

warwick.ac.uk/lib-publications

Original citation:
Shreejith, Shanker and Fahmy, Suhaib A.. (2015) Extensible FlexRay communication
controller for FPGA-based automotive systems. IEEE Transactions on Vehicular Technology,
64 (2). pp. 453-465.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/86742

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/80790985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/86742
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 1

Extensible FlexRay Communication Controller
for FPGA-Based Automotive Systems

Shanker Shreejith Student Member, IEEE and Suhaib A. Fahmy Senior Member, IEEE

Abstract—Modern vehicles incorporate an increasing number
of distributed compute nodes, resulting in the need for faster and
more reliable in-vehicle networks. Time-triggered protocols like
FlexRay have been gaining ground as the standard for high-speed
reliable communication in the automotive industry, marking
a shift away from the event-triggered medium access used in
Controller Area Networks (CAN). These new standards enable
the higher levels of determinism and reliability demanded by next
generation safety critical applications. Advanced applications can
benefit from tight coupling of the embedded computing units with
the communication interface, thereby providing functionality
beyond the FlexRay standard. Such an approach is highly suited
to implementation on reconfigurable architectures.

This paper describes an FPGA-based communication con-
troller which features configurable extensions to provide func-
tionality that is unavailable with standard implementations or
off the shelf devices. It is implemented and verified on a Xilinx
Spartan 6 FPGA, integrated with both a logic-based hardware
ECU and a fully fledged processor-based ECU. Results show that
the platform-centric implementation generates a highly efficient
core in terms of power, performance and resource utilisation.
We demonstrate that the flexible extensions help enable advanced
applications that integrate features like fault-tolerance, timeliness
and security, with practical case studies. This tight integration
between the controller, computational functions and flexible
extensions on the controller enables enhancements that open the
door for exciting applications in future vehicles.

Index Terms—Field programmable gate arrays; automotive
systems; networks.

I. INTRODUCTION

Modern high-end vehicles incorporate one hundred or more
embedded computing units which implement advanced capa-
bilities like auto-park, pedestrian detection with auto-brake and
other safety or comfort features. These algorithms perform
complex processing on data gathered from a network of
sensors, to produce control sequences for distributed actua-
tors. The communication bandwidth and quality of service
required for such advanced electronic control units (ECUs)
exceeds the capabilities of the event-triggered Controller Area
Network (CAN) protocol, that has been pervasive in au-
tomotive systems until now. Moreover, next generation in-
vehicle systems, specifically in electric vehicles that have a
high level of automation, demand higher determinism, leading

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

S. Shreejith is with the School of Computer Engineering, Nanyang Tech-
nological University and TUM CREATE, Singapore

S. A. Fahmy is with the School of Computer Engineering, Nanyang
Technological University, Singapore

e-mail: {shreejit1, sfahmy}@ntu.edu.sg
Manuscript received ; revised

to the widespread adoption of time-triggered communication
schemes and protocols like FlexRay and time-triggered Eth-
ernet [1]. FlexRay is gaining ground as a de-facto commu-
nication standard for safety-critical functions like drive-by-
wire, cruise control and adaptive braking systems, while also
facilitating communication for non-critical ECUs.

Though time-triggered networks like FlexRay provide
higher determinism and communication bandwidth, increas-
ing proliferation of embedded computing units increases the
associated communication overheads and power consumption,
which can degrade overall system performance. Typically, each
ECU has a discrete communication controller to manage its
access to the network. We show that by closely coupling
the controller with the ECU and extending the predefined
communication framework, advanced and intelligent embed-
ded compute units with enhanced capabilities like fall-back
and fault-tolerance can be designed. This scheme enhances
the overall quality and performance of the system. However,
such evolutions and extensions of the protocol cannot be im-
plemented using off-the-shelf controllers or platform agnostic
solutions, and require a modular flexible implementation, that
is ideally implemented in reconfigurable logic. Moreover, re-
configurable technology enables us to merge the controller and
multiple applications on the same device, while preserving the
necessary isolation between them, and partial reconfigurability
can be exploited to reduce power consumption further [2].

In this paper, we present an architecture-optimised FlexRay
communication controller (CC) which integrates configurable
extensions that augment the CC’s capabilities beyond those
defined by the FlexRay standard. The controller provides
enhancements to the datapath, like programmable width time-
stamping, data filtering, header insertion and processing func-
tions, which are abstracted away from the host function.
Our flexible architecture can be used to design advanced
ECUs on reconfigurable hardware, that consume less power
and offer increased consolidation, while providing enhanced
capabilities that are impossible to implement using standard
controllers or IP cores. We also quantify the potential of the
proposed controller using case studies based on existing and
evolving automotive applications that are safety-critical and
data-intensive. Our experiments show that advanced features
like high-speed mode switching for fault-tolerant ECUs, low-
latency data handling for high performance gateways, time-
liness and security for messages can be efficiently achieved
by integrating such extensions within the controller datapath,
rather than offloading them to the processing logic.

The remainder of this paper is organised as follows. In
Section II, we give a brief introduction to the FlexRay speci-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 2

fication and protocol enhancements described in the literature,
and related work in this area. Section III details the controller
architecture. Implementation results and comparison to other
implementations are provided in Section IV. In Section V, we
present case studies using the customisable extensions, and
show the benefits of implementing advanced features this way,
with a discussion of the approach in Section VI. Finally, we
conclude the paper and outline future work in Section VII.

II. RELATED WORK

The move towards time-triggered network standards in
automotive systems has been driven by the more advanced
requirements imposed by advanced mission-critical and com-
fort features in future vehicles. Widespread event triggered
networks like CAN (controller area network) fail to address
the requirements of such applications.

TT-CAN is an extension of the CAN protocol that enables
time-triggered operation by enforcing a slot-based structure,
while retaining backwards compatibility with standard CAN.
However, TT-CAN suffers from dependability issues and lim-
ited bandwidth, and thus it did not gain widespread adoption.
Some research sought to overcome these limitations through
hardware extensions on the network controller [3].

In recent years, FlexRay has emerged as the standard
for time-triggered communication in the automotive domain.
However, most recently, new hardware developments have
seen time-triggered Ethernet emerge as a possible replacement
for FlexRay, though standard communication protocols are
still under development. The enhancements we present in
this paper can be similarly applied to other time-triggered
standards, though we use FlexRay to demonstrate the concepts
within a realistic, certifiable environment.

A. The FlexRay Protocol

The FlexRay protocol is developed and standardised by the
FlexRay consortium, and has since been adopted by various
automotive companies in production vehicles [4]. These ve-
hicles are complaint with the FlexRay AUTOSAR Interface
Specification Standard [5], which is the industry standard for
the software specification of FlexRay nodes, by which any
controller implementation must comply.

The fundamental element of the media access scheme in
the FlexRay protocol is the communication cycle, which is
repeated over time, as shown in Fig. 1. Each cycle is comprised
of four segments [6]:

• The Static Segment which uses a static slot-based access
mechanism and is used to send critical data in a deter-
ministic manner. Any ECU can send a frame of data in
the one (or more) slot(s) assigned to it. The slot width is
fixed across all nodes on the network.

• The Dynamic Segment which uses a dynamic slot-based
access scheme enabling communication of event triggered
data of arbitrary length. The slot width is dynamic,
depending on the amount of data that needs to be
transmitted, and access to the medium is controlled by
priorities assigned to the ECUs.

Cycle 0 Cycle 1 Cycle 63

Static Segment Dynamic Segment Symbol Window NIT

Slot 1 Slot 2 Slot n Slot 1 Slot 2 Slot k

Fig. 1: The FlexRay communication cycle.

A 1 A 2

B 1

B 2

C 1C 2

D 1

D 2

(a)

Active Star

A 1 A 2

B 1

B 2

C 1C 2

D 1

D 2

(b)

Switch

Fig. 2: A standard (a) and switched (b) FlexRay network
topology.

• The Symbol Window which is used to transmit special
symbols like the “wake-up” pattern used to wake-up
sleeping nodes to initiate communication.

• Network Idle Time which is the idle period used by nodes
to make clock adjustments and align and correct the
global view of time to maintain synchronisation.

A typical FlexRay-based ECU integrates a discrete (or
embedded) Communication Controller (CC) and the compu-
tational function, which is usually implemented as a software
algorithm on a processor to provide flexibility and upgradabil-
ity. The ECU can communicate over the bus, through the CC,
by transmitting framed data in the slot(s) assigned to it in the
static or dynamic segments.

Multiple nodes may share the same slot in different cycles,
as in the case of odd/even cycle multiplexing where one set
of nodes is assigned slots in all odd cycles whereas another
set of nodes (which may include some from the first set)
is assigned slots in all even cycles. This scheme of cycle-
level slot multiplexing can lead to higher overall bandwidth
utilisation. Fig. 2(a) shows a typical network setup, where node
B2 may send data to node A1 in slot 1 of cycle 1 while node
A1 may reply in slot 1 of cycle 2. The active star is an active
repeater that passes information from one branch to all other
branches.

Switched FlexRay networks are a novel concept that can
extend bandwidth without compromising reliability and de-
terminism [7]. The switch architecture allows exploitation of
branch parallelism, whereby the switch will repeat frames only
on branches that contain the intended recipient [8]. This allows
the same slots to be used simultaneously by multiple nodes in
the same cycle and the intelligent FlexRay switch schedules
the branch to which information has to be relayed [9]. Thus,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 3

as shown in Fig. 2(b), while node B2 may be sending data
to node A1 in slot 1 of cycle 1, node D1 might be sending
data to node C2 in the same slot and the switch, knowing the
schedule, connects the corresponding nodes through the switch
fabric. Utilising slot multiplexing and branch parallelism, each
slot within a cycle may have different destinations and thus
different switch configurations.

Research on FlexRay networks has been approached from
diverse directions in the literature. In [10], the authors high-
light challenges like physical-layer design, cycle and schedule
design, and selection of termination, sync and startup nodes
which were all simpler design considerations for FlexRay’s
predecessor, CAN.

B. Scheduling

Much work has been done on scheduling communication on
the shared bus. Optimisation of the static and dynamic segment
of the FlexRay protocol has been widely addressed in [11],
[12] and [13], [14], [15], among others. [16] presents a detailed
survey of scheduling algorithms and provides a comparison be-
tween optimisation strategies like simulated annealing, genetic,
hybrid-genetic and probabilistic approaches applied by various
algorithms. Given a set of communication requirements, all
algorithms try to optimise the number of communication slots
and cycles that are required to schedule the different messages,
satisfying all requirements. The optimisation in most cases
is to find the minimum number of communication slots that
can solve the problem, hence consuming minimum bandwidth.
Alternatively, the problem can be formulated to maximise the
number of unused slots, which provides flexibility for future
expansion.

C. Network Level Optimisations

The work in [17] discusses an approach to improve the
energy efficiency of a FlexRay controller by allowing it
to be controlled by an intelligent communication controller
(ICC). The ICC, which takes over bus operations from the
ECU when the latter goes to sleep, prevents the ECU from
being woken by erroneous transmissions allowing the node
to achieve higher power efficiency. The proposed architecture
and its validation are also discussed in the paper, using a
proprietary implementation of the FlexRay communication
controller that is not available to the research community.
Similarly, the work in [18] describes the architecture of an
FPGA-implementation of the FlexRay controller with add-
on features to aid functional verification. The features are
primarily aimed at a verification framework and hence do
not point in the direction of optimisations or enhancements
for improving node/network functionality beyond standard
implementations.

D. Controller Implementation

[19] is the only work to discuss the implementation of a
FlexRay communication controller on reconfigurable logic.
The work discusses the protocol operations control mod-
ule, which controls the actions of the core modules of the

communication controller. However, no specific details about
hardware architecture are presented, and the implementation is
designed purely to implement the existing specification, with
no new features. [20], [21] also describe implementation of
the FlexRay Communication Controller using the specification
and description language (SDL) as the platform and later
translation to hardware using Verilog. Their work approaches
the protocol from a high level of abstraction and hence does
not discuss hardware design details or architectural optimisa-
tions. A comprehensive outline of the FlexRay Bus Guardian
specification and approaches to implement it on FPGAs have
also been discussed in [22], [23].

Bosch and Freescale both offer implementations of the
FlexRay controller that can be mapped to a wide range of
platforms [24], [25]. These are largely platform independent,
suitable for implementing on ASICs or FPGAs. However,
they are not optimal for implementation on reconfigurable
hardware, since they do not fully utilise the heterogeneous
resources available in the fabric. For instance, the E-Ray IP
core from Bosch, which is a dual channel controller, does
not directly instantiate FPGA primitives like DSP Blocks or
Block RAMs but uses general purpose logic to implement
these functions.

By efficiently utilising these hardware primitives, we can
build custom controllers which are more efficient for archi-
tecture specific implementations, while leaving aside logic
for implementing functional components of the ECU. This
approach results in limited portability between platforms, but
superior utilisation and power efficiency for FPGA-based ECU
implementations. Portability is also becoming less of an issue
as FPGA manufacturers standardise hardware blocks across all
their device families in a given generation. For example, the
DSP48E1 primitive is available on all 7-series FPGAs from
Xilinx, as well as the Zynq ARM-FPGA platform.

We aim, through our work, to enable a number of investiga-
tions in the space of FlexRay on reconfigurable hardware. We
focus on providing a flexible communication controller which
features rich extensions for enhanced applications, architecture
optimisations for low device utilisation, providing considerable
savings in terms of area and power. The objective is to show
how an FPGA-centric implementation can result in interfaces
that provide advanced capabilities and power efficiency for
FPGA-based in-vehicle systems.

III. ARCHITECTURE DESIGN

A node on the FlexRay network consists of a Commu-
nication Controller (CC), an application running on a host
ECU, and multiple bus drivers to independently support 2
communication channels. The Host ECU is the computational
implementation of an algorithm like adaptive cruise control
or engine management, and it may communicate with other
ECUs or sensor nodes over the network. The Communication
Controller ensures conformance with the FlexRay specification
when transmitting or receiving data on the communication
channel. The Bus Driver handles the bit stream at the physical
level and provides the physical level interface to the commu-
nication channel. The Host ECU monitors the status of the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 4

FlexRay CC

Controller Host Interface

PLB/AXI Interface

Control, Status
&Configuration

Data Store
(Tx/Rx)

Protocol Engine

PMM CS

MIL
Channel A

MIL
Channel B

CHI Bus

PE Bus

Tx EnTx DRx D Tx EnTx DRx D

FlexRay Bus Driver
Channel A

FlexRay Bus Driver
Channel B

To Host

Fig. 3: Architecture of custom Flexray communication
controller.

Communication Controller and Bus Driver independently and
configures them appropriately at startup or during runtime.

A. Communication Controller

The FlexRay CC switches between different operating
states, based on network conditions and/or host commands,
ensuring conditions defined by the FlexRay protocol are met
at all times. The CC architecture, as shown in Fig. 3, comprises
the Protocol Engine (PE) which implements the protocol
behaviour, and the Controller Host Interface (CHI) which
interfaces to the host ECU.

The CHI module communicates with the host and handles
commands and configuration parameters for the FlexRay node.
These parameters are defined for the particular cluster the
node is operating on, and are initialised during the node’s
configuration phase. The CHI feeds the current state and
operational status to the host for corrective action if necessary.
There are transmit and receive buffers and status registers for
the data-path to isolate control and data flow. The CHI may
also incorporate clock domain crossing circuitry to enable the
different interfaces to work in distinct clock domains.

The Clock Synchronisation (CS) and Medium Interface
Layers (MIL) submodules of the Protocol Engine implement
specific functions of the protocol, which are controlled and
coordinated by the Protocol Management Module (PMM).
These sub-modules support multiple modes of operation and
can alter their current operating mode in response to changes in
any of the parameters, error conditions, or host commands. The
PMM ensures mode changes are done in a way that complies
with the FlexRay specifications. The Medium Interface Layer
handles the transmission and reception of data over the shared
bus. It encodes and decodes data, controls medium access
and processes decoded data to ensure adherence to protocol
specifications. The CS module generates the local node-clock,
synchronised to the global view of time. It measures deviation

in the node clock on a per-cycle basis so that it stays
synchronised with other nodes in the cluster.

Timing in a FlexRay node is defined in macroticks and
microticks. Microticks measure the granularity of the node’s
local internal time and are derived from the internal clock of
a node. A macrotick is composed of an integer number of
microticks. The duration of each local macrotick should be
equal within all nodes in the cluster. The FlexRay protocol
uses a distributed clock correction mechanism, whereby each
node individually adjusts its view of time by observing the
timing information transmitted by other nodes. The adjustment
value is computed using a fault-tolerant midpoint algorithm. A
combination of rate (frequency) and offset (phase) correction
mechanisms are used to synchronise the global time view of
different nodes. These corrections must be applied in the same
way at all nodes and must fulfil the following conditions:

1) Rate correction is continuously applied over the entire
cycle.

2) Offset correction is applied only during the NIT in an
odd cycle and must finish before the start of the next
communication cycle.

3) Rate correction is computed once per double cycle,
following the static segment in an odd cycle. The
calculation is based on values measured in an even-odd
double cycle.

4) Calculation of offset correction takes place every cycle,
but is applied only at the end of odd cycle.

Rate correction indicates the number of microticks that need to
be added to the configured number of microticks per cycle and
may be negative, indicating that the cycles should be shorter.
Offset corrections indicates the number of microticks that need
to be added to the offset segment of the network idle time and
may also be negative.

The FlexRay bus supports two independent channels for
data transmission and reception. The transmission rate can
be set at 2.5 Mbps, 5 Mbps or 10 Mbps. The protocol
also defines multiple bus access mechanisms, in the form
of static slots for synchronous time-triggered communication
and dynamic slots for burst mode event-triggered (priority-
based) data transfer. Special symbols can be transmitted within
the symbol window, like wake-up during operation (WUDOP)
and collision avoidance symbols (CAS). During the network
interval time, all nodes synchronise their clock view with the
global clock view so that they stay synchronous. Each trans-
mitted bit is represented using 8 bit-times to ensure protection
from interference. At the receiving end, these are sampled
and majority voted to generate a voted bit. Transmission and
reception must be confined to slot-boundaries and transmission
(or reception) across slot-boundaries is marked as a violation.
The node should transmit only on slots that are assigned
to it (either in the static or dynamic segments). Each node
is assigned a keyslot, which it uses to transmit startup or
synchronisation frames (along-with data).

B. Implementation and Optimisations of Custom CC

The state of the PMM, at any instant, reflects the current
operating mode of the CC. The PMM triggers synchronised

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 5

TABLE I: Commands from Host that affect CC Operating
Modes.

Host Com-
mand

Affected States Final State Processed
at

ALL
SLOTS

Active, Passive no state
change

End of
cycle

ALLOW
COLD-
START

All states except Def.
Config, Config, Stop

no state
change

Immediate

CONFIG Def. Config, Init
Wait

Config Immediate

CONFIG
COM-
PLETE

Config Init Wait Immediate

DEFAULT
CONFIG

Stop Def.
Config

Immediate

FREEZE All States Stop Immediate

HALT Active, Passive Stop End of
cycle

READY All states except Def.
Config, Config, Init
Wait, Stop

Init Wait Immediate

RUN Init Wait Start-Up Immediate

WAKEUP Init Wait Wake-Up Immediate

changes in the CC and MIL submodules, and describes the
different operating modes of the node, as depicted in Fig. 4.
These mode changes can be triggered by host commands or by
internal and/or network conditions encountered by the node.
Table I describes the different commands issued by the host
and how the operation of the CC is modified in response. As
can be seen, certain commands demand an immediate response
from the controller, while others are to be applied at specific
points within the communication cycle. This distinction makes
the control flow more complex than the case of a straight-
forward finite state machine (FSM).

The FlexRay protocol allows a cluster and its associated
nodes to switch to sleep mode to conserve power. When any
node needs to start communication on the network, a wakeup
sequence is triggered by the host by putting the CC into
wakeup state. In the wakeup state, the node tries to awaken a
sleeping network by transmitting a wake-up-pattern (WUP) on
one channel. Sleeping nodes decode this pattern and trigger
a node wakeup. Nodes which have dual channel capability
then trigger a wakeup on the other channel to complete a
cluster-wide wakeup. The node cannot, however, verify the
wakeup trigger at all connected nodes, since WUP has no
mechanism to communicate the ID of the nodes that have
responded. The nodes then follow the startup procedure to
initialise communication on the cluster. The startup operation
also caters for re-integration of a node onto an active network.
To do so, the node must start its local clock so that it is

Def.
Config

Config

Init
Wait

Wakeup

Startup Active Passive

Stop

*

Config
Command

Config
Done

Config
Command

Wakeup
Command

Wakeup
complete

Ready
Command

Run
Command

Integration
Success

Ready
Command Sync

Error

Sync Ok

Halt Command
or Critical Error

Freeze
Command

Fig. 4: Flexray CC Modes of Operation.

Protocol Management

uCode
ROM

Wake
Up

PMM
Main

Start
Up Shared

Resources

Addr
Gen

Host
Commands

Node-Network
Conditions

Control
Signals

PE in

CHI in

Sys Clk

Sys Rst

PE out

CHI out

Fig. 5: Protocol Management module architecture.

synchronised with the network time.
Within the Startup state, the clock synchronisation startup

(CSS) logic in the Clock Sync module is initialised, which
extracts timing information from a pair of synchronisation
frames received from the bus and starts the macrotick gen-
erator (MTG) in alignment with them. Over the next few
cycles, it monitors the deviation of its clock from the actual
arrival time of sync frames on the bus, and if these are within
predefined limits, the process is signalled as successful. If at
any point, the observed deviation is beyond the configured
range, the integration attempt is aborted and the node restarts
the process. Once it integrates, the node moves to the Active
state, with a clock that is synchronised with the network. After
successfully joining the network, the PMM normally follows a
cyclic behaviour switching between active and passive states,
in response to network-node conditions, causing synchronised
changes in all modules.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 6

Clock Sync

CSP
SM

MTG

CSS
SM

uT Timer

MT Timer

((A − B) ∗ C + D)%E

CAM EVEN

Channel A
Slot ID &
Deviation

Channel B
Slot ID &
Deviation

CAM ODD

Channel A
Slot ID &
Deviation

Channel B
Slot ID &
Deviation

A
B
C
D
E

Port A

Port B

Port A

Port B

PE in

CHI in

Sys Clk

Sys Rst

uT Clk

MT Clk

PE out

CHI out

Fig. 6: Clock Sync module architecture.

In our design, the PMM also encapsulates Wakeup and
Startup. Combining the operations of WUP and SUP with
the operations at each state of PMM results in a hierarchical
structure, as in Fig. 5, with the combined state encodings
stored in the microcoded ROM. Combining the two functions
into the same module also allow us to share resources between
the two operations, which are not required concurrently, using
simplified control flow. Since CS and MIL are also controlled
by WUP and SUP for the associated wake-up and start-
up operations, integrating them with the PMM results in
centralised control for all operating conditions, simplifying
interfaces to the submodules. The responses to different con-
ditions or stimuli is now reduced to the process of generating
appropriate addresses for the ROM, similar to the program
counter implementation on a standard processor. The ROM
is efficiently implemented using distributed memory (LUTs)
because of its small size.

Fig. 6 shows a simplified architecture of the CS module in
our design. The CS module generates the clock, computes
the deviations of the generated clock from the distributed
timing information and applies corrections. The CS module
is comprised of 2 concurrent operations (or submodules):
firstly, the MTG process which controls the cycle counter
and the macrotick counters and applies the rate/frequency
and offset/phase correction values; and secondly, the Clock
Synchronisation Process (CSP) that performs the initialisation
at cycle start, the measurement and storage of deviation values
during the cycle and computes the offset and rate correction
values. In addition, the CSS module is responsible for starting
a synchronous clock when the CC tries to integrate into
either an active network or initiate communication on an idle
network. The CSP state machine controls and co-ordinates the
operations of the CS module by interacting with the CSS and
MTG submodules.

During Startup, the CSS process monitors the arrival time
of the even synchronisation frames and generates the global
reference time by computing the initial Macrotick value as

Macrotick = (pMacroInitialOffset + gdStaticSlot

× (ID − 1)) mod gMacroPerCycle,

Stat. Dyn. Sym. NIT Stat. Dyn. Sym. NIT Stat. Dyn. Sym. NIT

even cycle (2n) odd cycle (2n+1) even cycle (2n+2)

optional

rate correction rate correction rate correction
MTG

measure O measure O R
CSP

compute compute

offset

Fig. 7: Rate and offset computation by MTG and CSP.

−7
31

44

50

26

−14

−49

−49
−14
−7
26

31

44

50

(−14 + 44)/2

= 15

Deviation

Values

sort

Fig. 8: Fault tolerant midpoint illustration for seven deviation
values.

where pMacroInitialOffset, gMacroPerCycle, and gdStaticSlot
are FlexRay parameters. The computation is implemented
using cascaded DSP48A1 slices, whose inputs are multiplexed
between channels A and B to handle startup requests from
either channel. If a subsequent odd frame arrives within
the predefined window, the integration attempt is flagged as
successful by the CSS module and the CSP commands the
MTG state machine to start the Macrotick clock (MTClk)
using the computed Macrotick value for this channel. The
MTG then generates the Macrotick clock from the Microtick
clock (uTClk) using the configured parameter values.

Fig. 7 shows the clock deviation computation for each cycle,
once the CC successfully integrates onto the network. The
measuring cycle refers to the duration of the static segment,
where sync-nodes transmit synchronisation frames which are
used to compute rate and offset corrections. During each
measurement cycle, the node measures the deviation of time of
arrival registered at the node from the calculated time of arrival
of the synchronisation frame, which is stored in memory. At
the end of measurement phase, the node computes the offset
and rate correction factors from the stored values using a
fault-tolerant midpoint algorithm. The operation is depicted
in Fig. 8, for a cycle that recorded seven deviation values.
The real challenge here is that a network may be configured
without dynamic and symbol window segments. Hence the
offset and rate computations have to be completed consuming
a minimum number of cycles to ensure that correction values
are available to be applied at the network interval time
segment.

Fig. 9 shows our solution to the mid-point computation
mechanism, expanded from the slotID and deviation store in
Fig. 6, for an even cycle. The fault-tolerant midpoint algorithm
computes the rate and offset corrections that are to be applied
to the MacroTick clock. During normal operation, the CSP
module handles the computation and storage of individual

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 7

ID RAM
A(B)
ID

Channel A

Dev. Store

Channel B

Dev. Store

write

if found→ID location:

else → new location

Min. deviation
for each ID

Upper pipe

Lower pipe

valid
count

+
midpoint

deviation

content addressable memory structure

Fig. 9: CAM organisation and fault tolerant mid-point
computation for offset correction.

deviation values and the computation of mid-point correction
values. As a frame is received, its ID is used to address the
slotID RAM, the output of which is used as the address for
the deviation store, mimicking a content-addressable memory.
The deviation from the expected arrival time of sync frames
to their actual arrival time is stored in the deviation store. The
upper and lower pipes perform dynamic sorting (descending
and ascending) as and when the deviation values are replayed
from the store, at the end of the cycle. Dynamic sorting is
implemented using a FIFO structure and multiple comparators.
Hierarchical comparison is performed from top to bottom
(bottom to top) in the upper (lower) pipe. At any level, if
the input value is greater (less) than the existing values at that
level, the input value is pushed into the FIFO at that level.

For each ID, the multiplexer chooses the minimum deviation
among the two channels, in the case of offset computation,
and the difference between the corresponding channels in a
pair of cycles, in the case of rate computation. The mid-
point deviation is the average deviation over the corresponding
stages in upper and lower pipe, the stage chosen depending on
the number of valid deviation values stored. The MacroTick
Generation module uses the computed mid-point deviation
values to make corrections to the node’s view of time. Utilising
the tagging established by the content-addressable memory
and the pipelined architecture, the mid-point computation can
be efficiently implemented at system clock rate to meet pro-
tocol requirements. A more conventional architecture would
require a higher clock rate for this computation. Architectural
optimisation also enables us to utilise fewer resources while
maximizing performance.

The MIL instantiates independent transmit and receive tran-
sit buffers to manage temporary storage of a frame, as shown
in Fig. 10. The MIL ensures that medium-access occurs only
at slots assigned to the node. The access control state machine
handles the bus access, depending on the current slot counter
value and slot segment. The access control logic generates and
maintains the slot counter and the slot segment, which are
used by other modules in the CC. Within each slot, the logic
generates control signals called action points, which mark
points at which transmission can start (in static and dynamic
slots) or end (in dynamic slots).

The signals trigger the encoding logic to start transmission
of frame in the transmit buffer, provided the current slot is

Medium Interface Layer

Access
Control

Prefetch Tx Transit
Buffer

Rx Transit
Buffer

Encoder

Tx Shift

Register

Decoder

Rx Shift

Register

TxD TxEnRxD

CHIin PEin CHIout PEout SysClk SysRst

Fig. 10: Medium Interface Layer architecture.

allocated to this node. The data to be transmitted is moved
to the transmit buffer over a 32 bit data bus. If no data is
available for transmission, the node transmits a null frame.
The module also handles encoding and serial transmission
of data (at the oversampled rate) to be transmitted in the
current slot. Decoder functionality is also integrated into this
module, which performs bit-strobing, majority-voting, byte-
packing and validation of received data at the end of the slot.

The transmit interface is implemented using shift registers
with gated clocks. This allows us to provide multiple functions
with the same set of registers: encode and transmit data bytes,
control signals, and symbols. The shift register reads each
byte from the transmit buffer, encodes it within the shift
register and pushes it to the transmit line at the transmit
clock, along with the transmit control signals. At the receiving
interface, sampling, bit-strobing and edge synchronisation are
implemented using a sequence of shift-register modules: one
set samples the data and produces a majority voted bit every
cycle, and the second set performs byte-packing of the data.
This system offers the advantage of simpler control and higher
throughput. The byte-packed data is written into the receive
transit buffers. As and when protocol errors or violations are
detected (like reception crossing boundary points), appropriate
flags are set locally, which are used to validate the data at the
slot boundary. At the end of the current slot, the flags are
checked to signal valid data, which can then be written into
the receive data memory in the host-interface.

The control modules are efficiently implemented as mul-
tiple state machines at different levels to ensure parallel and
independent operation. The transmit buffers prefetch data from
the transmit data store in the CHI at the start of each slot to
minimize latency. Similarly, the data location for each received
frame is precomputed to enable complete data to be written
to the receive data store in the CHI before the start of next
frame, minimising latency between the time of frame reception
and its being passed the Host. Also, the data available flag
and interrupts (if enabled) are set, as soon as the first D-
word is written into the receive buffer in the CHI. The data
store and the associated control and status store in the datapath
mimic a content-addressable architecture in Block RAMs to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 8

enable prefetching and addressing using the slot-cycle-channel
complex, as required by the protocol.

Two such MILs are instantiated within the controller to
support independent dual channel operation. These modules
may transmit and receive data in the same slots, as configured
by the host. To facilitate this, we have implemented a config-
urable scheduler, which can be configured for priority access
(Channel A over B or vice versa) or first-come, first-served
mode. High word-length interconnects are used between the
data store in host interface and transit buffers within the
MIL module to ensure low-latency prefetch and write-back
for both channels. Using such an architecture, the prefetching
can be handled at system clock rates, without high latency.
The physical layer can be configured to support multiple bit-
rates of 2.5 Mbps, 5 Mbps or 10 Mbps. The usage of shift
register-based encoder/decoder modules simplifies the logic
requirements for handling multiple bit-rates.

The interface to the host processor is designed to be
compatible with the Processor Local Bus (PLB) interface and
AMBA Advanced eXtensible Interface 4 (AMBA AXI4) stan-
dards, two of the widely used high-performance low-latency
peripheral interconnects for system-on-a-chip (SoC) designs.
The host interface supports parameterised widths and a wide
range of system and interrupt configurations to provide a rich
interface to the host processor (or logic). The control path
comprising the command, status and configuration registers
are isolated from the datapath and implemented as a register
stack. Data corresponding to each cycle, slot, and channel is
addressed using an indirect addressing technique. The data
pointer is stored at an address determined by the cycle-slot-
channel complex. This allows us to use true dual-port Block
RAM modules and simpler address generation as opposed to
the complex FIFO-based schemes used by existing controllers.
Another advantage is that the memory can be configured as
a cyclic buffer resulting in an indefinite memory space, as
opposed to the limited memory space available in a FIFO-
based scheme. The memory space is dynamically allocated at
the end of each slot that is configured as a receive slot, only if
valid data has been received, thus optimising memory usage.

Asynchronous FIFOs are instantiated between the host inter-
face and the control/data stores, enabling the host interface to
run at a clock speed independent of the PE. Using such a low-
level design paradigm, we are able to leverage FPGA resources
within the modules of the FlexRay Controller, thereby saving
the remaining area for host implementation.

C. Controller Datapath Extensions

Traditional controllers depend on the host processor to
read the received data and determine the usefulness of it.
The controller issues a data interrupt, to which the processor
responds with a status register read followed by a data read
request, subsequently receiving the data. These overheads
are wasted in the case of frames with irrelevant data (like
obsolete or untimely data) or multi-cycle data frames where
the processor cannot process the received fragment until more
data is available. In the case of critical data frames like error
state that require immediate attention, the latency introduced

by the traditional scheme limits the performance of safety-
critical systems which rely on host-triggered recovery. With
custom extensions, such exceptions can be handled at the
controller, which processes the information and informs the
host processor (using interrupts). The host retains absolute
control, but is not involved in the low-level processing, which
is handled instead by the configurable extensions. Fig. 11
describes the functioning of such extensions on the receive-
path of our controller.

On the receive path, the extensions can monitor the received
data for matching FlexRay message ID, application-based
custom headers or timestamp information, contained in the
data segment of the FlexRay frame. The FlexRay message
ID can be used for application/user defined communication
in dynamic segment data frames. An interesting use-case is
to embed the error status of the ECU into the message ID,
which can trigger a fault-recovery procedure in safety-critical
units. Application specific headers may be embedded into the
data segment in any frame. Such headers convey information
about the data contained in the frame, like sequence number
and length, and are particularly useful in the case of large data
transfers which are accomplished as multi-cycle transactions
on the FlexRay bus. Information in the headers can be used
by the controller to re-pack the multi-cycle data. The header
processing extensions on the receive path can look for such
information and re-organise the segmented data and present it
as a single transaction to the host.

Similarly, the timestamp validation extension can be config-
ured to reject frames which are obsolete or untimely. On the
transmit path, these extensions can insert relevant headers and
timestamp information, as configured. Timestamp resolution
is configurable, with a finest resolution of one macrotick
and maximum length of four bytes. The header is entirely
user configurable, and can be matched at the receiver by
programming the corresponding registers.

Such extensions on the controller can help extend the
functionality and overcome the inherent limitations of the
FlexRay network, and are impossible to achieve on discrete
controllers. Our pipelined architecture in the transmit and
receive paths allows us to add this functionality with no
additional latency. Standardising such extensions, automotive
networks like FlexRay can be enhanced to implement a data-
layer segment that provides security against replay attacks (us-
ing timestamps) and a standard methodology to communicate
the health state of ECUs (using headers) [26]. Though such
enhancements can be handled by the application in software,
this would incur additional processing latency and unwanted
complexity at the software level (like timing synchronisation).

IV. IMPLEMENTATION RESULTS

To validate our design and to measure the actual perfor-
mance on hardware, we have implemented the design in a
low power Xilinx Spartan 6 XC6SLX45 FPGA with a host
module described using a state machine, modelling a complete
ECU. We choose the Spartan 6 as it is a low cost, low power
device, that would be a likely choice for an automotive imple-
mentation. To test the network aspects, we emulate a FlexRay

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 9

Voting Window

F
le

xR
ay

B
us

Byte Packer

Transit
Memory

Slot-Cycle
Filter

Traditional Scheme

Custom Extensions
Msg ID filter

Appl. header processing
(Data Segment)

Timestamp validation

Decision
Block

Receive
Data Store

Host processor

Process
Data

Assigned
Slot-Cycles

Match

Valid Frame

Interrupt

Data read

Critical msg?
Multi-cycle msg?

Invalid timestamp?

Interrupt
(Data/Control)

Critical?

Multi-cycle?

Stale?

Fig. 11: Receive path extensions on custom CC versus traditional schemes.

TABLE II: FlexRay node parameters.

Parameter Value

Number of Cycles 64
Cycle Duration 5 ms
Number of Static Slots 62
Static Slot duration 65 (macroticks)
Payload Length (Static) 21 words
Number of Dynamic Slots 10 (max)
Symbol Window duration 139 (macroticks)
NIT duration 208 (macroticks)
Sample Clock 12.5 ns
Keyslot ID Assigned Slot 7
Transmission slots Slot 7 in cycles 32 and 62

bus within the FPGA, using captured raw bus transactions
from a real FlexRay network (using Bosch E-Ray controllers)
communicating using a pre-defined FlexRay schedule; these
are stored in on-board memory. The information is replayed
to create a cycle accurate replica of transactions on the bus.
Our CC is plugged into this FlexRay bus, and configured with
the same FlexRay parameters. Table II shows a specific set of
parameters which was used for our experiments.

Table III details the resource utilisation of the individual
modules of the controller and the power estimates generated
by the Xilinx XPower Analyser tool, using activity information
from simulation. We have configured the core to support all
extensions on the transmit and receive path; a two-byte data
header and a four-byte timestamp. The maximum achievable
frequency for this configuration was 88 MHz. The core is
initialised with parameters using a logic-based host-model
over a PLB/AXI interface. The actual power measured using
a power supply probe during operation in hardware is also
shown.

Table IV compares the resource utilisation of our imple-
mentation against the platform agnostic E-Ray IP core on the

TABLE III: CC Implementation on hardware.

Usage PM Module CS Module MIL Module

Registers 222 1864 732
LUTs 537 3579 1050
BlockRAMs 0 2 2
DSP48A1s 0 3 0
Est. Pow. (mW) 45 66 54

Actual Power 121mW (at 80MHz system frequency)

same Altera Stratix-II device. For the purpose of comparison,
the consolidated utilisation on a Xilinx Spartan 6 is also
shown in the same table. It can be observed that the hardware
centric approach results in much better utilisation of the het-
erogeneous resources, leading to a compact implementation.
The design can also be easily ported to other Xilinx and
Altera devices, and to other platforms with a little more
effort. The resource utilisation and optimisations that we have
achieved in comparison with the platform agnostic E-Ray
core is significant enough to justify the somewhat reduced
portability. With DSP inference disabled, our implementation
consumed 8282 LUTs and 5248 Registers (on the Stratix-II),
which is still less than the E-Ray core. Another advantage is
that the power consumption at full operation on a Spartan 6
device is below the power consumed by typical stand-alone
controller chips like the Infineon CIC-310, which uses the E-
Ray IP module [27] and consumes about 150 mW in normal
operating mode.

A key advantage of implementing the communication con-
troller in the FPGA fabric is the ability to compose more
intelligent ECU nodes with enhanced communication capa-
bilities on a single device. As an example, we have integrated
a fully functional ECU node that combines this controller
with a MicroBlaze softcore processor on a Xilinx Spartan
6 XC6SLX45 device, as in Fig 12. The ECU functions as
a front-end processing node for radar-based cruise control

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 10

TABLE IV: Comparison of implementations.

Utilisation
E-Ray[24] Proposed Implementation

Extentions Disabled Enabled

Altera Stratix II Xilinx Spartan 6

Registers 7754 4966 4910 5612
LUTs 12780 7856 7978 8767

BRAMs 23×M4K 33×M4K
5×9k +
12×18k

5×9k +
13×18k

DSPs — 12×9-bit 3×DSP48A1

MicroblazeInterrupt
Controller

Radix-2
FFT

CFAR

DPR

System
Interfaces

FlexRay
Interface

System
Memory

Traffic
Generator

BUS A
JTAG
RS232

Sensor
Data

Fig. 12: Integrated ECU function on Spartan-6 FPGA.

and is built using Xilinx FFT IP cores and pipelined logic
which performs target detection using a constant false alarm
rate (CFAR) scheme [28]. The test data generates 1024 data
points every 30 ms, which are transformed to the frequency
domain by the FFT module. The CFAR module performs
detection on the frequency domain data using multi-stage
pipelined logic and writes results into the dual-port RAM.
The processor is then interrupted, and it consolidates the
data over a configurable number of cycles. The controller is
configured with parameters defined in Table II. Thus at cycles
32 and 62, consolidated results are sent on the FlexRay bus.
Table V details the resource utilisation and power consumption
measured during operation in hardware. Such an application
would otherwise require specialised DSP processors, since
the latency cannot be met by software implementation on a
general purpose processor [28]. Similar performance can be
obtained by interfacing high performance DSP devices like
the Analog Devices ADSP-TS202S [29] with a standalone
FlexRay controller like the Infineon CIC-310 or Freescale
S12XF [30], but the node would consume much higher power
overall than the integrated FPGA implementation. The key
advantage here is that integrating ECU functionality and the
network interface on the same device only increases power
usage marginally, and this interface can be shared between
multiple functions on the same FPGA.

MicroBlaze offers a low power, low throughput processing
option for sensor applications. Alternatively, hybrid platforms
like the Xilinx Zynq can be used for more compute intensive
and real-time applications since they offer a more powerful

TABLE V: Spartan-6 implementation of ECU on Chip.

Solution Metrics Proposed
CC

Hardware
Accelerator

Full
ECU

Proposed
Scheme

Registers 4922 4216 11778
LUTs 7969 3221 13566
BlockRAMs 13 11 60
DSPs 3 44 48
Power 291 mW

Discrete
Solution

ADSP TS202 596 mW @ 100 MHz clock
Discrete CC 150 mW [27]
Total Power 746 mW

hard ARM processor. By using AXI-4 for communication
between the CC and the host, our design can be used with
the ARM in the Zynq (consuming 5612 Registers, 8685 LUTs
and 2 DSP48E1s) or with a MicroBlaze soft processor, or a
custom hardware ECU.

V. CASE STUDIES

We now present three distinct case studies that showcase
the effectiveness of the custom extensions in the context of
existing or proposed automotive applications. In each use case,
we observe that the application can leverage the intelligence
built into the controller, leading to smarter and more efficient
systems when compared to standard implementations.

A. Error Detection and Fall-Back for Safety Critical Systems

Safety-critical systems employ redundant or fall-back
modes, which enable minimum guaranteed functionality, even
in the presence of hardware/software faults. One of the critical
parameters in such a system is the time taken to switch
to fall-back mode once a fault has been identified. For this
experiment, we model a brake-by-wire system comprising two
MicroBlaze ECUs on the FlexRay network; the brake sensor
ECU, which interfaces to the sensor modules, and the actuator
ECU, which issues commands to the braking system. Each
ECU incorporates fall-back logic which is triggered when a
fault-status message is received. These status messages are
generated by centralised fault detection logic that monitors
bus transactions for unsafe commands/data. The sensors and
actuators are modelled using memories: sensor data is gen-
erated from a Sensor BRAM, and commands are pushes to
the Actuator BRAM. The sensor ECU combines inputs from
the different sensor interfaces periodically and passes it over
the FlexRay bus to the processing ECU. The processing ECU
uses this data to compute commands and issues them to the
actuators. Both ECUs run software routines on the popular
FreeRTOS platform. A simplified model of the test setup is
shown in Fig. 13.

To mimic the behaviour of off-the-shelf controllers, we dis-
able the custom extensions on the CC. A fault-status message
is triggered on the sensor ECU system by configuring invalid
data in the Sensor BRAM, causing incorrect sensor-data to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 11

FPGA

ECU1 ECU2

ECU3

Sensor1

Sensor2

Sensor3

Actuator1

Actuator2

FlexRay

t0 t1 t2

t4t3

msg1

msg2

Fig. 13: Test setup for brake-by-wire system.

0 0.2 0.4 0.6 0.8 1 1.2

·104

SA

RT
Hardware

3,540

9,050

180

Processing Time (ns)

Fig. 14: Latency distribution for interrupt-based critical data
processing.

be issued to actuator ECU over the FlexRay bus. The fault-
detector logic detects the error and transmits the error code
in the next slot assigned to it. A normal controller decodes
this message, passes it to the MicroBlaze processor, where
the data is processed to trigger fall-back mode. The latency
from the transmission of the error message to the triggering
of fall-back mode is largely determined by the interrupt-based
data passing mechanism used in off-the-shelf controllers. Even
for an RTOS-based (real time) system, this latency can be
significant, and was measured at an average of 9.05ms for our
implementation, as illustrated in Fig. 14.

By moving such critical data processing to the controller,
it becomes possible to significantly reduce this delay and
enhance the determinism of the system. To quantify this, a
processing extension that detects packets on a user-configured
slot with a user-specified data header is enabled on the CC.
On detecting this combination, the controller can either process
the remaining data for specific patterns, or trigger an interrupt.
In this particular experiment, it is configured to process the
critical error flags and the consecutive error numbers to decide
whether to trigger fall-back mode. This generates a direct
interrupt to the MicroBlaze processor and enables fall-back
mode, resulting in a faster and more consistent turnaround
time (average 50× faster than RTOS), as shown in Fig. 14.

We have also repeated the experiment using the Xilinx
standalone (SA) OS, the lightweight minimalistic OS for
MicroBlaze. It can be observed from Fig. 14 that though the
simplified standalone OS results in lower average interrupt
latencies than the RTOS, it results in a larger spread of
latencies.

0 0.2 0.4 0.6 0.8 1

·104
Forward (RT)Forward (SA)

Process

9,285ns

3,780ns

180ns

Time Elapsed (ns)

Valid Frame
Interrupt (Data/TS)

IRQ Latency
Data Transfer

Fig. 15: Timestamp processing at interface.

B. Time-Awareness for Messages

A major security risk in time-triggered systems like FlexRay
is the lack of time-awareness for messages. By monitoring bus
transactions, an external agent can easily employ simple replay
attacks, flooding the bus with stale data, as described in [31].
The FlexRay protocol leaves this vulnerability to the higher
layer applications to manage. In our controller, the transmit
path allows messages to be optionally time-stamped to make
the message time-aware, at the cost of increased payload size.
By inserting the header and timestamp within the data segment
of the FlexRay frame, it is transparent to other FlexRay
controllers present on the network, ensuring interoperability
with off-the-shelf controllers. With timestamps enabled, the
receive path can be configured to automatically drop frames
which are outside an allowed time window. This creates a basic
security layer at each ECU, which can be augmented further
by incorporating encryption/decryption logic in the datapath.

An interesting use-case is in high-performance gateways
that move data between network clusters. With traditional
interfaces, messages arriving from each interface will be for-
warded to the switch logic, which decides whether to forward
the data to its destination or drop it because it has expired.
By building intelligence into the controller, the the validity of
data can be determined before it is forwarded to the switching
logic. We modify the experimental setup in Section 13 to
model a a gateway configured to discard untimely data, either
at the processing logic (MicroBlaze), mimicking off-the-shelf
interfaces, or at the interface using our enhanced controller
extensions. Our tests show that the interface can process
the timestamp and discard the message within 180 ns of
frame reception. A standard approach consumes a further 3.6
and 9.1us on average, for standalone (SA) and RTOS (RT)
respectively, as shown in 15, since the data must be processed
by the host.

C. Handling Volume Data at Interfaces

Applications like radar-based cruise control utilise volume
data gathered by the radar-sensors to compute distance and
relative velocity of other vehicles in the vicinity. A complete
dataset from a sweep is required by the processing logic to
determine these parameters, and this data is received over
many data slots. The processing ECU must reassemble these
fragments before the data can be processed. By moving this

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 12

0 10 20 30 40 50 60
SA

Off
RT Off

SA
On

RT On

63.4us

53.8us

27.4us

25.0us

Processor Time Consumed (us)

IRQ Latency
64 beat Transfer
Subseq. IRQ Lat.

Subseq. Burst

Fig. 16: Data re-packing for multi-cycle data transfers.

packing/re-packing to the controller interface, the processing
logic can overlap the computation with data reception, en-
abling it to run at lower frequencies and hence consume lower
power.

To demonstrate this, we use the experimental setup for
the radar-based cruise control ECU, described earlier in Sec-
tion IV. The data from the radar sensor is received over the
FlexRay bus in bursts of 256 bytes, the maximum payload
size defined by FlexRay standard. The MicroBlaze processor
runs the standalone (SA) OS from Xilinx. In a normal design,
the processor is interrupted each time a block of data is
received. The processor responds with the first data read
request 12ms (worst-case) after receiving the interrupt, with
the burst read consuming a further 3.84ms. This is repeated
over four cycles to complete the data transfer, cumulatively
consuming 63.36ms.

We then test the same application with en extension that
allows the controller to intelligently buffer the entire frame
in a buffer, only interrupting the processor at the end of the
transaction. This enables the processor to issue back-to-back
reads from the controller completing the entire data movement
in 27.36ms from the reception of the interrupt. To provide a
balance between multi-cycle and single-cycle data, the design
has been constrained to handle up to four data cycles at
full payload size. To support larger data sizes, larger buffer
memories must be added to the the controller, resulting in
higher device utilisation, however, this may be a tolerable cost
for some ECUs, and the CC architecture supports it.

The experiment was also repeated using the FreeRTOS-
based (RT) software, which provided better determinism than
the standalone OS, resulting in a lower worst-case interrupt
latency, as shown in Fig. 16.

VI. DISCUSSION

The FlexRay protocol does not define the usage of headers
within the data segment, which is entirely dependent upon user
implementation. While the usage of headers and time-stamps
within data provides the aforementioned advantages, it may
result in significant payload overheads for small data sizes,
while also limiting the payload capability of a FlexRay frame.
Fig. 17 compares the overheads associated with different
configurable values for the application header and timestamp,
as a function of the payload size. As can be observed, at lower
payload sizes, the inclusion of a timestamp and application

4 8 16 32 64 128 256 512 1024

20

40

60

80

100

Total Payload Size with Header (H) & Timestamp (TS)

%
O

ve
rh

ea
d

H: 2B TS: 0B
H: 2B TS: 2B
H: 2B TS: 4B
H: 4B TS: 4B

Fig. 17: Overheads for including headers and timestamps.

header results in large overheads, but for large payload sizes,
the penalty paid is very small. Beyond the maximum payload
size of 256 bytes, additional data has to be handled as multi-
cycle transactions, causing the curve to flatten out for higher
payload sizes. Since the application header and timestamp data
is inserted within the data segment of the FlexRay frame, it
is transparent to other FlexRay controllers on the network,
ensuring interoperability with standard controllers.

We have purposefully designed the controller’s architecture
to coexist with ECU functions on the same FPGA. Doing so
allows us to leverage the computational capabilities of FPGAs
for implementing ECU functions, while no longer requiring
a discrete network controller. We can also incorporate partial
reconfiguration to allow multiple applications to interface with
the bus through a single controller and to define fault-tolerant
ECUs for safety-critical functions [32].

Furthermore, timestamps and data processing capabilities
within the controller can also be used extensively for func-
tional validation of novel applications, architectures and net-
work features. On a large enough FPGA like the Virtex-7,
we can integrate up to 10 ECUs, network controllers, and the
actual network to create a validation platform (replicating an
actual car network) for functional verification [33].

VII. CONCLUSION

In this paper, we have given an overview of the FlexRay
protocol and the generic architecture of the communication
controller, as defined by the specification. By identifying and
extracting operations which are mutually exclusive or natively
parallel, we have designed a custom controller which takes ad-
vantage of the heterogeneous resources on modern FPGAs, re-
sulting in reduced logic footprint, and low power consumption,
while providing a host of features beyond those described by
the standard. Advanced computational capabilities like fault-
tolerance and function consolidation can be built into nodes
that integrate complex ECU functions with advanced com-
munication controllers. This approach also improves power
consumption compared to the use of discrete controllers.
We hope that our flexible and configurable architecture can
be leveraged for continued research on intelligent FlexRay
nodes and switches on FPGAs, leading to wider adoption of
reconfigurable hardware for in-vehicle applications.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , MONTH YEAR 13

We aim to investigate extending this controller for use with
partial reconfiguration to provide flexible use of the FPGA
fabric, enabling further sharing of communication resources
between ECUs. We intend to develop intelligent FlexRay
nodes and switches on reconfigurable hardware that are energy
efficient and allow us to explore more advanced network
setups. Finally, the principles demonstrated in this paper are
also applicable to other time-triggered interfaces, and we hope
to explore this for time-triggered Ethernet.

REFERENCES

[1] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, N. Chang, S. Park,
Y.Kim, P. Leteinturier, and H. Adlkofer, “Embedded Systems and
Software Challenges in Electric Vehicles,” in Proc. Design, Automation
and Test in Europe (DATE) Conference, 2012.

[2] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Reconfigurable
Computing in Next-Generation Automotive Networks,” IEEE Embedded
Systems Letters, vol. 5, No. 1, pp. 12–15, 2013.

[3] I. Sheikh, M. Hanif, and M. Short, “Improving information throughput
and transmission predictability in Controller Area Networks,” in Proc.
International Symposium on Industrial Electronics (ISIE). IEEE, 2010,
pp. 1736–1741.

[4] J. Kötz and S. Poledna., “Making FlexRay a Reality in a Premium Car,”
in Proc. of the SAE International, 2008.

[5] Specification of FlexRay Interface Version 3.2.0, AUTOSAR Std.
[Online]. Available: http://www.autosar.org

[6] FlexRay Communications System, Protocol Specification Version 2.1
Revision A, FlexRay Consortium Std., December 2005. [Online].
Available: http://www.flexray.com

[7] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz,
“Switched FlexRay: Increasing the Effective Bandwidth and Safety of
FlexRay Networks,” in Proc. Conference on Emerging Technologies and
Factory Automation (ETFA), 2010.

[8] T. Schenkelaars, B. Vermeulen, and K. Goossens, “Optimal Scheduling
of Switched FlexRay Networks,” in Proc. Design, Automation and Test
in Europe (DATE) Conference, 2011.

[9] M. Lukasiewycz, S. Chakraborty, and P. Milbredt, “FlexRay Switch
Scheduling - A Networking Concept for Electric Vehicles,” in Proc.
Design, Automation and Test in Europe (DATE) Conference, 2011.

[10] T. Forest, A. Ferrari, G. Audisio, M. Sabatini, A. Sangiovanni-
Vincentelli, and M. Di Natale, “Physical Architectures of Automotive
Systems,” in Proc. Design, Automation and Test in Europe (DATE)
Conference, 2008.

[11] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “FlexRay Schedule
Optimization of the Static Segment,” in Proc. International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2009.

[12] K. Schmidt and E. G. Schmidt, “Message Scheduling for the FlexRay
Protocol: The Static Segment,” IEEE Transactions on Vehicular Tech-
nology, vol. 58, No. 5, pp. 2170–2179, 2009.

[13] E. G. Schmidt and K. Schmidt, “Message Scheduling for the FlexRay
Protocol: The Dynamic Segment,” IEEE Transactions on Vehicular
Technology, vol. 58, No. 5, pp. 2160–2169, 2009.

[14] J. J. Nielsen and H. P. Schwefel, “Markov Chain-based Performance
Evaluation of FlexRay Dynamic Segment,” in Proc. International Work-
shop on Real Time Networks, 2007.

[15] B. Kim and K. Park, “Probabilistic Delay Model of Dynamic Message
Frame in FlexRay Protocol,” IEEE Transaction on Consumer Electron-
ics, vol. 55, Issue 1, pp. 77–82, 2009.

[16] X. HeI, Q. Wang, and Z. Zhang, “A Survey of Study of FlexRay Systems
for Automotive Net,” in Proc. International Conference on Electronic
and Mechanical Engineering and Information Technology, 2011.

[17] C. Schmutzler, A. Lakhtel, M. Simons, and J. Becker, “Increasing energy
efficiency of automotive E/E-architectures with Intelligent Communi-
cation Controllers for FlexRay,” in Proc. International Symposium on
System on Chip (SoC), 2011.

[18] J. Sobotka and J. Novak, “FlexRay controller with special testing
capabilities,” in Proc. International Conference on Applied Electronics
(AE), 2012, pp. 269–272.

[19] J. Y. Hande, M. Khanapurkar, and P. Bajaj, “Approach for VHDL
and FPGA Implementation of Communication Controller of FlexRay
Controller,” in Proc. International Conference on Emerging Trends in
Engineering and Technology, ICETET, 2009.

[20] Y.-N. Xu, Y. E. Kim, K. J. Cho, J. G. Chung, and M. S. Lim,
“Implementation of FlexRay Communication Controller Protocol with
Application to a Robot System,” in Proc. IEEE International Conference
on Electronics, Circuits and Systems (ICECS), 2008.

[21] Y.-N. Xu, I. Jang, Y. Kim, J. Chung, and S.-C. Lee, “Implementation
of FlexRay Protocol with an Automotive Application,” in Proc. Inter-
national SoC Design Conference (ISOCC), 2008.

[22] P. Szecowka and M. Swiderski, “On Hardware Implementation of
FlexRay Bus Guardian Module,” in Proc. International Conference on
Mixed Design of Integrated Circuits and Systems (MIXDES), 2007.

[23] G. N. Sung, C. Y. Juan, and C. C. Wang, “Bus Guardian Design for Au-
tomobile Networking ECU Nodes Compliant with FlexRay Standards,”
in Proc. International Symposium on Consumer Electronics, 2008.

[24] Product Information : E-Ray IP Module, Robert Bosch GmbH, July
2009.

[25] FRCC2100 : Product Brochure, Freescale FlexRay Communications
Controller Core, IPextreme, Inc.

[26] S. Shreejith and S. A. Fahmy, “Enhancing Communication On Auto-
motive Networks Using Data Layer Extensions,” in Proc. International
Conference on Field Programmable Technology (FPT), 2013, pp. 470–
473.

[27] SAK-CIC310-OSMX2HT, FlexRay Communication Controller Data
Sheet, Infineon Technologies AG, June 2007.

[28] J. Saad, A. Baghdadi, and F. Bodereau, “FPGA-based Radar Signal
Processing for Automotive Driver Assistance System,” in Proc. Interna-
tional Symposium on Rapid System Prototyping, 2009.

[29] F. Greg, “EE170 : Estimating Power for the ADSP-TS202S Tiger-
SHARC Processors,” Analog Devices, Tech. Rep., 2006.

[30] MC9S12XF512 Reference Manual, Rev.1.20 ed., Freescale Semiconduc-
tors, Nov 2010.

[31] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and privacy vulnerabilities of in-
car wireless networks: a tire pressure monitoring system case study,” in
Proc. USENIX Conference on Security, 2010.

[32] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An Approach
for Redundancy in FlexRay Networks Using FPGA Partial Recon-
figuration,” in Proc. Design, Automation and Test in Europe (DATE)
Conference, 2013, pp. 721–724.

[33] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Accelerating Validation
of Time-Triggered Automotive Systems on FPGAs,” in Proc. Interna-
tional Conference on Field Programmable Technology (FPT), 2013, pp.
4–11.

Shanker Shreejith (S’13) received the B.Tech de-
gree in electronics and communication engineering
from University of Kerala, India, in 2006.

From 2006 to 2008, he was an FPGA design and
development engineer. From 2008 to 2011, he was a
scientist at the Vikram Sarbhai Space Centre, Trivan-
drum, under the Indian Space Research Organisation
(ISRO). Since 2011, he has been a Ph.D. candidate
at the School of Computer Engineering, Nanyang
Technological University, Singapore, working on
reconfigurable computing in automotive systems.

Suhaib A. Fahmy (M’01, SM’13) received the
M.Eng. degree in information systems engineering
and the Ph.D. degree in electrical and electronic
engineering from Imperial College London, UK, in
2003 and 2007, respectively.

From 2007 to 2009, he was a Research Fellow
at Trinity College Dublin, and a Visiting Research
Engineer with Xilinx Research Labs, Dublin. Since
2009, he has been an Assistant Professor with
the School of Computer Engineering at Nanyang
Technological University, Singapore. His research

interests include reconfigurable computing, high-level system design, and
computational acceleration of complex algorithms.

Dr. Fahmy was a recipient of the Best Paper Award at the IEEE Conference
on Field Programmable Technology in 2012, the IBM Faculty Award in 2013,
and is also a senior member of the ACM.

