1,414 research outputs found

    Visual Performance under Varying Illumination Conditions while using an Indigenously Developed Wrist Wearable Computer

    Get PDF
    Ambient illumination conditions have significant impact on users’ visual performance while carrying out onscreen reading tasks on visual display units, especially smaller screen sizes. Present study assessed the visual performance responses of different ambient illumination levels during onscreen reading on Wrist Wearable Computer (WWC) developed for the command-control-communication between the control room and the soldiers operating in remote locations. Ten (10) Indian Infantry soldiers performed two different types of loud reading tasks on the display of WWC under three different ambient illumination (mean ±SEM) conditions namely, Indoor controlled (450.00±10.00 lx), Outdoor daylight (11818.7±582.91 lx) and Indoor dark (0.12±0.03 lx) environments. While reading, participants wore an eye tracking glass which recorded the eye movement responses. Visualisation techniques were used to predict the association of illumination levelof surrounding with visual performance of the user. Subjective legibility rating was also applied to understand participants’ preferences towards physical attributes of the onscreen information and illumination level. Results indicated that illumination had a significant effect on eye movement parameters like fixation frequency, fixation duration and scanpath length while completing the tasks. Overall, participants performed better under indoor controlled illumination conditions in terms of fixation profile and scanpath length, apart from improved subjective legibility ratings as compared to other two illumination conditions. Future research attempts need to be directed towards the optimum performance of the display across wide range of ambient illumination conditions and to establish how the display of indigenously developed wearable computer performs in comparison to other such displays available across the globe

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    View management for virtual and augmented reality

    Get PDF

    A Perceptual Color-Matching Method for Examining Color Blending in Augmented Reality Head-Up Display Graphics

    Get PDF
    Augmented reality (AR) offers new ways to visualize information on-the-go. As noted in related work, AR graphics presented via optical see-through AR displays are particularly prone to color blending, whereby intended graphic colors may be perceptually altered by real-world backgrounds, ultimately degrading usability. This work adds to this body of knowledge by presenting a methodology for assessing AR interface color robustness, as quantitatively measured via shifts in the CIE color space, and qualitatively assessed in terms of users’ perceived color name. We conducted a human factors study where twelve participants examined eight AR colors atop three real-world backgrounds as viewed through an in-vehicle AR head-up display (HUD); a type of optical see-through display used to project driving-related information atop the forward-looking road scene. Participants completed visual search tasks, matched the perceived AR HUD color against the WCS color palette, and verbally named the perceived color. We present analysis that suggests blue, green, and yellow AR colors are relatively robust, while red and brown are not, and discuss the impact of chromaticity shift and dispersion on outdoor AR interface design. While this work presents a case study in transportation, the methodology is applicable to a wide range of AR displays in many application domains and settings

    Virtual Reality for the Visually Impaired

    Get PDF
    This thesis aims to illuminate and describe how there are problems with the development of virtual reality regarding visually impaired people. After discussing the reasons how and why this is a problem, this thesis will provide some possible solutions to develop virtual reality into a more user accessible technology, specifically for the visually impaired. As the popularity of virtual reality increases in digital culture, especially with Facebook announcing their development of Metaverse, there is a need for a future virtual reality environment that everyone can use. And it is in these early stages of development, that the need to address the problem of inaccessibility arises. As virtual reality is a relatively new medium in digital culture, the research on its use by visually impaired people has significant gaps. And as relatively few researchers are exploring this topic, my research will hopefully lead to more activity in this important area. Therefore, my research questions aim to address the current limitations of virtual reality, filling in some of the most significant gaps in this research area. My thesis will do this by conducting interviews and surveys to gather data that can further support and identify the crucial limitations of the visually impaired experience while trying to use virtual reality technology. The findings in this thesis will further address the problem, creating a possible solution and emphasizing the importance of user accessibility for the visually impaired in the future development of virtual reality. If digital companies and developers address this problem now, we can have a future where visually impaired people are treated more equally, with technologies developed specifically for them to experience virtual worlds.Master's Thesis in Digital CultureDIKULT350MAHF-DIKU
    • …
    corecore