101 research outputs found

    On optimal mission planning for conventional and electric heavy duty vehicles

    Get PDF
    Ever-growing energy consumption and CO2 emissions due to the increase in road transport are major challenges that attract international attention, especially policy makers, logistic service providers and customers considering environmental, ecological and economic issues. Other negative side-effects caused by the growth of the road transport are the extensive economic and social costs because of traffic congestion. Thus, there is a strong motivation to investigate possible ways of improving transport efficiency aiming at achieving a sustainable transport, e.g. by finding the best compromise between resource consumption and logistics performance. The transport efficiency can be improved by optimal planning of the transport mission, which can be interpreted as optimising mission start and/or finish time, and velocity profile of the driving vehicle. This thesis proposes a bi-layer mission planner for long look-ahead horizons stretched up to hundreds of kilometers. The mission planner consists of logistics planner as its top level and eco-driving supervisor as its bottom level. The logistics planner aims at optimising the mission start and/or finish time by optimising energy consumption and travel time, subject to road and traffic information, e.g. legal and dynamic speed limits. The eco-driving supervisor computes the velocity profile of the driving vehicle by optimising the energy consumption and penalising driver discomfort. To do so, an online-capable algorithm has been formulated in MPC framework, subject to road and traffic information, and the pre-optimised mission start and/or finish time. This algorithm is computationally efficient and enables the driving vehicle to adapt and optimally respond to predicted disturbances within a short amount of time. The mission planner has been applied to conventional and fully-electric powertrains. It is observed that total travel timeis reduced up to 5.5 % by optimising the mission start time, when keeping anaverage cruising speed of about 75 km/h. Also, compared to standard cruise control, the energy savings of using this algorithm is up to 11.6 %

    On Optimal Mission Planning for Vehicles over Long-distance Trips

    Get PDF
    This thesis proposes a mission planner for vehicles over long-distance trips, for finding the optimal trade-off between trip time, energy efficiency, anddriver comfort, subject to road information, traffic situations, and weather conditions. The mission planner consists of three components, i.e. logisticsplanner, eco-driving supervisor, and thermal and charging supervisor. The logistics planner aims at optimising the mission start and/or finish time byminimising energy consumption and trip time. The eco-driving supervisor computes the velocity profile of the driving vehicle, by optimising the energyconsumption and penalising driver discomfort. To do so, an online-capable algorithm has been formulated in a model predictive control framework, subject to road and traffic information, and the pre-optimised mission start and/or finish time. This algorithm is computationally efficient and enables the driving vehicle to adapt and optimally respond to predicted disturbances within a short amount of time. Eco-driving has also been achieved for a vehicleconfronted with wind, by applying stochastic dynamic programming method. The thermal and charging supervisor regulates battery temperature and state of charge by coordinating the energy use of different thermal components. Within the thermal and charging supervisor design, a heat pump has been included for waste heat recovery purposes. Also, the charging stops have been optimally planned, in favour of energy efficiency and trip time. The performance of the proposed algorithms over a road with a hilly terrain is assessed using simulations. According to the simulation results, it is observed that total travel time is reduced up to 5.5 % by optimising the mission start time, when keeping an average cruising speed of about 75 km/h. Also, compared to standard cruise control, the energy savings of using this algorithm is up to 11.6 %. Furthermore, total charging time and energy consumption are reduced by up to 19.4 % and 30.6 %, respectively by developing the thermal and charging supervisor, compared to a case without the heat pump activated and without charge point optimisation

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Energy minimization for an electric bus using a genetic algorithm

    Get PDF
    Background and methods: This paper addresses, in simulation, energy minimization of an autonomous electric minibus operating in an urban environment. Two different case studies have been considered, each involving a total of 10 different 2?km bus routes and two different average speeds. In the proposed method,\ua0the minibus follows an optimized speed profile, generated using a genetic algorithm. Results: In the first case study the vehicle was able to reduce its energy consumption by around 7 to 12% relative to a baseline case in which it maintains a constant speed between stops, with short acceleration and deceleration phases. In the second case study, involving mass variation (passengers entering and alighting) it was demonstrated that the number of round trips that can be completed on a single battery charge is increased by around 10% using the proposed method

    Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus

    Get PDF
    To improve computational efficiency of energy management strategies for plug-in hybrid electric vehicles (PHEVs), this paper proposes a stochastic model predictive controller (MPC) based on Pontryagin’s Minimum Principle (PMP), which differs from widely used dynamic programming (DP)-based predictive methods. First, short-time speed forecasting is achieved using a Markov chain model, based on real-world driving cycles. The PMP- and DP-based MPCs are compared under four preview horizons (5 s, 10 s, 15 s and 20 s), and the results show that the computational time of the DP-MPC is almost four times of that in the PMP-MPC. Moreover, the influence of predication horizon length on computational time and energy consumption is examined. Given a preview horizon of 5 s, the PMP-MPC holds a total energy consumption cost of 7.80 USD and computational time per second of 0.0130 s. When the preview horizon increases to 20 s, the total cost is 7.77 USD with the computational time per second increasing to 0.0502 s. Finally, DP, PMP, and rule-based strategies are contrasted to the PMP-MPC method, further demonstrating the promising performance and computational efficiency of the proposed methodology

    Distance‐oriented hierarchical control and ecological driving strategy for HEVs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163948/1/els2bf00154.pd

    A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are currently gaining particular attention in the automotive field, as enablers for vehicle energy consumption, safety, and comfort enhancement. Compelling evidence is in fact provided by the variety of related studies that are to be found in the literature. Moreover, considering the actual technology readiness, larger opportunities might stem from the combination of ADASs and vehicle connectivity. Nevertheless, the definition of a suitable control system is not often trivial, especially when dealing with multiple-objective problems and dynamics complexity. In this scenario, even though diverse strategies are possible (e.g., Equivalent Consumption Minimization Strategy, Rule-based strategy, etc.), the Model Predictive Control (MPC) turned out to be among the most effective ones in fulfilling the aforementioned tasks. Hence, the proposed study is meant to produce a comprehensive review of MPCs applied to scenarios where ADASs are exploited and aims at providing the guidelines to select the appropriate strategy. More precisely, particular attention is paid to the prediction phase, the objective function formulation and the constraints. Subsequently, the interest is shifted to the combination of ADASs and vehicle connectivity to assess for how such information is handled by the MPC. The main results from the literature are presented and discussed, along with the integration of MPC in the optimal management of higher level connection and automation. Current gaps and challenges are addressed to, so as to possibly provide hints on future developments

    REAL-TIME PREDICTIVE CONTROL OF CONNECTED VEHICLE POWERTRAINS FOR IMPROVED ENERGY EFFICIENCY

    Get PDF
    The continued push for the reduction of energy consumption across the automotive vehicle fleet has led to widespread adoption of hybrid and plug-in hybrid electric vehicles (PHEV) by auto manufacturers. In addition, connected and automated vehicle (CAV) technologies have seen rapid development in recent years and bring with them the potential to significantly impact vehicle energy consumption. This dissertation studies predictive control methods for PHEV powertrains that are enabled by CAV technologies with the goal of reducing vehicle energy consumption. First, a real-time predictive powertrain controller for PHEV energy management is developed. This controller utilizes predictions of future vehicle velocity and power demand in order to optimize powersplit decisions of the vehicle. This predictive powertrain controller utilizes nonlinear model predictive control (NMPC) to perform this optimization while being cognizant of future vehicle behavior. Second, the developed NMPC powertrain controller is thoroughly evaluated both in simulation and real-time testing. The controller is assessed over a large number of standardized and real-world drive cycles in simulation in order to properly quantify the energy savings benefits of the controller. In addition, the NMPC powertrain controller is deployed onto a real-time rapid prototyping embedded controller installed in a test vehicle. Using this real-time testing setup, the developed NMPC powertrain controller is evaluated using on-road testing for both energy savings performance and real-time performance. Third, a real-time integrated predictive powertrain controller (IPPC) for a multi-mode PHEV is presented. Utilizing predictions of future vehicle behavior, an optimal mode path plan is computed in order to determine a mode command best suited to the future conditions. In addition, this optimal mode path planning controller is integrated with the NMPC powertrain controller to create a real-time integrated predictive powertrain controller that is capable of full supervisory control for a multi-mode PHEV. Fourth, the IPPC is evaluated in simulation testing across a range of standard and real-world drive cycles in order to quantify the energy savings of the controller. This analysis is comprised of the combined benefit of the NMPC powertrain controller and the optimal mode path planning controller. The IPPC is deployed onto a rapid prototyping embedded controller for real-time evaluation. Using the real-time implementation of the IPPC, on-road testing was performed to assess both energy benefits and real-time performance of the IPPC. Finally, as the controllers developed in this research were evaluated for a single vehicle platform, the applicability of these controllers to other platforms is discussed. Multiple cases are discussed on how both the NMPC powertrain controller and the optimal mode path planning controller can be applied to other vehicle platforms in order to broaden the scope of this research
    corecore