1,349 research outputs found

    Optimizing lot sizing model for perishable bread products using genetic algorithm

    Get PDF
    This research addresses order planning challenges related to perishable products, using bread products as a case study. The problem is how to effi­ci­ently manage the various bread products ordered by diverse customers, which requires distributors to determine the optimal number of products to order from suppliers. This study aims to formulate the problem as a lot-sizing model, considering various factors, including customer demand, in­ven­tory constraints, ordering capacity, return rate, and defect rate, to achieve a near or optimal solution, Therefore determining the optimal order quantity to reduce the total ordering cost becomes a challenge in this study. However, most lot sizing problems are combinatorial and difficult to solve. Thus, this study uses the Genetic Algorithm (GA) as the main method to solve the lot sizing model and determine the optimal number of bread products to order. With GA, experiments have been conducted by combining the values of population, crossover, mutation, and generation parameters to maximize the feasibility value that represents the minimal total cost. The results obtained from the application of GA demonstrate its effectiveness in generating near or optimal solutions while also showing fast computational performance. By utilizing GA, distributors can effectively minimize wastage arising from expired or perishable products while simultaneously meeting customer demand more efficiently. As such, this research makes a significant contri­bution to the development of more effective and intelligent decision-making strategies in the domain of perishable products in bread distribution.Penelitian ini berfokus untuk mengatasi tantangan perencanaan pemesanan yang berkaitan dengan produk yang mudah rusak, dengan menggunakan produk roti sebagai studi kasus. Permasalahan yang dihadapi adalah bagaimana mengelola berbagai produk roti yang dipesan oleh pelanggan yang beragam secara efisien, yang mengharuskan distributor untuk menentukan jumlah produk yang optimal untuk dipesan dari pemasok. Untuk mencapai solusi yang optimal, penelitian ini bertujuan untuk memformulasikan masalah tersebut sebagai model lot-sizing, dengan mempertimbangkan berbagai faktor, termasuk permintaan pelanggan, kendala persediaan, kapasitas pemesanan, tingkat pengembalian, dan tingkat cacat. Oleh karena itu, menentukan jumlah pemesanan yang optimal untuk mengurangi total biaya pemesanan menjadi tantangan dalam penelitian ini. Namun, sebagian besar masalah lot sizing bersifat kombinatorial dan sulit untuk dipecahkan, oleh karena itu, penelitian ini menggunakan Genetic Algorithm (GA) sebagai metode utama untuk menyelesaikan model lot sizing dan menentukan jumlah produk roti yang optimal untuk dipesan. Dengan GA, telah dilakukan percobaan dengan mengkombinasikan nilai parameter populasi, crossover, mutasi, dan generasi untuk memaksimalkan nilai kelayakan yang merepresentasikan total biaya yang minimal. Hasil yang diperoleh dari penerapan GA menunjukkan keefektifannya dalam menghasilkan solusi yang optimal, selain itu juga menunjukkan kinerja komputasi yang cepat. Dengan menggunakan GA, distributor dapat secara efektif meminimalkan pemborosan yang timbul akibat produk yang kadaluarsa atau mudah rusak, sekaligus memenuhi permintaan pelanggan dengan lebih efisien. Dengan demikian, penelitian ini memberikan kontribusi yang signifikan terhadap pengembangan strategi pengambilan keputusan yang lebih efektif dan cerdas dalam domain produk yang mudah rusak dalam distribusi roti

    Impact of Variable Ordering Cost and Promotional Effort Cost in Deteriorated Economic Order Quantity (EOQ) Model

    Full text link
    The instantaneous economic order quantity (EOQ) profit optimization model for deteriorating items is introduced for analyzing the impact of variable ordering cost and promotional effort cost for leveraging profit margins in finite planning horizons. The objective of this model is to maximize the net profit so as to determine the order quantity and promotional effort factor. For any given number of replenishment cycles the existence of a unique optimal replenishment schedule are proved and further the concavity of the net profit function of the inventory system in the number of replenishments is established. The numerical analysis shows that an appropriate policy can benefit the retailer, especially for deteriorating items. Finally, sensitivity analyses with respect to the major parameters are also studied to draw managerial decisions in production systems

    A Two Warehouse Inventory Model with Stock-Dependent Demand and variable deterioration rate

    Get PDF
    In this paper we discuss a two warehouses inventory model for non-instantaneous deteriorating items. Throughout last so many years, mostly researchers have consideration to the situation where the demand rate is dependent on the level of the on-hand inventory. For inventory systems, such as fashionable commodities, the length of the waiting time for the next replenishment would determine whether the backlogging will be accepted or not. In real life situation, enterprises usually buy more goods than can be stored in their own warehouses (OW) for future production or sales. The surplus quantities are frequently stored in an extra storage space, represented by rented warehouses (RW).The rented warehouse is considered to charge high unit holding cost than the own warehouse. The necessary and sufficient conditions of the existence and uniqueness of the optimal solution are shown. We determine the optimal replenishment policy for non-instantaneous deteriorating items with partial backlogging and stock-dependent demand

    Efficient inventory control for imperfect quality items

    Get PDF
    In this paper, we present a general EOQ model for items that are subject to inspection for imperfect quality. Each lot that is delivered to the sorting facility undertakes a 100 per cent screening and the percentage of defective items per lot reduces according to a learning curve. The generality of the model is viewed as important both from an academic and practitioner perspective. The mathematical formulation considers arbitrary functions of time that allow the decision maker to assess the consequences of a diverse range of strategies by employing a single inventory model. A rigorous methodology is utilised to show that the solution is a unique and global optimal and a general step-by-step solution procedure is presented for continuous intra-cycle periodic review applications. The value of the temperature history and flow time through the supply chain is also used to determine an efficient policy. Furthermore, coordination mechanisms that may affect the supplier and the retailer are explored to improve inventory control at both echelons. The paper provides illustrative examples that demonstrate the application of the theoretical model in different settings and lead to the generation of interesting managerial insights

    An Inventory Model for Perishable Products with Stock-Dependent Demand and Trade Credit under Inflation

    Get PDF
    We consider an inventory model for perishable products with stock-dependent demand under inflation. It is assumed that the supplier offers a credit period to the retailer, and the length of credit period is dependent on the order quantity. The retailer does not need to pay the purchasing cost until the end of credit period. If the revenue earned by the end of credit period is enough to pay the purchasing cost or there is budget, the balance is settled and the supplier does not charge any interest. Otherwise, the supplier charges interest for unpaid balance after credit period, and the interest and the remaining payments are made at the end of the replenishment cycle. The objective is to minimize the retailer’s (net) present value of cost. We show that there is an optimal cycle length to minimize the present value of cost; furthermore, a solution procedure is given to find the optimal solution. Numerical experiments are provided to illustrate the proposed model

    A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter Weibull distributed deterioration

    Get PDF
    In this paper, an attempt is made to develop two inventory models for deteriorating items with variable demand dependent on the selling price and frequency of advertisement of items. In the first model, shortages are not allowed whereas in the second, these are allowed and partially backlogged with a variable rate dependent on the duration of waiting time up to the arrival of next lot. In both models, the deterioration rate follows three-parameter Weibull distribution and the transportation cost is considered explicitly for replenishing the order quantity. This cost is dependent on the lot-size as well as the distance from the source to the destination. The corresponding models have been formulated and solved. Two numerical examples have been considered to illustrate the results and the significant features of the results are discussed. Finally, based on these examples, the effects of different parameters on the initial stock level, shortage level (in case of second model only), cycle length along with the optimal profit have been studied by sensitivity analyses taking one parameter at a time keeping the other parameters as same

    An EPLS model for a variable production rate with stock-price sensitive demand and deterioration

    Get PDF
    It is observed that large piles of consumer goods displayed in supermarkets lead consumers to buy more, which generates more profit to sellers. But a large number of on-hand display of stock leaves a negative impression on the buyer. Also, the amount of shelf or display space is limited. Due to this reason, we impose a restriction on the number of on-hand display of stock and also on initial and ending on-hand stock levels. We introduce an economic production lot size model, where production rate depends on stock and selling price per unit. A constant fraction deterioration rate is considered in this model. To illustrate the results of the model, four numerical examples are established. Sensitivity analysis of the changes of parameter values is also given

    Inventory ordering policies for mixed sale of products under inspection policy, multiple prepayment, partial trade credit, payments linked to order quantity and full backordering

    Get PDF
    The situation where serviceable products are sold together with a proportion of deteriorating products to consumers is rarely discussed in the literature. This article proposes an inventory model with disparate inventory ordering policies under a situation where a portion of serviceable products and a portion of deteriorating products are sold together to consumers (i.e. mixed sales). The ordering policies consider a hybrid payment strategy with multiple prepayment and partial trade credit schemes linked to order quantity under situations where no inventory shortage is allowed and inventory shortage is allowed with full backorder. The hybrid payment policy offered by a supplier is introduced into the classical economic ordering quantity model to investigate the optimal inventory cycle and the fraction of demand that is filled from the deteriorating products under inspection policy. Further, a new solution method is proposed that identifies optimal annual total profit with mixed sales assuming no inventory shortage and inventory shortage with full backorder. The impact of an inspection policy is investigated on the optimality of the solution under hybrid payment strategies for the deteriorating products. The validation of the proposed model and its solution method is demonstrated through several numerical examples. The results indicate that the inventory model along with the solution method provide a powerful tool to the retail managers under real-world situations. Results demonstrate that it is essential for the managers to consider inclusion of an inspection policy in the mixed sales of products, as the inspection policy significantly increases the net annual profit
    corecore