe these conditions, which capture how

messages in lf(m, t) and the minislots in ms(m, t) are sent by
FlexRay in these bus cycles.

We allocate a binary variable xijk that is set to 1 if a mes-
sage (k = 1..n) is sent during the i-th bus
cycle, using the FrameID j = 1..FrameIDm. The load trans-
mitted in each bus cycle can be expressed as:

(7)

where Ck are the communication times (Equation (1)) of
the messages . Each term of the sum in
Equation (7) captures the particularities of FlexRay DYN
frames: if a message k is transmitted in cycle i with frame
identifier j, then xijk = 1 and the length of the frame being
transmitted is equal with the length of the message k, (thus
the term); if xijk is 0 for all j and k, then there is
no actual transmission on the bus in that DYN slot, but
there is still some delay due to the empty minislot of length
gdMinislot that has to pass in order to increase the value of
the DYN slot counter (thus the second term).

The condition that sets each variable yi to 1 whenever
possible is:

(8)

where is the last minislot which allows the
start of transmission from node Np of message m under
analysis. Such a condition enforces that a variable yi cannot
be set to 1 unless the total amount of interference from
lf(m, t) and ms(m, t) in cycle i exceeds minis-
lots (only then message m is not allowed to be transmitted
and, thus, bus cycle i is “filled”).

In addition to this condition we have to make sure that
• each message is sent in only one cycle i:

 (9)

(10)

• each frame identifier is used only once in a bus cycle:
(11)

• each message is transmitted using its
frame identifier:

, (12)

where Framejk is a binary constant with value 1 if message
 has a frame identifier = j (other-

wise, Framejk is 0).
 Finally, we have to enforce that in every cycle i no mes-

sage mk will start transmission after its associated
. If we have xijk = 1, then we have to add the

condition that the total amount of transmission that takes

BusCyclesm t() BusCyclesm hp m t,()()
BusCyclesm lf m t,() ms m t,(),()

+=

BusCyclesm hp m t,()() hp m t,()=

BusCyclesm lf m t,() ms m t,(),() yi

i 1..n=
�=

mk lf m t,()∈

Loadi xijk Ck×
mk lf m t,()∈

j 1…FrameIDm=

�=

1 xijk

mk lf m t,()∈
�–

� �
� �
� �

gdMinislot×
j 1…FrameIDm=

�+

mk lf m t,()∈

xijk C×
k

Loadi pLatestTxNp
g× dMinislot y×

i
>

pLatestTxNp

pLatestTxNp

mk lf m t,()∈

xijk

i 1…n=
j 1…FrameIDm=

� 1 mk lf m()∈∀,≤

xijk

k 1…n=
� 1 i j,∀,≤

mk lf m t,()∈

xijk Framejk≤ i j k, ,∀

mk lf m t,()∈ FrameIDmk

pLatestTxmk

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

place before DYN slot j has to finish no later than
pLatestTxk:

(13)

The conditions (7)–(13) together with the maximization
goal expressed in Equation (6) define the ILP program that
will determine the maximum worst-case number of bus cy-
cles that can be filled with elements in lf(m, t) and ms(m, t).
By adding this result to the value determined in
Equation (5), we obtain the total number BusCyclesm(t)
(Equation (4)).

5.1.2 Optimal Solution for
In the worst case, the elements in lf(m,t) and ms(m,t) will
delay the message under analysis for BusCyclesm (lf(m,t),
ms(m,t)) bus periods. In addition, they will delay the actual
transmission of m during the DYN segment of the bus pe-
riod BusCyclesm + 1.

The problem of determining the value for w’m is de-
fined as follows: given the multisets lf(m,t) and ms(m,t) and
the maximum number BusCyclesm(lf(m,t), ms(m,t)) that
they can fill, what is the maximum possible load (Equation
(7)) in the first unfilled bus cycle (i.e. the bus cycle that
does not satisfy condition (8)).

In order to determine the exact value of w’m in the worst
case, one can use the same ILP system defined in the pre-
vious section for computing BusCyclesm(lf(m,t), ms(m,t)),
with the following modifications:
• since we know the value BusCyclesm (which is deter-

mined solving the ILP formulation presented in the
previous section), we add conditions that force the
values yi = 1 for all i=1..BusCyclesm, and yi = 0 for all
i = BusCyclesm + 1..n; in this way, the messages will
be packed so that the bus cycles from 1 to BusCyclesm
will be filled (i.e they satisfy condition (8)), while the
remaining bus cycles will be unfilled.

• using the same set of conditions (7)–(13) for filling
the first BusCyclesm cycles, the goal described in
Equation (6) is replaced with the following one,
expressing that the load of the cycle number
BusCyclesm + 1 has to be maximized (LoadL is
expressed as in Equation (7)):

maximize , for (14)

5.1.3 Heuristic Solution for BusCyclesm

We first make the observation that in a bus cycle where a
message m is sent by a node Np during DYN slot

FrameIDm, in the worst case there will be at most
FrameIDm – 1 unused minislots before m is transmitted
(In Figure 4.a, the transmission of m2 can be preceded by
at most one unused minislot).

Instead of considering the multiset ms(m, t) as for the
exact solution, we will account for the worst-case as part of
the communication time for m:

. (15)
Since the duration of one minislot (gdMinislot) is an

order of magnitude smaller compared to the length of a cy-
cle, this approximation will not introduce any significant
pessimism.

The problem left to solve now is how many bus cycles
can be filled with the elements from a multiset lf’(m, t),
that consists of all the messages in lf(m, t) for which we
consider the communication times computed using
Equation (15).

If we ignore the conditions expressed in equations
(11)–(13), then determining BusCyclesm(lf’(m, t)) be-
comes a bin covering problem [8]. Bin covering tries to
maximize the number of bins that can be filled to a fixed
minimum capacity using a given set of items with speci-
fied weights. In our scenario, the messages in lf’(m, t) are
the items, the dynamic segments of the bus cycles are bins,
and is the minimum capacity
required to fill a bin. The bin-covering problem is NP-hard
in the strong sense [8], and our solution is to determine an
upper bound, using the approach presented in [8], on the
number of maximum bins that can be covered. The upper
bound proposed in [8] are of polynomial complexity and
obtain very good quality results.

Note that, ignoring the conditions from (11)–(13) and
determining an upper bound for bin-covering can only
lead to an increase in the number of bus cycles compared
to the exact solution. Experiments will show the impact of
the heuristic on the pessimism of the analysis.

5.1.4 Heuristic Solution for
A straightforward heuristic to the computation of
stems from the observation that, in a hypothetical worst-
case scenario, message m could be sent in the last possible
moment of the current bus cycle, which means that

 , (16)

where STbus is the length of the ST segment of a bus cycle.

5.2 Holistic Schedulability Analysis of
FPS Tasks and DYN Messages

As mentioned in Section 2, the worst-case response times
of FPS tasks are influenced on one hand by higher priority
FPS tasks, and on the other hand by SCS tasks. The worst-
case response time Rij of a FPS task τij is determined as
presented in [21], and in [26] we have shown how to take
into consideration the interference on Rij produced by an

xipq Cq×
mq lf m t,()∈
p 1..j 1–=

�

1 xipq

mq lf m t,()∈
�–

� �
� �
� �

p 1.. j 1–=
� gdMinislo× t

+

pLatestTxk gdMinislot×

≤

w'm

LoadL L BusCyclesm 1+=

C'm FrameIDm 1–() gdMinislot× Cm+=

pLatestTxNp
gdMinislot×

w'm
w'm

w'm STbus pLatestTxNp
gdMinislot×+=

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

existing static schedule. What is important to mention is
that Rij depends on jitters of the higher priority tasks and
predecessors of τij. This means that for all such activities
we have to compute the jitter. In the rest of this section we
will only concentrate on the situation when the jitter of a
task depends on the arrival time of a message.

According to the analysis of multiprocessor and distrib-
uted systems presented in [21], the jitter for a task τr that
starts execution only after it receives a message m depends
on the values of the best-case and worst-case transmission
times of that message:

. (17)
The calculation of the worst-case transmission time Rm

of a DYN message m was presented in Section 5.1. For
computing Rb

m we have to identify the best-case scenario
of transmitting message m. Such a situation appears when
the message becomes ready immediately before the DYN
slot with FrameIDm starts, and it is sent during that bus cy-
cle without experiencing any delay from higher priority
messages. Thus, the equation for the best-case transmission
time of a message is:

(18)
where Cm is the time needed to send the message m.

We notice from Equation (17) that the jitters for activ-
ities in the system depend on the values of the worst case
response times, which in turn depend on the values of the
jitters [27]. Such a recursive system is solved using a fixed
point iteration algorithm in which the initial values for jit-
ters are 0.

Let us make a final remark. According to [21], the
worst-case response time calculation of FPS tasks is of ex-
ponential complexity and the approach proposed in [21] and
also used in [27] is a heuristic with a certain degree of pes-
simism. The pessimism of the response times calculated by
our holistic analysis will, of course, also depend on the qual-
ity of the solution for the delay induced by the DYN
messages transmitted over FlexRay. The calculation of this
delay is our main concern in this paper. Therefore, when we
speak about optimal and heuristic solutions in this paper we
refer to the approach used for calculating the BusCyclesm
and (used in the worst-case response times calculation
for DYN messages) and not the holistic response time anal-
ysis which is based on the heuristics in [21, 26].

6. Analysis for Dual-channel FlexRay Bus
The specification of the FlexRay protocol mentions that
the bus has two communication channels [11]. The analy-
sis presented in section 5 is appropriate for systems where
the two channels of the FlexRay bus are used in a redun-
dant manner, transporting the same information
simultaneously in order to support fault-tolerance.

In order to increase the bandwidth of the bus, one can
use the two channels independently, so that different sets of

messages are sent over each of the channels during a bus cy-
cle. In this section we extend our previous analysis in order
to compute the worst case response times for messages
transmitted in such systems.

First, we extend our system model (Section 1.a) and
consider that all nodes in the system have access to a dual-
channel FlexRay bus. As a consequence, in the application
model each message m is associated a pair <FrameIDm,
Channelm>, with the meaning that message m is sent during
FrameIDm on Channelm (where Channelm= {A, B}).

Second, we notice that the transmission of a message
can be delayed only by messages that are transmitted on the
same channel. As a consequence, the only modification in
the analysis presented in section 5 is the definition of the
sets lf(m) and hp(m), which contain only those messages
that are transmitted on Channelm:
• hp(m) becomes now the set of local messages with

higher priority, that use the same frame identifier
AND the same channel as m.

• lf(m) contains any messages in the system that can use
Channelm and DYN slots with lower frame identifiers
than the one used by m.

7. Experimental Results
We were interested to determine the quality of the pro-
posed analysis approaches, and how well they scale with
the number of FlexRay messages that have to be analyzed.
All the experiments were run on P4 machines using 2GB
RAM. The ILP-based solutions have been implemented
using the CPLEX 9.1.2 ILP solver.

We have generated synthetic applications of 20, 30, 40
and 50 tasks mapped on architectures consisting of 2, 3, 4,
and 5 nodes, respectively. Fifteen applications were gener-
ated for each of these four cases. The number of time-
critical FlexRay messages were 30, 60, 90, and 120 for
each case, respectively. Out of these, 10, 20, 30, and 40
messages were time-critical DYN messages that were ana-
lyzed using the approaches presented in Section 5. Each
application has been analyzed using four holistic analysis
approaches, depending on the approach used for the calcu-
lation of the components BusCyclesm and of the worst-
case response time Rm for a DYN message:

OO will always provide the tightest worst-case re-
sponse times. However, it is only able to produce results for
up to 20 DYN messages in a reasonable time. We have no-
ticed that the bottleneck for OO is the exact calculation of

 (which is a value smaller than a bus cycle), and that

Jτr
Rm Rm

b–=

Rm
b

Cm=

w'm

Holistic
Analysis

BusCyclesm

OO Optimal solution (5.1.1) Optimal solution (5.1.2)

OO– Optimal solution (5.1.1) ILP from 5.1.2 with 1 min. time-out (O–)

OH Optimal solution (5.1.1) Heuristic solution (5.1.4)

HH Heuristic solution (5.1.3) Heuristic solution (5.1.4)

w'm

w'm

w'm

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

running the ILP from Section 5.1.2 using a time-out of one
minute we are able to obtain near-optimal results for .
We have denoted with OO– such an analysis. Since the
near-optimal result for is a lower bound, OO– can lead
to an incorrect (optimistic) result (i.e., the system is report-
ed as schedulable, but in reality it might not be). Although
OO– is thus of no practical use, it is very useful in determin-
ing, by comparison, the quality of our proposed FlexRay
analysis heuristics, OH and HH.

In order to evaluate the approaches for FlexRay analy-
sis, we have determined for an analysis approach A the
average ratio:

(19)

where A is one of the OO, OH or HH approaches and n is
the number of messages in the analysed application.

This ratio captures the degree of pessimism of A com-
pared to OO–; the smaller the ratio, the less pessimistic the
analysis. The results obtained with OO, OH and HH are
presented in Table 1. For each application dimension,
Table 1 presents the average ratio and the average execu-
tion times of the complete analysis (including all tasks and
messages) in seconds. It is important to notice that, while
the execution time is for the whole analysis, including all
tasks and messages, the ratio is calculated only for the
DYN messages, since their response time calculation is di-
rectly affected by the degree of pessimism of the various
approaches proposed in the paper. The ratio calculated over
all tasks and messages in the system is smaller than the
ones shown in Table 1.

We can see that OO is very close to OO–, which means
that OO– is a good comparison baseline (it is only slightly
optimistic). Due to the very large execution times, we were
not able to run OO for more than 20 DYN messages.

Table 1 shows that OH produces very good quality re-
sults, in a reasonable time. For example, for 40 DYN
messages, the analysis has finished in 367.87 seconds on
average, and the average ratio is only 1.005.

Another result from Table 1 concerns the HH heuristic.
Although HH is slightly more pessimistic than OH (for ex-
ample, the DYN response times determined with HH were
1.012 times larger, on average, than those of OO– for appli-
cations with 30 messages, compared to 1.005 for OH), it is

also significantly faster. We have successfully analyzed
with HH large applications, with over 100 DYN messages
in 0.16 seconds on average. Thus, HH is also suitable for de-
sign space exploration, where a potentially huge number of
design alternatives have to be analyzed in a very short time.

As discussed in the Section 5.1.3, the quality of results
obtained by the heuristic might influence the worst-case re-
sponse times. In order to evaluate the pessimism introduced
by not considering conditions (11)–(13) we have run a set
of experiments with 15 applications of 40 tasks and 25 dy-
namic messages mapped on an architecture consisting of
two nodes. Figure 6 presents the ratio for HH calculated ac-
cording to Equation (19) as we vary the number of frame
identifiers per processor from 2 to 6. We can see that the
quality of the heuristic improves as the number of frame
IDs increases (and, consequently, the number of messages
sharing the same FrameID decreases). The more messages
are sharing a FrameID, the more important conditions
(11)–(13) are to the quality of the result, because they re-
strict the way bins can be covered (e.g., messages sharing
the same FrameID should not be packed in the same bin).
However, even for a small number of frame IDs HH pro-
duces good quality results (e.g., for two frame IDs, HH’s
ratio is 1.1226).

All of the experiments presented so far are on the calcu-
lation of response times for DYN messages. Our last set of
experiments focused on the actual quality of BusCyclesm
heuristic from Section 5.1.3. We have considered 15 appli-
cations of 30 tasks with 15 DYN messages mapped on an
architecture of three nodes. The ratio of from
5.1.3 over calculated as in 5.1.1 is 1.1014.

Finally, we considered a real-life example implement-
ing a vehicle cruise controller that consists of 54 tasks
mapped over 5 nodes, resulting in 26 DYN messages. We
considered that 10 percent of the FlexRay communication
cycle is allocated to the DYN segment communication.
Scheduling the system using the OO approach took 0.19
seconds. Using the OH approach took 0.08 s, while the HH
alternative was the fastest, finishing the analysis in 0.002 s.
The average ratio of OH relative to OO is 1.003, while the
average ratio of HH relative to OO is 1.004, which means
that the heuristics obtained results almost identical to the
optimal approach OO.

w'm

w'm

ratio
1
n

Rm
A

Rm
OO-

m DYN∈
�⋅=

30 (10 DYN) 60 (20 DYN) 90 (30 DYN) 120 (40 DYN) No of
msgs. Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s)
OO 1.009 3.1 s 1.009 42.3 s − − − −
OH 1.013 1.29 s 1.012 14.42 s 1.005 57.32 s 1.005 367.87 s
HH 1.016 0.012 s 1.018 0.019 s 1.012 0.036 s 1.012 0.04 s

A
ve

ra
ge

 r
at

io

1.1226

1.0667
1.0512

1.0209
1.0079

2 3 4 5 6
Table 1: Comparison of FlexRay Analysis Approaches

Number of frame IDs/ processor

Figure 6. Quality of HH

BusCyclesm
H

BusCyclesm
O

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

8. Conclusions
In this paper, we have presented a schedulability analysis
for the FlexRay communication protocol. Timing proper-
ties of the ST messages have been established by building
a static cyclic scheduling schedule, while for DYN mes-
sages we have, for the first time, developed a worst-case
response time analysis. The FlexRay message analysis has
been integrated in the context of a holistic schedulability
analysis that determines the timing properties for all the
tasks and messages in the system.

We have proposed three approaches for the derivation
of worst-case response times of DYN messages. OO uses
an ILP formulation to derive the optimal solution for the
communication delay. HH uses heuristic-based upper-
bounds for a bin-covering problem in order to quickly de-
termine good quality response times. OH is able to further
reduce the pessimism of HH by using an ILP formulation
for part of the solution.

References
[1] G. Agrawal, B. Chen, W. Zhao, S. Davari, “Guaranteeing Syn-

chronous Message Deadlines with the Token Medium Access
Control Protocol”, IEEE Transactions on Computers, 43(3),
327–339, 1994.

[2] S.F. Assman, D.S. Johnson, D.J. Kleitman, J.Y.-T. Leung, “On a
Dual Version of the One-Dimensional Bin Packing Problem”,
Journal of Algorithms, 5, 502–525, 1984.

[3] J. Berwanger, M. Peller, R. Griessbach, A New High Perfor-
mance Data Bus System for Safety-Related Applications, http://
www.byteflight.de, 2000.

[4] R. Bosch GmbH, CAN Specification Version 2.0, 1991.
[5] G. Cena, A. Valenzano, “Performance analysis of Byteflight net-

works”, Proceedings of the IEEE International Workshop on
Factory Communication Systems, 157–166, 2004.

[6] E.G. Coffman Jr., R.L. Graham, “Optimal Scheduling for two
Processor Systems”, Acta Informatica, 1, 1972.

[7] S. Ding, N. Murakami, H. Tomiyama, H. Takada, “A GA-Based
Scheduling Method for FlexRay Systems”, Proceedings of EM-
SOFT, 2005.

[8] M. Labbe, G. Laporte, S. Martello, “An exact algorithm for the
dual bin packing problem”, Operations Research Letters 17, 9–
18, 1995.

[9] Echelon, LonWorks: The LonTalk Protocol Specification, http://
www.echelon.com

[10]H. Ermedahl, H. Hansson, M. Sjödin, “Response-Time Guaran-
tees in ATM Networks”, Proceedings of the IEEE Real-Time
Systems Symposium, 274–284, 1997.

[11]FlexRay homepage: http://www.flexray-group.com, 2005.
[12]A. Hamann, R. Ernst, “TDMA Time Slot and Turn Optimization

with Evolutionary Search Techniques”, Proceedings of the De-
sign, Automation and Test in Europe Conference, Volume 1,
312–317, 2005.

[13]K. Hoyme, K. Driscoll, “SAFEbus”, IEEE Aerospace and Elec-
tronic Systems Magazine, 8(3), 34–39, 1992.

[14]International Organization for Standardization, “Road vehicles-
Controller Area Network (CAN)—Part 4: Time-triggered com-

munication”, ISO/DIS 11898–4, 2002.
[15]H. Kirrmann, P. Zuber, “The IEC/EEE train communication net-

work”, IEEE Micro, 21(2), 81-92, 2001.
[16]H. Kopetz, G. Bauer , “The time-triggered architecture”, Pro-

ceedings of the IEEE, 91(1), 112–126, 2003.
[17]Local Interconnect Network Protocol Specification, http://

www.lin-subbus.org
[18]T. Meyerowitz, C. Pinello, A. Sangiovanni-Vincentelli, “A tool

for describing and evaluating hierarchical real-time bus schedul-
ing policies”, Proceedings of the Design Automation
Conference, 312–317, 2003.

[19]P. S. Miner, “Analysis of the SPIDER Fault-Tolerance Proto-
cols”, Proceedings of the 5th NASA Langley Formal Methods
Workshop, 2000.

[20]N. Navet, Y. Song, F. Simont-Lion, C. Wilwert, “Trends in Au-
tomotive Communication Systems”, Proceedings of the IEEE,
93(6), 1204–1223, 2005.

[21]J. C. Palencia, M. Gonzaléz Harbour, “Schedulability Analysis
for Tasks with Static and Dynamic Offsets”, Proceedings of the
Real-Time Systems Symposium, 26–38, 1998.

[22]P. Pedreiras, L. Almeida, “Combining Event-Triggered and
Time-Triggered Traffic in FTT-CAN: Analysis of the Asynchro-
nous Messaging System”, Proceedings of the Workshop on
Factory Communication Systems, 67–75, 2000.

[23]P. Pop, P. Eles, Z. Peng, A. Doboli, “Scheduling with Bus Access
Optimization for Distributed Embedded Systems“, IEEE Trans-
actions on VLSI Systems, 8(5), 472–491, 2000.

[24]P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Communication
Synthesis for Time-Triggered Embedded Systems”, Real-Time
Systems Journal, 24, 297–325, 2004

[25]P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Frame Packing
for Multi-Cluster Distributed Embedded Systems”, ACM Trans-
actions on Embedded Computing Systems, 4(1), 2005, 112–140.

[26]T. Pop, P. Eles, Z. Peng, “Schedulability Analysis for Distributed
Heterogeneous Time Event-Triggered Real-Time Systems”,
Proceedings of the 15th Euromicro Conference on Real-Time
Systems (ECRTS 2003), 257–266, 2003.

[27]T. Pop, P. Pop, P. Eles, Z. Peng, “Optimization of Hierarchically
Scheduled Heterogeneous Embedded Systems”, Proceedings of
11th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, 67–71, 2005.

[28]Profibus International, PROFIBUS DP Specification, http://
www.profibus.com

[29]J. Rushby, “Bus Architectures for Safety-Critical Embedded
Systems”, Springer-Verlag Lecture Notes in Computer Science,
2211, 306–323, 2001.

[30]SAE Vehicle Network for Multiplexing and Data Communica-
tions Standards Committee, SAE J1850 Standard, 1994.

[31]J. K. Strosnider, T. E. Marchok, “Responsive, Deterministic
IEEE 802.5 Token Ring Scheduling”, Journal of Real-Time Sys-
tems, 1(2), 133–158, 1989.

[32]K. Tindell, A. Burns, A. Wellings, “Calculating CAN Message
Response Times”, Control Engineering Practice, 3(8), 1163-
1169, 1995.

[33]K. Tindell, J. Clark, “Holistic Schedulability Analysis for Dis-
tributed Hard Real-Time Systems”, Microprocessing &
Microprogramming, 50(2–3), 1994.

[34]WorldFIP: Digital data communications for measurement and
control - Fieldbus standard for use in industrial control systems.
parts 1 to 6, IEC Standard 61158, 2003.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

