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Abstract
Ever-growing energy consumption and CO2 emissions due to the increase in
road transport are major challenges that attract international attention, es-
pecially policy makers, logistic service providers and customers considering
environmental, ecological and economic issues. Other negative side-effects
caused by the growth of the road transport are the extensive economic and
social costs because of traffic congestion. Thus, there is a strong motivation to
investigate possible ways of improving transport efficiency aiming at achiev-
ing a sustainable transport, e.g. by finding the best compromise between
resource consumption and logistics performance. The transport efficiency can
be improved by optimal planning of the transport mission, which can be in-
terpreted as optimising mission start and/or finish time, and velocity profile
of the driving vehicle. This thesis proposes a bi-layer mission planner for
long look-ahead horizons stretched up to hundreds of kilometers. The mission
planner consists of logistics planner as its top level and eco-driving supervi-
sor as its bottom level. The logistics planner aims at optimising the mission
start and/or finish time by optimising energy consumption and travel time,
subject to road and traffic information, e.g. legal and dynamic speed limits.
The eco-driving supervisor computes the velocity profile of the driving vehicle
by optimising the energy consumption and penalising driver discomfort. To
do so, an online-capable algorithm has been formulated in MPC framework,
subject to road and traffic information, and the pre-optimised mission start
and/or finish time. This algorithm is computationally efficient and enables
the driving vehicle to adapt and optimally respond to predicted disturbances
within a short amount of time. The mission planner has been applied to con-
ventional and fully-electric powertrains. It is observed that total travel time
is reduced up to 5.5 % by optimising the mission start time, when keeping an
average cruising speed of about 75 km/h. Also, compared to standard cruise
control, the energy savings of using this algorithm is up to 11.6 %.

Keywords: Transport efficiency, Mission planning, Logistics planning, Eco-
driving, Optimal control, Model predictive control
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CHAPTER 1

Introduction

1.1 Motivation

Transport demand is linked with several factors, such as economic environ-
ment, political will and technological development. The economic environ-
ment, characterized as gross domestic product (GDP), international trade
and oil prices, plays a central role in the demand for transport. In particular,
the growth of GDP has been historically identified as a major contributor to
the growth of both freight and passenger transport, i.e. greater rise in goods
production can lead to greater transport distances travelled [1]. International
trade among different countries and people, known as a crucial matter for
the development of civilizations, is enabled by the means of transport. The
volume of international trade has grown twenty-seven fold in the post-war era
between 1950 and 2007, three times faster than the growth of world GDP [1].
The recent precipitous drop in oil prices is an unexpected issue that strongly
affects the transport demand. Transport sector has been a beneficiary of lower
oil prices, where not only it attains direct savings taken from lower oil prices,
but the expected rise in consumer spending, as the total money spent on final
goods and services by individuals, can increase the amount of international
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Chapter 1 Introduction

trade, and, accordingly, transportation [1].
Among all transport modes, surface transport, including road and rail, de-

mands around 30 % of the freight transport demand and around 86 % of the
passenger transport demand [1]. In a baseline scenario, defined as an extrap-
olation of current trends including current policies and policy developments,
surface freight demand is projected to grow from 32 000 to 83 000 billion tonne-
kilometres between 2015 to 2050, accounting road freight demand for about
60 % of the total, see Figure 1.1(a). Also, global surface passenger demand
is expected to increase from 43 500 billion passenger-kilometres in 2015 to
around 92 800 billion passenger-kilometres in 2050, see Figure 1.1(b), where
road passenger-kilometres are estimated to account over 80 % of the total.
Although surface transport is increasing, its growth rate is not the same in all
countries. The future development path of the countries in service-oriented
economies highly influences this transport sector [1].
Excessive energy consumption and CO2 emissions caused by the growth

of road transport are alarming concerns for policy makers, logistic service
providers and customers due to economic, environmental and ecological is-
sues. The nationally determined contributions (NDC) underlines the necessity
of transport decarbonisation by addressing the important role of fuel-efficient
technologies and development of electromobility [1]. In 2015, energy consump-
tion due to the road transport in Europe amounted to around 11.5 million ter-
ajoules. Also, the calculated volume of the emissions is 60 % higher compared
to the total amount in 1990 and is estimated to increase by more than 70 %
until 2050 [2]. In relation to the oil prices, in the short to medium term, the
risk of abandoning the commitments made against climate change is boosted
by low oil prices, as they are encouraging more fossil fuel burning. Besides,
the lower oil prices are known as a threat towards the companies introducing
clean-energy technologies. However, in the longer term, the chance for clean
investments may be raised, followed by the current low oil prices, since future
possible cost-effective clean mobility solutions may win the competition with
conventional fuel [1].
Extensive costs, e.g. economic and social, due to traffic congestion are other

negative side effects caused by the increase in road transport. In 2010, the
estimated cost due to the traffic congestion is $115 billion over 439 urban ar-
eas of the United States [3]. The traffic congestion engenders mainly because
the traffic volume is too close to the maximum capacity of a road or network

4
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(b) Surface passenger transport demand by mode.

Figure 1.1: Surface transport demand including freight and passenger, baseline
scenario. Data are extracted from [1].
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for certain hours of a day. Current official forecasts point out that conges-
tion will grow considerably within future decades [4]. In public opinion, the
growing traffic congestion on motorways is indicated as a waste of money and
time, which can be resolved by means of building more roads. However, road
construction is not always cost-effective and can cause serious environmental
issues. Thus, due to the enormous increase in the energy consumption, CO2
emissions and traffic congestion costs, there is a strong incentive to achieve
a sustainable transport by improving transport efficiency using current road
infrastructure, which can be interpreted as providing service with less con-
sumption of resources and not losing logistics performance, i.e. costs and
delivery service [5].
Transport efficiency can be improved by optimal planning of the transport

mission. To do so, it is essential to optimise the mission start time and in-
crease the efficiency of tank-to-meter, which refers to the conversion of energy
stored in fuel into potential and kinetic energy required for displacement, and
accompanied losses [6]. The tank-to-meter efficiency can be improved in sev-
eral ways by, e.g. alternative powertrains, better usage of vehicle components,
reducing the vehicle mass, choosing the most energy-efficient route, or pro-
viding the vehicle’s energy-efficient drive, so-called eco-driving [7]–[9]. In
particular, it is revealed in [6] that there is a high potential of eco-driving
in improving the tank-to-meter efficiency without having any requirement for
structural changes in the vehicle. As for an example of a passenger car, sen-
sitivity of vehicle mean square speed and mean acceleration are calculated as
0.6 and 0.35 respectively, where the sensitivity is defined as the percentage
reduction of energy consumption per percentage reduction of the considered
variable [6]. To achieve eco-driving it is necessary to optimally plan the ve-
locity profile of the vehicle, subject to road and traffic flow information. One
important factor in optimising the velocity profile is the speed limits, which
are imposed by not only legal speed limits but also dynamic constraints [10],
[11]. For instance, surrounding traffic sets such dynamic constraints due to
the presence of e.g. traffic lights, intersections, ramps and junctions. Another
example that dynamically affects the speed limits is the linking of two or more
trucks in convoy in order to increase the energy efficiency [12]. As dynamic
speed limits depend on day and time of day, the total travel time depends not
only on the planned velocity profile, but also on the mission start time [13].
For non-urban road transport, heavy-duty vehicles (HDVs) have great po-

6
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90
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Car

Legal speed 

limitImpose dyn. 
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Figure 1.2: A truck is driving in a hilly terrain, where legal and dynamic speed
limits are imposed. The truck is following the principles of eco-driving
to improve its energy efficiency.

tential in improving the energy efficiency and reducing CO2 [14], especially
when driving in a hilly terrain. Thus, the vehicle accelerates when driving
downhill and decelerates when climbing uphill, see Figure 1.2. This leads
to less waste of non-recuperable energy compared to driving with constant
speed [15]. To implement such behaviour over complex road topographies,
advanced optimal control strategies [6] can be employed that maximise energy
efficiency by optimal coordination of energy sources, utilizing information of
the road topography.

1.2 Thesis focus and contributions
The focus of this thesis is the development of an optimal mission planner (MP)
for an HDV driving in a hilly terrain, subject to road and traffic information.
In particular, this thesis has the following three goals:
• Improve transport efficiency by controlling the speed profile and mission

start and/or finish time under legal speed limits and dynamic speed limits
imposed by surrounding traffic.

• Develop predictive controllers that employ communication and predic-
tion abilities of modern transportation to anticipate future events and
disturbances.

• Quantify the trade-off and perform sensitivity analyses among energy
efficiency, travel time and driver comfort.

To address these goals, we propose an MP consisting of two layers, as shown
in Figure 1.3. The MP’s top layer calculates the mission start and/or finish

7
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Figure 1.3: Two-layer mission planner.

time and generates a reference speed trajectory to its bottom level, by offline
optimising energy consumption and travel time. Input to this layer is the road
profile from a selected route and traffic information along the route compiled
from look-ahead information and previous measurements. Then, the bottom
layer optimises the vehicle speed by applying an online-capable computation-
ally efficient algorithm, formulated in the model predictive control (MPC)
framework. The MPC algorithm has the ability to incorporate look-ahead
information and generate optimal predictive actions over look-ahead horizons
of up to hundreds of kilometers.

1.3 Thesis outline
The thesis is divided into two parts. First part corresponds to illustration
of the context given by the papers that are appended in the second part.
Following paragraphs describe the thesis outline.
Chapter 2 describes modeling of the studied powertrain, dynamical equa-

tions governing to the driving vehicle, vehicle driving mission and the impact
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1.3 Thesis outline

of the vehicle’s longitudinal drive on improving the energy efficiency. Chapter
3 begins with explaining the proposed bi-layer mission planner. Then, it is
discussed that the tasks of each layer can be performed by solving an opti-
mal control problem. Also, the proposed algorithm for solving each layer’s
optimisation program is explained. Finally, the selected simulation results are
illustrated and discussed. Chapter 4 provides a short summary for each of
the appended papers. Finally, the last chapter of introductory part concludes
the thesis and presents the possible directions for future extension of current
research.
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CHAPTER 2

Modelling and energy analysis

In this chapter, modeling of the studied powertrain and dynamical equations
governing to the driving vehicle are presented. Furthermore, driving mission
of the vehicle is illustrated as a driving route accompanied with the road
topography and speed limits in terms of travel distance and time of day.
Finally, the impact of the vehicle’s longitudinal drive on improving the energy
efficiency is described.

2.1 Powertrain modelling
The focus of this work is on conventional and fully electric powertrains.
Schematic diagram of the addressed powertrain in this thesis is depicted in
Figure 2.1, which includes an energy storage unit, e.g. fuel tank or electric
battery, an actuator, e.g. internal combustion engine (ICE) or electric ma-
chine (EM), and a transmission system. The torque and rotational speed at
the shaft between the actuator and transmission are represented by M and ω,
respectively. The actuators are modelled with static relations based on steady-
state measurements. An example of efficiency maps of the ICE and EM for
a given pair of rotational speed and torque are shown in Figure. 2.2. In Fig-

11



Chapter 2 Modelling and energy analysis

Transmission

ActuatorStorage

(ω, M)

Figure 2.1: Powertrain schematic diagram, which consists of an energy storage
unit, an actuator and a transmission system. The transmission trans-
lates shaft torque, M , with rotating speed ω, to traction force F with
longitudinal velocity v.

ure 2.2(a), the negative torque limit corresponds to a lower bound on negative
torque including a retarder, a compression release engine brake and/or an ex-
haust pressure governor. The additional braking is preferred over the service
braking in order to reduce wear and avoid lockup of the braking pads. In
Figure 2.2(b), the positive and negative torque regions indicate the motoring
and the generating modes of operation, respectively.
The transmission system shown in Figure. 2.1, translates the shaft torque

M and rotational speed ω to traction force F and longitudinal velocity v

respectively, as

v(s) = ω(s)R(γ), Fw(s) = M(s)
R(γ) , R(γ) = rw

rtg(γ)rfg
, (2.1)

where s is traveled distance, γ is selected gear, rw is wheel radius, rtg and
rfg are transmission and final gear ratios, respectively. All over this thesis,
all constants that are not dependent on s, for e.g. m, are shown in upright
letters. Also, the explicit dependency on s of the variables that are trajectories
in terms of s, e.g. Fw(s), is not shown in several places for simplicity.

12
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Figure 2.2: Steady-state efficiency map together with actuator torque limits.
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Chapter 2 Modelling and energy analysis

2.2 Travel time and longitudinal dynamics

Consider a vehicle driving a planned route in a hilly terrain, without stopping
or changing direction of movement. The dynamics of travel time, t, is

t′(s) = 1
v(s) . (2.2)

According to the Newton’s law of motion, longitudinal dynamics of the
vehicle is

mv(s)v′(s) = Fw(s) + Fbrk(s)− Fair(v)− Fα(s), (2.3)

where m is total lumped mass of the vehicle and the longitudinal acceleration
is shown by vv′ = dv/dt. Note that throughout this thesis, x′ represents
the space derivative of a variable x, as x′ = dx/ds. Also, Fbrk denotes a
non-positive mechanical braking force that may include braking by the ser-
vice brakes, a retarder, a compression release engine brake and/or an exhaust
pressure governor. The nominal aerodynamic drag, Fair, and the roll resis-
tance, Fα(s), are defined as

Fair(v) = ρacdAfv
2

2 , (2.4)

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) , (2.5)

where ρa is air density, cd is aerodynamic drag coefficient, Af is frontal area of
the vehicle, g is gravitational acceleration, α is road gradient, and cr is rolling
resistance coefficient.
The vehicle longitudinal dynamics (2.3) is nonlinear, since the aerodynam-

ical drag in (2.4) is a quadratic function of the longitudinal velocity. The
nonlinearity may increase computational complexity. To alleviate this, it is
possible to change the independent variable from v to kinetic energy E defined
as

E(s) = mv2(s)
2 . (2.6)

To study variations on the driving vehicle’s speed, the acceleration a, is

14



2.3 Vehicle driving mission

considered as

a(s) = 1
m (−caE(s) + Fw(s) + Fbrk(s)− Fα(s)) (2.7)

where ca = ρacdAf/2 gathers the drag related coefficients. Also, we introduce
j as the change of acceleration in space coordinates, which hereafter is referred
to as jerk. Thus, the governing equations of the vehicle are

t′(s) =
√ m

2E(s) (2.8)

E′(s) = ma(s) (2.9)
a′(s) = j(s) (2.10)

where the E′ = mvv′ is the product of mass and vehicle acceleration.

2.3 Vehicle driving mission

We describe a driving mission by a map of maximum dynamic speed limits for
a given pair of travel distance and time of day, as illustrated in Figure. 2.3.
Figure. 2.3(a) includes a contour plot, where the lighter the contour color
is, the greater the vehicle speed is. Figure. 2.3(b) is a double y-axis plot,
where the left y-axis corresponds to the vehicle speed and the right axis is the
road altitude, while the gray area represents the road topography. According
to the max speed map, the vehicle’s mission, characterised as the mission
start time, total travel time and velocity profile, can be tailored in favour
of the improved energy efficiency. One execution of the mission in terms of
speed/time trajectory is also shown in Figure. 2.3, where the vehicle starts the
mission at 10:00. It can be seen that the traffic speed drops to about 30 km/h
in the congested area, at about 25 km.

2.4 Vehicle drive impact on energy efficiency

The impact of vehicle’s longitudinal drive on improving the tank-to-meters
efficiency can be investigated by studying the energy balance originating from

15
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Figure 2.3: Maximum dynamic speed limits map for a given pair of travel distance
and time of day, together with associated road topography and one
execution of the driving mission.

Newton’s law of motion. Let

Pt(s) = Fw(s)v(s) + Ploss(v, Fw) + Paux (2.11)
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2.4 Vehicle drive impact on energy efficiency

denote internal power drawn from the storage, where Ploss combines the stor-
age and actuator power losses and Paux is electrical load consumed by auxiliary
devices. The energy consumed from the storage during a road segment can
then be determined as

Et(v, Fw) =
∫ sf

s0

Pt(s)
v(s) ds =

=
∫ sf

s0

Fw(s)ds+
∫ sf

s0

Ploss(v, Fw) + Paux
v(s) ds,

(2.12)

where s0 and sf represent initial and final position of the road segment. The
division of the internal power with speed in (2.12) is obtained from the time
to space transformation, i.e.∫

Pt(v, Fw)dt =
∫
Pt(v, Fw)/v(s)ds =

∫
Ft(v, Fw)ds.

The first integral in (2.12) represents propelling energy at the wheels within
the interval [s0, sf], which is transformed into kinetic energy, potential energy,
and the energy lost in service braking and for overcoming rolling resistance
and aerodynamic drag, as∫ sf

s0

Fw(s)ds =
∫ sf

s0

mv(s)dv +
∫ sf

s0

mg sin(α(s))ds+

+
∫ sf

s0

(
cav2 + mgcr cos(α(s))− Fbrk(s)

)
ds.

(2.13)

Looking at the first term in (2.13), which corresponds to the change in
kinetic energy over the segment,∫ sf

s0

mv(s)dv = m
2
(
v2(sf)− v2(s0)

)
= E(sf)− E(s0),

one can notice that, if the initial and final longitudinal velocities are equal,
the change in kinetic energy is zero. Also, the second term in (2.13) denotes
the change in potential energy over the segment,∫ sf

s0

mg sin(α(s))ds = mg
∫ sf

s0

h′(s)ds = mg(h(sf)− h(s0)),
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Chapter 2 Modelling and energy analysis

considering sinα(s) = h′(s) where h is the road altitude. In case of equal
initial and final altitude, the change in potential energy is zero.
It is obvious from (2.12) and (2.13) that first priority in improving energy

efficiency is to reduce non-recuperable energy waste due to service braking
by controlling the vehicle speed. Furthermore, there is a trade-off between
reduced aerodynamic drag by driving slower and increased travel time. More-
over, too slow driving will increase powertrain idling losses and the losses in
auxiliaries. Thus, subject to road and traffic information as demonstrated in
Figure. 2.3, and without changing structure of the powertrain, it is possible to
minimise total losses and improve the energy efficiency by optimising velocity
profile of the vehicle.

18



CHAPTER 3

Optimal mission planning

In this chapter, the proposed bi-layer mission planner is described. Primarily,
it is shown that each layer has specific tasks, which can be performed by
solving an optimal control problem. Then, the proposed algorithm for solving
each layer’s optimisation program is explained. Finally, selected simulation
results of the layers are illustrated and discussed.

3.1 Mission planner
The mission planner consists of two layers, i.e. top layer is logistics plan-
ner and bottom layer is eco-driving supervisor, as visualised in Figure. 1.3.
Several goals have stimulated us to design such a bi-layer structure, for e.g.
reducing computational complexity, providing modularity and the ability to
reject possible disturbances. Thus, specific tasks have been assigned to each
layer that can be performed by solving an optimal control problem (OCP).
The ways of implementing optimal control actions obtained from solving

the OCP can be categorised into offline and online. The logistics planner
computes the optimal mission start and/or finish time by offline optimising
energy consumption and travel time. It also generates a reference velocity
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Chapter 3 Optimal mission planning

profile and, thus, an estimate of the time for reaching sparsely assigned po-
sitions along the route, at intervals of about 250 m. To do so, the logistics
planner uses road information as well as traffic situation depicted as the map
of maximum dynamic speed limits in terms of travel distance and time of day,
see Figure. 2.3. The energy-efficient and time-optimal solution provided by
the logistics planner offers the logistics centres a promising investigation in
order to coordinate the shipping and receiving of goods, supplies, foods and
people. The logistics planner will be discussed in more details later, in Section
3.2.
When solving the logistics planning OCP offline, reducing the computa-

tional time is often not the major bottleneck, since the problem solving is
allowed to take a considerable amount of time. However, the offline implemen-
tation has drawbacks in situations where the disturbances and/or constraints,
for e.g. traffic situation, change unpredictably and the vehicle is no longer
able to exactly follow the planned solution. In such situations an alternative
controller is needed to provide a solution, where in each instance the estima-
tions and predictions of the vehicle and environment are utilised. Thus, an
online-capable eco-driving supervisor has been developed in an MPC fashion
for look-ahead horizons of up to hundreds of kilometers, subject to the pre-
optimised mission start and/or finish time, and the reference velocity profile.
The eco-driving supervisor will be discussed in more details later, in Section
3.3.

3.2 Logistics planner
In this section, the problem formulation and the proposed algorithm for de-
signing the logistics planner are explained. Also, selected simulation results
about the trade-off between energy efficiency and travel time, optimising the
mission start time are presented.

Problem formulation

Here, the logistic planning OCP is formulated, which aims at planning op-
timal velocity trajectory for the entire mission, in a way that total energy
consumption is minimised and the travel time is adjusted by a penalty factor.
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3.2 Logistics planner

The problem is summarised as

min
u∈U

S(x(sf), sf) +
∫ sf

s0

V (x(s),u(s), s)ds (3.1a)

subject to:
dx(s)
ds = F (x(s),u(s), s) (3.1b)

G(x(s),u(s), s) ≤ 0 (3.1c)
x(s0) ∈ X0 (3.1d)
x(s) ∈ X (3.1e)
x(sf) ∈ Xf (3.1f)
u(s) ∈ U (3.1g)

where s0 is initial position, sf is final position, S and V are terminal and
running cost, and include penalised total travel time and power consumption,
respectively. The energy consumption in conventional vehicles (CVs) corre-
sponds to consumed fossil fuel, while in electric vehicles (EVs) it corresponds
to the electricity usage. The sets of the states x, and control inputs u include
a pair of travel time and longitudinal velocity (or kinetic energy), and a pair of
traction and service braking forces, respectively. In conventional powertrains,
gear is considered as an additional control input. Also, F and G are vectors
of nonlinear functions in terms of the states, control inputs and traveled dis-
tance, where F corresponds to system dynamics (2.2) and (2.3), and G forms
system general constraints including the maximum dynamic speed limit and
actuator bounds. Moreover, X , X0, Xf and U denote the feasible sets of states,
allowed initial states at s0, target states at sf and control inputs, respectively.
Note that our algorithm can accept different objective functions [16]–[20], with
little, or almost no change, but we have not considered those objectives in the
logistic planner. For more details about how such objectives can be used,
interested readers may see Paper A and the references therein.
The problem (3.1) generally represents a mixed-integer nonlinear program

(MINLP) if the set U is mixed-integer, e.g. when gear is chosen as one of
the control inputs in CVs. When the set U does not include integer sub-sets,
problem (3.1) is a dynamic nonlinear program (NLP). The MINLP (3.1) may
generally be solved with dynamic programming (DP) [21] for only short look-
ahead horizons, for e.g. up to 5 km [22], with the cost of high computation
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Chapter 3 Optimal mission planning

effort. In addition to the two system states, travel time and longitudinal
velocity (kinetic energy), having free initial and final time requires solving the
DP in an additional loop, which is computationally equivalent to having a
3rd state in the problem. Furthermore, the problem may need to be solved
multiple times, for different values of the time penalty factor. Moreover, since
the logistics planner in this thesis addresses long look-ahead horizons, e.g.
stretched up to hundreds of kilometers, there is a strong incentive to reduce
the computation burden when solving the MINLP (3.1) by applying two steps
described in the following two subsections.

Bi-level programming and gear optimisation
Here, the goal is to decouple gear optimisation defined as a static sub-problem
from a dynamic NLP. Thus, the MINLP (3.1) can be reformulated as a bi-level
program [23], where the optimisation of integer variables, i.e. gear, resides
only in the bottom-level task, while all system dynamics reside in the top-
level task. Static modelling of the actuator and transmission system allows
separating the bottom level and solving it offline, where vehicle speed (or
kinetic energy) and traction force are regarded as parameters, and optimal
gear is computed as a function of these parameters.
To approach the offline-optimal gear selection that minimises energy con-

sumption, it is first needed to translate the brake specific fuel consumption
(BSFC) from the engine to the wheels, according to (2.1). The BSFC refers
to the fuel efficiency of any prime mover that burns fuel and produces rota-
tional, or shaft power. A given BSFC map of the engine translates to several
equivalent maps at the wheels, one map for each gear. This is illustrated in
Figure. 3.1, where BSFC is calculated over a grid of feasible vehicle speed and
longitudinal traction force. It can be noticed that map regions with the same
speed and force overlap for different gears. Then, the optimal BSFC map for
the overlapping regions is derived by calculating the minimum BSFC value
for each pair of speed and traction force, see Figure. 3.2. Thus, the optimal
gear is computed as the corresponding gear that has minimised the BSFC for
the given pair of speed and traction force, see Figure. 3.3.
Gear selection is relevant even in the negative force region, where a retarder,

a compression release engine brake and/or an exhaust pressure governor can
be used for braking. The maximum braking force that these units can deliver,
also referred to as the minimum additional force limit, is calculated as the
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Figure 3.1: BSFC map for any feasible combination of speed and traction force for
gears 12, 13 and 14.

minimum force at the wheels for a combination of speed and gear, as shown in
Figure. 3.3. The goal is to use these units, and thus avoid wear of the service
brakes. If the total negative demanded force is higher than the minimum
negative additional force, the highest possible gear is selected, which avoids
unnecessary down-shifting. On the other hand, if total demanded force is
lower than the minimum negative additional force, the lowest possible gear is
selected, since it provides the most possible negative additional force and thus
reduces the need for using the service brakes.
A similar procedure can be adopted by minimising energy consumption

of an electric vehicle, although in this thesis we consider only a single-gear-
transmission EV. For more details about the offline gear optimisation, see
Paper B.

Dynamic nonlinear programming
After gear map is optimised offline, the remaining problem is a smooth NLP
that looks exactly as in problem (3.1), but with a reduced input vector, as
optimal gear can be derived later, after the optimal vehicle speed and traction
force are computed. The problem includes a modified set U , where integer sub-
sets have been removed by embedding constraints from the offline optimised
gear map. The objective function of the NLP is the energy consumption,
computed as an aggregation of the internal power on the wheels side of the
vehicle, appended by the total travel time that is adjusted by a penalty factor.
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In the following, modelling procedures of the speed limits, traction force limits
and internal power are described, which help the top-level task to be solved
efficiently.
Maximum total speed limit for a given pair of travel distance and time of

day, is computed as minimum value of the maximum legal speed limit, vlgmax,
and maximum dynamic speed limit, vdynmax, as

vmax(s, t) = min
(
vlgmax(s), vdynmax(s, t)

)
. (3.2)

The maximum legal speed limit can generally change abruptly for different
segments of the driving road, see Figure. 3.4(a). However, the dynamic speed
limits generally vary smoothly in terms of s and t, see Figure. 3.4(b), since
there is no instantaneous change in traffic flow neither in terms of s and nor in
terms of t. Thus, the maximum dynamic speed limit is modelled by a smooth
function in terms of t. As for an example, a sum of sigmoidal functions in
terms of time of day is chosen as the smooth function in Paper A, which gives
the flexibility to model flat regions, as well as steep and shallow transitions as
shown in Figure. 3.4(b).
The original maximum traction force limit for the CVs is computed as the

maximum force at the wheels for any feasible combination of speed and gear.
As depicted in Figure. 3.5, the original maximum force for the CVs and force
limits for the EVs are generally piece-wise smooth curves. Thus, they have
been modelled as piece-wise functions, where each of the pieces is a smooth
function, see Figure. 3.5. Moreover, the internal power has been modelled as
a function of state variables and control inputs, as for e.g. it is presented in
Paper A. Several other polynomials are also used for modelling the internal
power in the technical literature, see [18] and the references therein.

Selected results
Here, selected simulation results about the logistics planner’s impact on op-
timal coordination of the vehicle mission are presented. To this end, an EV
is driving in a 100 km long hilly terrain, as illustrated in Figure. 2.3(b), sub-
ject to a legal speed limit of 90 km/h. For pedagogical purposes, a simple
scenario is considered with a single traffic jam, occurring at about 35 km, see
Figure. 3.7. The traffic jam imposes dynamic speed limits, which depending
on the time of the day, may constrain EV speed down to 30 km/h. Also, the
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Figure 3.4: Maximum speed limits in terms of travel distance and time of day.
The legal speed limits can change abruptly in terms of travel distance,
however dynamic speed limits vary smoothly in terms of travel distance
and time of day.
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Figure 3.6: Contour plot of upper bound on each half-hour start time interval for
a given pair of travel time and electricity use.

travel time at initial position of the route is not fixed, but is allowed to vary
within a half-hour interval. Final travel time is kept free. The NLP is solved
in Matlab with the solver IPOPT using the open source optimisation tool
CasADi [24]. For more details about problem discretization, and vehicle and
simulation parameters, see Paper A.

Energy efficiency versus travel time

Penalising total travel time in (3.1a) strongly influences the energy consump-
tion. To investigate this, the NLP (3.1) is solved for a wide range of the time
penalty factor, where the mission start time is allowed to vary within half-hour
time intervals starting from 6:30. Figure. 3.6 shows a contour plot of upper
bound on each half-hour mission start time, tmax

0 , for a given combination
of the consumed electrical energy and total travel time. It is observed that
there is a trade-off between the electrical energy consumption and travel time,
i.e. by increasing the penalty factor, the travel time decreases, but it leads
to higher electricity use. Unsurprisingly, the curves of electricity use versus
travel time overlap for the start time intervals of 6:30-7:00 and 9:00-9:30, since
the vehicle never encounters the traffic jam in either cases. The demonstrated
profile in Figure. 3.6, provides promising information for e.g. logistics service
managers, who have wide range of choices to customise the vehicle’s mission.
In this profile, the region A corresponds to a case with zero time penalty
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start time interval; corresponding to region B.

factor, i.e. the most energy efficient driving. By letting the penalty factor
be negative, it is possible to further increase travel time, which will actually
cause increase in energy consumption. This implies that there is a low speed
threshold, here about 35 km/h, below which the benefit of reduced air drag is
negated by the increased time of accumulating powertrain losses.

Optimal mission start time

Region B in Figure. 3.6 corresponds to a positive penalty factor that results
in keeping an average cruising speed of about vcru = 75 km/h when traffic
jam is avoided. Optimal time trajectory for the region B, for each half-hour
interval of the mission start time, is depicted in Figure. 3.7, where the gray
areas correspond to infeasible regions. It is observed that by applying the
proposed algorithm, the vehicle tries to avoid the low speed regions. The
travel distance in Figure. 3.7 is divided into three segments; (1): before traffic
congestion, (2): during traffic congestion and (3): after traffic congestion. By
comparing the results of the intervals 6:30-7:00 and 7:30-8:00, travel time is
reduced by 5.5 %, when the mission starts at 6:30 instead of 8:00. For detailed
results see Paper A.
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Figure 3.8: Concept of a model predictive controller in discrete domain, where ζ
is current instance and sH is prediction horizon length.

3.3 Eco-driving supervisor
The eco-driving supervisor utilises the calculated optimal mission start and/or
finish time by the logistics planner, in order to provide the vehicle’s energy-
efficient drive with the ability of anticipating disturbances and future events.
In this section, the problem formulation and the proposed computationally
efficient algorithm for designing the eco-driving supervisor are explained. Also,
selected simulation results about the trade-off between energy efficiency and
driver comfort, disturbance rejection and computation time are presented.

Problem formulation
Here, the eco-driving supervision problem is formulated as an OCP in MPC
fashion that allows horizons to cover the entire route. MPC is an online-
capable framework that iteratively solves (3.1). The main advantage of MPC
is that it engages future instances in optimising the current instance. In other
words, a finite horizon of instances is optimised, but only the optimal solution
of current instance is implemented. This process repeatedly continues up
to the end of the horizon. Thus, MPC is able to anticipate future events,
e.g. disturbances, and can take appropriate control action accordingly. The
concept of MPC in discrete domain is demonstrated in Figure. 3.8.
As computational resources are always limited, we impose an upper bound
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3.3 Eco-driving supervisor

on horizon length, sHmax, hopefully in the range of hundreds of kilometers.
Thus, the eco-driving supervision OCP can be solved in a moving horizon
MPC (MHMPC) framework if sHmax < sf, or in a shrinking horizon MPC
(SHMPC) framework if sHmax ≥ sf. The optimisation variables are predicted
at samples s ∈ [ζ, ζ + sH], given information of the actual vehicle’s states at
ζ. Thus, the actual horizon length can be computed as

sH(ζ) = min{sHmax, sf − ζ}. (3.3)

The problem can now be summarised as follows

min
u∈U

S(x(sH|ζ), sH) +
∫ ζ+sH(ζ)

ζ+s0

V (x(s|ζ),u(s|ζ), s)ds (3.4a)

subject to:
dx(s|ζ)

ds = F (x(s|ζ),u(s|ζ), s) (3.4b)

G(x(s|ζ),u(s|ζ), s) ≤ 0 (3.4c)
x(s0|ζ) ∈ X0(ζ) (3.4d)
x(s|ζ) ∈ X (ζ) (3.4e)
x(sf|ζ) ∈ Xf(ζ) (3.4f)
u(s|ζ) ∈ U(ζ). (3.4g)

The full statements of problem (3.4) for CVs and EVs are given in Paper
B, in which travel time, kinetic energy and acceleration are real-valued state
variables, jerk and service braking force are real-valued control inputs, and
traction force is an output variable. In CVs, gear is an integer control input.
The problem (3.4) is generally a non-convex MINLP if the set U , for e.g. in
CVs; otherwise, it is simply an NLP.

Methods for solving the eco-driving problem
Problems, such as the MINLP (3.4), have been addressed in literature by dif-
ferent methods. DP [21] is the most commonly used algorithm to optimise
the eco-driving problem due to its potential to guarantee global optimum
for non-convex, nonlinear and mixed-integer optimisation problems [16], [22],
[25]–[28]. Fuel-optimal look-ahead control strategies have been proposed in
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[16] and [25] using DP, where in addition to optimising velocity, optimal gear
shifting of conventional trucks is also investigated. Furthermore, a DP-based
method is applied in [26] to minimise the energy consumption in fully electric
vehicles (EVs) by optimising vehicle speed on short-range trips, e.g. driving
between two consecutive traffic lights. A combined energy management and
eco-driving approach using discrete DP is devised in [27] for hybrid electric
vehicles (HEVs) driving over limited horizons, where the velocity profile is al-
lowed to be optimised to further enhance fuel efficiency. Despite the promising
contributions in solving optimal control problems, DP-based methods suffer
from the curse of dimensionality, which denotes to a fact that computational
time increases exponentially with the number of state variables and control
signals, [21]. Several ways have been taken to decrease computational effort,
for example by limiting the look-ahead horizon of cruise controllers for HEVs.
At the current state, real-time capable DP-based control can only be applied
for short prediction horizon scenarios of HEVs [22].
Other approaches focus on simplifying the powertrain model, by e.g. using

a simplified internal combustion engine (ICE) model or discarding system
states, such as travel time, ICE on/off and gear [28].
For high-dimensional optimisation problems, e.g. optimal control of HEVs

with more energy states, several alternative approaches have been proposed.
In [29] a mixed-integer quadratic program (MIQP) [30] has been applied for
power allocation of HEVs. A way to diminish computational complexity of
the high-dimensional problems is by adjoining system dynamics to the cost
function and neglecting constraints on state variables, as shown in [31]–[33].
In [33] Pontryagin’s maximum principle (PMP) [34] has been applied to op-
timise longitudinal velocity, gear selection and energy use of HEVs, where
integer state variables have been neglected. Furthermore, in [10], [35] min-
imisation of energy consumption using PMP and considering varying speed
requirements has been studied. Although PMP-based methods are computa-
tionally efficient for optimal velocity problems over long look-ahead horizons,
they do not provide the same computational advantage for problems where
state variables often activate their bounds. This is especially relevant for
single shooting methods used for solving two-point boundary value problems
(TPBVPs), as in e.g. [36]. A TPBVP refers to a system of ordinary differential
equations, where the solution and derivatives are given at just two points.
Another portion of the conducted research benefits from the combination
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of DP and other methods. Such approaches have been proposed by [18], [37]–
[39], where real-valued decisions, e.g., planing optimal velocity, are made by
sequential convex optimisation, while integer decisions are taken by DP. These
strategies have also been shown to be effective when considering surrounding
traffic [38], or cooperative energy management of multiple vehicles [18], [39].
In [40] a PMP-DP method has been proposed to solve the optimal control
of longitudinal velocity, battery energy, gear selection and ICE on/off state.
However, the computational effort of the control algorithms is still highly
susceptible to long horizon lengths and high update frequencies.
The synergy among different optimisation methods is generally performed

by splitting the problem into sub-problems arranged into multi-level or bi-
level control architectures, where different tasks are delegated to distinct lay-
ers based on horizon length, time constants, sampling interval and update
frequency. To this end, multi-level and bi-level MPC algorithms have been
proposed for CVs, [41], and HEVs, [42]–[45], respectively. The multi-level ar-
chitectures allow solving computationally intensive sub-problems, e.g. mixed-
integer programs. Such programs are typically solved by an MPC, tracking a
certain reference or a target state, typically over look-ahead horizons of sev-
eral of kilometers. Even though such horizons may appear long, in this thesis
problems are addressed that are naturally defined for even longer horizons.

The proposed computationally efficient algorithm

Here, we propose an algorithm to solve the eco-driving problem (3.4), with a
significant boost in computational efficiency. This algorithm consists of: 1)
gear optimisation using problem decomposition into two sub-problems formu-
lated as a bi-level program as described in Section. 3.2; 2) a combination of an
indirect PMP solution and a direct nonlinear programming for reducing the
number of states in top-level dynamic sub problem of the bi-level program; 3)
a real-time iteration (RTI) sequential quadratic programming (SQP), which
allows a single quadratic program (QP) to be solved in a single MPC update.

Having the gear optimisation been performed offline as a bottom-level task
of a bi-level program, the top-level task represents a dynamic NLP. Let the
Hamiltonian function of this NLP be defined as

H(s,x,ur, λ) = V (x(s),ur(s), s) + λTF (x(s),ur(s), s), (3.5)
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where ur =
[
j Fbrk

]> is the top-level real-valued decision vector. Also, λ
denotes the vector of Lagrange multipliers known as costate vector to the state
vector x. The Hamiltonian (3.5) for (3.4) is not an explicit function of travel
time as it is discussed in Paper B, thus optimal time costate, λ∗t , i.e. the value
for λt that satisfies maximum travel time constraint, is a constant value, i.e.

λ′
∗
t (s) = −

(
∂H(·)
∂t

)∗
= 0. (3.6)

Furthermore, the travel time is a strictly monotonically increasing function
that may activate the maximum travel time constraint only at the final in-
stance. Consequently, if λ∗t is known, it will be possible to adjoin the nonlinear
dynamics on travel time to the objective function. The optimal λ∗t can be cal-
culated by solving a TPBVP. To do so, it is considered that the optimal energy
consumption corresponds in general to driving slow, so it can be assumed that
the vehicle will use the entire travel time, i.e. t∗(λt, sH) ≈ tH, where t∗ is opti-
mised travel time and tH is desired travel time at final position of the horizon,
obtained by the logistic planner. Thus, it is possible to try different values
for λt and then use search methods, e.g. Newton or bisection, that minimises
the cost

min
λt
||t∗(λt, sH|ζ)− tH(ζ)|| (3.7)

where || · || may indicate any norm. For more details on finding λ∗t see Paper
B.
Having λ∗ been adjoined to the objective function, the resultant top-level

task NLP can be solved using SQP [46]. SQP is an iterative method for
solving NLPs, in which the objective function and the constraints are twice
continuously differentiable. This method solves a sequence of quadratic op-
timization sub-problems, i.e. with quadratic model of the objective function
and linearized constraints. This thesis proposes an algorithm for solving the
top-level task NLP with the term adjoined to its objective, which consists of
three nested loops as illustrated in Figure. 3.9(a). The outermost loop up-
dates the MPC horizon, the middle loop finds the optimal value for the time
costate and the innermost loop sequentially solves a QP in order to find the
solution of the dynamic problem for a given value of λt. The procedure is
still computationally inefficient, as it requires solving multiple QPs for given
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3.3 Eco-driving supervisor

multiple λt values in each MPC update. The goal in order to improve compu-
tational efficiency, is to eliminate the inner most loops in Figure. 3.9(a), and
for a given λt, solve only a single QP in each MPC update, as illustrated in
Figure. 3.9(b).
For an SHMPC implementation of the top-level NLP and for a given λt, if

predicted disturbances do not change and there is no miss-match between the
control and plant model, then

t∗(λt, sH|ζ) = t∗(λt, sH|ζ + δζ), ∀δζ ∈ [0, sf − ζ], (3.8)

holds, i.e. the optimal travel time at the end of the horizon does not change for
different SHMPC updates. The proof follows directly from Bellman’s principle
of optimality, i.e. any tail of an optimal trajectory is an optimal solution as
well [21]. Thus, validly the middle loop for an SHMPC is removed, i.e. the
time costate update is spread over the MPC loop.
For an MHMPC, the expression (3.8) does not hold even if disturbances

are predicted exactly and there is no model miss-match. This is because new
information is added as the prediction horizon moves forward at each MPC
update. However, if the prediction horizon is much longer than the interval
between two consecutive updates, then for different ζ, it can be assumed

t∗(λt, sH|ζ)− tH(ζ) ≈ t∗(λt, sH|ζ+)− tH(ζ+) (3.9)

where ζ+ is the instance of the MHMPC update following that at ζ. Fig-
ure 3.10 demonstrates the overlapped curves of the final time difference ver-
sus the time costate for a CV and an EV, where ζ = 0 m and ζ+ = 300 m.
Thus, it is also possible for an MHMPC to update the time costate over the
MPC loop. For more details on how the time costate can be updated in MPC
framework, see Paper B.
RTI [47] facilitates the SQP loop’s removal, where the idea is to solve only

a single QP per an MPC update, without waiting for a full convergence.
The obtained solution is possibly sub-optimal, but due to the contractivity of
the RTI scheme as shown in [48], the real-time iterates quickly approach the
optimal solution during the runtime of the process. As the SQP is stopped
prematurely, it is important to show that the obtained solution by solving
a single QP is feasible in the original NLP. Feasibility can be guaranteed if
the domain of the QP, obtained by linearizing nonlinear constraints is inner
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Figure 3.9: Flowchart of the proposed algorithm to solve mixed-integer NLP in
MPC framework, (a) with three nested loops, innermost loop to solve
NLP using SQP and middle loop to find λ∗; (b) using real-time itera-
tions SQP, which solves a single QP in each MPC update.
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Figure 3.10: Difference between calculated time at the end of horizon and the de-
sired maximum time for varying time costate using MHMPC scheme,
where ζ = 0 m and ζ+ = 300 m. Overlap of the curves for different
ζ values shows that λt can be evaluated only once per each MPC
update, rather than waiting for a full convergence.

approximation of the feasible set of the NLP. To gain more insight on feasibility
of the presented method for CV and EV case studies see Paper B.

Selected results

Here, selected simulation results about the eco-driving supervisor’s impact on
optimal coordination of the vehicle mission are presented. To this end, the
proposed computationally efficient algorithm has been applied to CV and EV
case studies driving in 118 km long road from Södertälje to Norrköping in Swe-
den. For most of the simulation the sampling interval is kept at about 250 m,
unless stated otherwise. Thus, the top-level NLP is solved in an SHMPC
framework, where travel time at the final position (end of the route) is up-
per bounded. For more details about problem discretization, and vehicle and
simulation parameters see Paper B.
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Energy efficiency versus driver comfort

To study the cost components, i.e. energy cost and the cost due to penalising
driver discomfort, we investigate two case studies: in Case 1, i.e. performance
drive, the driver discomfort is not penalised; and in Case 2, i.e. comfortable
drive, penalising the vehicle jerk leads to obtain a smooth velocity profile. As
an index to measure the drive comfort, the root mean square (RMS) value of
jerk

jRMS =

√
1
sf

∫ sf

0
j2(s)ds (3.10)

is used. Note that we have observed the smooth speed profile could be achieved
by only penalising jerk, thus there is no penalty coefficient on the acceleration
for either of the cases.
There is a trade-off between the energy cost and comfort, i.e. lower values

of RMS jerk yield higher energy cost, see Figure. 3.11(a) and Figure. 3.11(b)
for such trade-off for the CV and the EV respectively. Thus, vehicle manu-
facturers have wide range of choice to tailor the vehicle’s performance for a
desired energy use and comfort. The driver discomfort in Case 2 is penalised
in a way that the RMS jerk is equal to 0.0027 m/s3 for the CV and the EV.

Disturbance rejection

The convergence curve of the time costate versus shrinking prediction horizon
length is shown in Figure. 3.12. According to the algorithm given in Paper
A, the time costate is updated once per each MPC stage rather than wait-
ing for the full costate convergence. It can be observed that after few initial
MPC stages, the time costate converges to its optimum value. The distur-
bance rejection properties of the algorithm are verified in Figure. 3.12. At the
prediction horizon of 85 km, maximum travel time changes due to e.g. traffic
congestion. It can be seen in Figure. 3.12 that the travel time costate con-
verges to its new value, which leads the vehicle to arrive to the final position
within the updated maximum travel time.
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Figure 3.11: Comparison between non-approximate original problem with approx-
imate problem. Energy cost investigation for different jerk penalty
factors. For the large penalty factors, RMS jerk is saturated.

Computation time

The computation time profile for various sampling intervals is depicted in
Figure. 3.13 using HPIPM [49], where the entire route, 118 km, is considered as
the prediction horizon. The optimisation was run on a laptop PC with 6600K
CPU at 2.81GHz and 16GB RAM. The trend is that as the number of samples
increases, the computation time also increases. For real-time applications,
it is preferable to have small sampling interval, however the information on
the topography should not be lost. The corresponding computation time for
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Figure 3.12: Travel time costate vs. prediction horizon length. The costate con-
verges after few MPC updates, even after disturbance is introduced
(at horizon length of 85 km) by suddenly increasing maximum travel
time, e.g. due to traffic congestion.

solving the top-level task NLP with the sampling interval of about 250 m is
less than 20 ms, which is considerably low value for a horizon of 118 km.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Ahad Hamednia, Nikolce Murgovski, and Jonas Fredriksson
Time optimal and eco-driving mission planning under traffic constraints
Accepted in 23rd IEEE International Conference on Intelligent Trans-
portation Systems (ITSC) .

This paper addresses logistics planning problem which aims at controlling
the mission start time and velocity profile of an electric vehicle driving in
a hilly terrain, subject to legal and dynamic speed limits imposed by traffic
congestion. To this end, an NLP is formulated, where total energy consump-
tion is minimised and the travel time is adjusted by a penalty factor, subject
to road and traffic information. Total speed limits have been calculated as
the minimum value of the legal and dynamic speed limits. The legal speed
limits can change abruptly for different segments of the travelled distance.
However, considering the smooth variations of the dynamic speed limits in
terms of travel distance and time of day, they have been modelled by smooth
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sigmoidal functions, which gives the flexibility to model flat regions, as well as
steep and shallow transitions for combinations of travel distance and time of
day. The traction force limits at the wheels are modelled as piece-wise func-
tions, which sufficiently describe the original piece-wise smooth traction force
limits. Moreover, the electric battery power has been modelled as a function
of state variables and control inputs. With these modeling procedures, the
NLP is solved in a computationally efficient manner. The trade-off between
energy consumption and travel time has also been investigated, while allowing
a flexibility in starting time and a certain variation of vehicle speed around
an average. It is observed that total travel time is reduced up to 5.5% by
adjusting the mission start time, when keeping an average cruising speed of
about 75 km/h.

4.2 Paper B
Ahad Hamednia, Nalin K.Sharma, Nikolce Murgovski, Jonas Fredriks-
son
Computationally efficient algorithm for eco-driving over long look-ahead
horizons
Submitted to IEEE Transactions on Intelligent Transportation Systems
in Jan. 2020 .

This paper addresses designing an eco-driving supervisor, which aims at
obtaining a velocity profile by optimising energy consumption. To do so, an
online-capable algorithm has been developed in an MPC framework for long
prediction horizons of up to hundreds of kilometers. The controller is capable
of using communication and prediction abilities of modern transportation to
anticipate future events and disturbances. This implies that the controller is
able to re-optimise the velocity profile online, considering possible changes in
the condition of the vehicle and/or the driving road. As a central concern
for such online-implementable supervisor, the computational efficiency has
been considered by developing a bi-level algorithm where integer variable,
i.e. gear, is decoupled from the real-valued variables. In the bottom level,
the optimal gear map is derived in a way that the total energy consumption
is minimised. In the top level, the remaining nonlinear problem has been
solved by gaining insights from PMP conditions for optimality and real-time
iterations SQP. To provide more comfortable way of driving, acceleration and
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4.2 Paper B

jerk of the vehicle have been appended to the top level’s objective function.
The proposed algorithm has been applied to a CV and an EV. This algorithm
is able to solve the optimisation in a very short amount of time, i.e. for a
horizon length of 118 km with the sampling interval kept at about 250 m, the
computation time is less than 20 ms. Compared to standard cruise control, the
energy savings of using this algorithm is up to 11.6 %. Also, Pareto frontier
illustrating the trade-off between energy efficiency and driver comfort has been
presented, which provides valuable information for vehicle manufacturers to
customise the vehicle’s performance for a desired energy use and comfort.
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CHAPTER 5

Conclusion and future work

In this chapter, the thesis is concluded by addressing the research goals and
possible directions for future research.

5.1 Discussion and conclusion
Automotive industry leaders and transport service providers constantly con-
sider reducing ever-growing energy consumption and CO2 emissions by im-
proving transport efficiency and not losing logistics performance. This thesis
has investigated how these goals are achievable by optimal planning of the
transport mission, which is characterized as optimising the start and/or finish
time of vehicle driving mission and increasing the tank-to-meter efficiency. It
has been shown that optimising the vehicle’s longitudinal drive has a signif-
icant impact on enhancing the tank-to-meter efficiency. Thus, the core idea
has been introduced as formulating a driving mission as an optimal control
problem. To do so, several factors have been considered that strongly influ-
ence solving the optimal control problem, such as speed limits, travel time,
driver comfort, and future events and disturbances.
In order to increase feasibility in realistic driving situations, the control
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problem incorporates speed limits that include not only legal, but also dy-
namic limits using the information about the road and traffic available. Sur-
rounding traffic can impose such dynamic constraints on the vehicle speed
due to presence of e.g. traffic lights, intersections, ramps and junctions. Fur-
thermore, the trade-offs between the energy efficiency and travel time, and
between the energy efficiency and driver comfort, are considered in the con-
trol problem, i.e. lower energy cost generally yields non-smooth saw-tooth
shape velocity profiles and longer travel times. Moreover, predictive con-
trollers are developed that employ communication and prediction abilities of
modern transportation to anticipate future events and disturbances.
To improve the transport efficiency and not lose the logistics performance,

with all above-mentioned factors considered, a mission planner with a bi-layer
structure has been proposed. The mission planner consists of a logistics plan-
ner as its top level and an eco-driving supervisor as its bottom level. The lo-
gistics planner provides the optimal mission start and/or finish time by offline
optimising energy consumption and travel time. It also provides a reference
speed profile and, thus, an estimate of the time for reaching sparsely assigned
positions along the route, at intervals of about 250 m. To do so, the logistics
planner uses road information as well as traffic situation characterized as a
map of total maximum speed limits given in terms of travel distance and time
of day. Here, the trade-off between energy efficiency and total travel time has
been investigated, which offers the logistics service provider a valuable infor-
mation to tailor the vehicle’s trip in terms of energy costs and delivery service.
It is observed that total travel time is reduced up to 5.5 % by adjusting the
mission start time, when keeping an average cruising speed of about 75 km/h.
In cases that the traffic situation and/or the driving road change unpre-

dictably for any reason, an algorithm is needed to generate a valid solution by
solving the optimal control problem, and consequently should be real-time im-
plementable. To achieve this, an online-capable algorithm for the eco-driving
supervisor has been developed in an MPC fashion, subject to the pre-optimised
mission start and/or finish time, and the reference velocity profile. It obtains
a velocity profile by optimising the energy consumption and penalising driver
discomfort. The algorithm is able to solve the optimisation in a very short
amount of time, i.e. for a horizon length of 118 km with the sampling interval
kept at about 250 m, the computation time is less than 20 ms. For on-line ap-
plications, such small computation time can strongly enhance the optimality,
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since the suggested optimal state of vehicle can be updated more frequently.
Also, this algorithm is applicable to offline analysis of multi-path problems,
where the optimal path of the driving vehicle in terms of energy consump-
tion can be obtained by iterativelly solving the eco-driving problem within a
small amount of time. The proposed algorithm has been applied to CV and
EV, where compared to standard cruise control, the energy savings are up to
11.6 %. Also, Pareto frontier describing the trade-off between energy efficiency
and comfortable driving has been presented. This offers a wide range of choice
for vehicle manufacturers to customise the vehicle’s performance for a desired
energy use and comfort.

Apart from the attached two papers, the mission planning problem has also
been investigated for a vehicle driving behind a slow moving leading vehicle
that does not communicate its future speed plan, see Paper D and Paper E.
To do so, a leading vehicle observer has been designed to estimate maximum
force to mass ratio of the leading vehicle and subsequently predict its future
speed. Then the predicted speed is utilised by the ego vehicle to optimally
plan its energy-efficient way of driving. Thus, unnecessary braking and usage
of traction force can be avoided, and the aerodynamic drag can be reduced by
keeping a short time headway. The proposed algorithm provides fuel savings
of up to 8 % compared to a standard cruise control. This algorithm has also
been applied to the traffic light scenario, where position of the traffic light
and the timing of its signals are considered to be known, see Paper D.

5.2 Future work
In this section, several possible directions for future research on the topic
mission planning are presented.

Optimal mission planning of HEVs
The current developed mission planner can also be extended to be applicable
to HEVs. To this end, an optimisation problem can be formulated, which aims
at planning optimal velocity trajectory for the entire route, in a way that total
energy consumption is minimised, travel time is upper bounded, and battery
SoC at final position is specified. Having the fixed travel time and the battery
SoC at the end of the route, indicate that the mission planning of HEVs is
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also a long-horizon type of problem. Thus, the problem can be treated by
using an SHMPC considering the information to the end of the driving route
per each MPC update. This results in gradual battery depletion and reaching
the desired battery SoC at end of the route. Note that an important step
in designing the mission planner for HEVs is the offline gear optimisation,
where both fuel and electricity consumption are required to be incorporated
in finding the optimal gear map.

Optimal electricity charging coordination of electrified
vehicles
The current developed mission planner can also be extended with a new func-
tionality that optimally coordinates electricity charging of plug-in electrified
vehicles (PEVs) for long look-ahead horizons, subject to road and traffic in-
formation and systems dynamics. A key factor is to incorporate uncertain
information on electricity pricing that may vary from charger to charger and
time of day, costs for overstay at charging locations and charging capabilities.
When the uncertainties are bounded, robust MPC can be designed to guaran-
tee that constraints on system states and control inputs are always respected.
If the uncertainties are unbounded, stochastic MPC can be employed to ensure
that constraints are satisfied on average or with a given probability. The main
challenge in stochastic optimization over long horizons is in the development of
efficient numerical methods to comply to the real-time requirements and limi-
tations of computational units. Another crucial issue is to find a good balance
between optimality, robustness and real-time computational feasibility. Thus,
current investigations on mathematical transformations, such as bi-level for-
mulation, variable changes and time-to-space coordinate transformation can
be extended by studying implications on conservativeness, convexity, accuracy
and optimality.
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1 Introduction

Abstract

This paper addresses optimising a transport mission by con-
trolling the mission start time and velocity profile of an electric
vehicle (EV) driving in a hilly terrain, subject to legal and dy-
namic speed limits imposed by traffic congestion. To this end,
a nonlinear program (NLP) is formulated, where the mission
start time is allowed to vary within an interval and final time
is kept free. The goal is to find the optimal trade-off between
energy consumption and travel time, while allowing a flexibil-
ity in starting time and a certain variation of vehicle speed
around an average. It is observed that total travel time is re-
duced up to 5.5% by adjusting the mission start time, when
keeping an average cruising speed of about 75 km/h.

1 Introduction
Transportation plays an important role in the current global trade system,
where the demand for transportation is highly connected to economic develop-
ment. Particularly, road transportation’s influence in the economy is crucial,
since it includes nearly 60 % of all surface freight transportation [1]. Although
the road transportation positively contributes to the economy, it is facing
serious challenges, e.g. increasing energy consumption and CO2 emissions.

In order to alleviate the destructive consequences from ever-growing CO2
emissions, one promising alternative for future transportation systems is to
electrify the vehicles ranging from hybrid to fully electric [2]. Furthermore,
time loss due to traffic congestion is an additional negative side effect of the
road transportation that greatly costs the society. The traffic congestion cost
is estimated to $115 billion over 439 urban areas of the United States in 2010
[3]. Thus, there is a strong motivation to achieve a sustainable transporta-
tion system by improving transport efficiency, which can be interpreted as
providing a service with less consumption of resources and not losing logistics
performance, i.e. costs and delivery service [4].
Logistics service providers are considered among major actors that are in-

volved in increasing the transport efficiency. The service providers can op-
timally plan the transport mission by controlling the mission start time and
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following the principles of energy-efficient driving, referred to as eco-driving
[5]–[7]. To achieve eco-driving it is necessary to optimally plan the velocity
profile of a vehicle, subject to road and traffic flow information. One important
factor in optimising the velocity profile is the knowledge about speed limits,
which are imposed by not only legal speed limits, but also dynamic constraints
[8], [9]. For instance, surrounding traffic sets such dynamic constraints due
to presence of e.g. traffic lights, intersections, ramps and junctions. Another
example that dynamically affects the speed limits is the linking of two or more
trucks in convoy in order to increase the energy efficiency [10]. The dynamic
speed limits make the travel time to be time-dependent, since the optimised
speed can vary depending on time of the day [11].
In case of driving in a hilly terrain, preferably the optimal velocity varies

within a bound, which originates from the legal and dynamic speed limits
and the utilization of the road topography, i.e. the vehicle accelerates when
driving downhill and decelerates when climbing uphill. This leads to less waste
of non-recuperable energy compared to driving with constant speed [12]. To
implement such behaviour over complex road topographies, advanced control
strategies [13] could be employed that maximise energy efficiency by optimal
coordination of energy sources, using information of the road topography and
traffic flow.
Among the optimal control strategies, dynamic programming (DP) [14],

which can handle mixed-integer, non-convex and nonlinear optimisation prob-
lems, is the most commonly used algorithm to optimise the velocity profile of
a vehicle. For instance, information about the road topography ahead is used
to optimise the velocity profile using DP in [15] to minimize fuel consumption
and travel time.
Although DP is a powerful tool in solving optimal control problems, its

main drawback is so-called curse of dimensionality, which refers to exponen-
tial increase in computational time with the increase in problem dimension
[14]. The high computation burden due to using DP can be reduced by em-
ploying a heuristic method, which priorities exploring to the most promising
solutions, utilizing the knowledge about considered problem [16]. As an al-
ternative approach to DP, Pontryagin’s Maximum Principle (PMP) [17] has
been widely applied to the velocity optimisation of vehicles, especially in order
to tackle the computational complexity due to high-dimensional optimisation
problems. An algorithm for optimising the velocity profile is proposed in [18]
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incorporating gear shifting, road grade constraints and speed limits. Neces-
sary optimality conditions as stated by the PMP have been exploited in the
well known equivalent consumption minimisation strategy (ECMS) to opti-
mally manage energy flows in hybrid electric vehicles [19]. ECMS provides
computational advantages by converting the optimisation problem to a two-
point boundary-value program. However, for problems where states’ bounds
are frequently activated, multiple-shooting techniques are preferred, where the
problem is directly transcribed to a nonlinear program (NLP) [20].
A combination of DP and other approaches for optimal control of vehicles

have also been investigated. In [21]–[23], a mixture of DP and (sequential)
convex optimisation is developed, where integer decisions, e.g. gear selection,
are optimised by DP and real-valued decisions are taken by sequential convex
optimisation. A PMP-DP method has been proposed in [24] to optimally plan
the vehicle speed, gear selection, battery energy and ICE on/off state.

The combination of eco-driving and start time of the vehicle’s mission by
considering the dynamic speed limits is not addressed in the technical litera-
ture. This paper formulates a nonlinear program (NLP), which aims at opti-
mal planning of the transport mission on long horizons that possibly stretches
up to 100 km. The goal is to find a possible solution for energy-efficient driv-
ing considering both legal and dynamic speed limits, where the mission start
time is allowed to vary within certain bounds. The method is demonstrated
and applied on electric vehicle (EV) example.

2 Vehicle modelling
This section addresses modelling of the dynamics of an EV as a lumped mass,
characteristics of EM and transmission system, and driving mission.

2.1 Travel time and longitudinal dynamics
Consider a vehicle driving on a planned route with a hilly terrain, where the
vehicle does not stop or change direction of movement. This allows choosing
travel distance, s, as an independent variable instead of travel time, t, i.e.
decisions are taken with respect to s. The reason for such transformation
is to alleviate high computational complexity due to nonlinearity in resistive
force originating from roll resistance, which is shown in the following. Similar
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transformations in the governing equations of the vehicle are done in [25]–[27]
and references therein. Thus, the dynamics on travel time is

t′(s) = 1
v(s) , (A.1)

where v is longitudinal velocity.
Longitudinal dynamics of the vehicle, according to the Newton’s law of

motion, is

mv(s)v′(s) = F (s) + Fbrk(s)− Fair(v)− Fα(s), (A.2)

where v′ = dv/ds is the space derivative and vv′ = dv/dt denotes the longitu-
dinal acceleration. Also, m is total lumped mass of the vehicle, F is EM force
at the wheel side of the vehicle generated by the EM, and Fbrk is non-positive
mechanical braking force. The nominal aerodynamic drag, Fair, and the roll
resistance, Fα(s), are defined as

Fair(v) = ρacdAfv
2

2 , (A.3)

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) , (A.4)

where α is road inclination, ρa is air density, cd is aerodynamic drag coefficient,
Af is frontal area of the vehicle, g is the gravitational acceleration, and cr is
rolling resistance coefficient. Throughout this paper, all constants that are
not dependent on s are displayed in upright letters, e.g. m, does not depend
on s. Also, the dependency on s of the variables that are trajectories in terms
of s, e.g. F (s), is not shown in several places for simplicity.

2.2 Electric machine and transmission system

A schematic diagram of the studied fully electric powertrain is demonstrated
in Fig. 1. The powertrain includes an electric battery as an energy storage
unit, an EM, and a transmission system. The torque and rotational speed at
the shaft between the electric machine and transmission are represented by
M and ω, respectively.
The EM is represented using a steady-state model. The steady-state ef-

ficiency map of the EM for a given pair of rotational speed and torque is
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Battery
Electric

Machine

(𝜔,𝑀)

Transmission

Figure 1: Schematic diagram of a fully electric powertrain. The powertrain consists
of electric battery as energy storage unit, electric machine and transmis-
sion system, which transfers shaft torque, M , with rotating speed ω.

shown in Fig. 2, where positive and negative torque regions correspond to the
motoring and the generating modes of operation, respectively.
The transmission system for the studied powertrain is solely a final gear

ratio, which translates the shaft torque and rotational speed to the EM force
and longitudinal velocity respectively, as

F (s) = M(s)
R

, v(s) = ω(s)R, R = rw
rfg

(A.5)

where γ denotes selected gear, rw is wheel radius and rfg is final gear ratio
respectively.

2.3 Driving mission
We describe a driving mission by a map of maximum dynamic speed limits for
a given pair of travel distance and time of day, as given in Figure. 6.3(a) and
the associated road topography, see Figure. 6.3(b). Figure. 6.3(a) includes a
contour plot, where the lighter the contour color is, the greater the vehicle
speed is. Figure. 6.3(b) is a double y-axis plot, where the left y-axis corre-
sponds to the vehicle speed and the right axis is the road altitude, while the
gray area represents the road topography. According to the max speed map,
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Figure 2: Steady-state efficiency map and torque limits of the electric machine.

the vehicle’s mission, characterised as the mission start time, total travel time
and velocity profile, can be tailored in favour of the improved energy efficiency.
One execution of the mission in terms of speed/time trajectory is also shown
in Figure. 3, where the vehicle starts the mission at 10:00. It can be seen
that the traffic speed drops to about 30 km/h in the congested area, at travel
distance of about 25 km.

3 Problem statement
In this section an optimisation problem is formulated, which aims at planning
optimal velocity trajectory for the entire mission, in a way that total energy
consumption is minimised and the travel time is adjusted by a penalty factor.
Note that the travel time at initial position of the route is not fixed, but is
allowed to vary within a bound. Final travel time is kept free.
Based on the models derived in the previous section, the energy optimization

problem can be formulated as:

min
F,Fbrk

λt (t(sf)− t(s0)) +
∫ sf

s0

Pb(v, F )
v(s) ds (A.6a)

subject to:
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Figure 3: Maximum dynamic speed limits map for a given pair of travel distance
and time of day, together with associated road topography and one exe-
cution of the driving mission.

t′(s) = 1
v(s) (A.6b)

mv(s)v′(s) = F (s) + Fbrk(s)− Fair(v)− Fα(s) (A.6c)
v(s) ∈ [vmin(s, t), vmax(s, t)] (A.6d)
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F (s) ∈ [Fmin(v), Fmax(v)] (A.6e)
Fbrk(s) ≤ 0 (A.6f)
t(s0) ∈ [tmin

0 , tmax
0 ], v(s0) = v0 (A.6g)

where tmin
0 is the minimum and tmax

0 is the maximum allowed initial time,
and v0 is initial longitudinal velocity. The longitudinal velocity limits includ-
ing legal speed limits and dynamics constraints are shown by vmin(s, t) and
vmax(s, t). Also, Fmin(v) and Fmax(v) represent the EM force limits for a given
longitudinal velocity. In (A.6a), s0 and sf are initial and final positions of the
driving vehicle respectively, and λt is a coefficient for penalising the travel
time. The division of the battery power with speed in (A.6a) is obtained from
the time to space transformation, i.e.∫

Pb(v, F )dt =
∫
Pb(v, F )/v(s)ds.

The constraints (A.6b)-(A.6f) are enforced for all s ∈ [s0, sf]. Problem (A.6)
has two states, t and v, and two control inputs, F and Fbrk.

4 Smooth nonlinear programming
In this paper we define an NLP to be smooth if it is not mixed-integer. On
the other hand, if the program is non-smooth, i.e. it is mixed-integer NLP,
then there is at least one non-smooth or discontinuous function in the program
with unbounded derivative. Accordingly, the direction in which the function is
decreasing (or increasing) cannot generally be determined by using its deriva-
tive or gradient information. Thus, having one feasible solution provides very
little information about how to search for a better solution, which makes the
NLP extremely difficult to solve. Therefore, there is a strong motivation to
model the non-smooth functions within an optimisation program by smooth
or piece-wise smooth functions to alleviate the computational complexity.
The limits on longitudinal velocity (A.6d) and EM force (A.6e) may not be

smooth functions. Such problems may generally be solved with DP, with the
cost of high computation effort, which is exponential in the number of system
states. In addition to the two system states, travel time and longitudinal
velocity, having free initial and final time requires solving DP in an additional
loop, which is computationally equivalent to having a 3rd state in the problem.
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Figure 4: Measured and modelled electric battery power for a given longitudinal
velocity and EM force.

Moreover, the problem may need to be solved multiple times, for different
values of the time penalty factor, or may involve additional states to model
driving comfort. Thus, there is a strong incentive to solve problem (A.6) in a
computationally efficient way. To this end, the EM force limits are modeled as
piecewise functions, where each of the pieces is a smooth function, and speed
limits are approximated by smooth functions. This allows the problem to be
translated to a smooth NLP that can be solved efficiently with Newton-based
methods.
Electric battery power is modeled as

P (v, F ) ≈ p0 + p1v(s) + p2v3(s) + p3v5(s)+
+ p4v(s)F (s) + p5v(s)F 2(s),

(A.7)

with p0,p1,p2,p3,p4,p5 ≥ 0. Fig. 4 shows that the model fits well original
steady-state measurements.
The EM force limits are modelled as piecewise functions

Fmin(v) ≈ max
{
F , x0 + x1

v(s)

}
(A.8)

Fmax(v) ≈ min
{
F , y0 + y1

v(s)

}
(A.9)
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where F is constant minimum and F is constant maximum EM force, while
the coefficients x1 and y1 denote maximum and minimum power limits. An
illustration of the modelled and measured force limits is given in Fig. 5.
The maximum speed limit is computed as the minimum between the max-

imum legal speed limit, vlgmax, and maximum dynamic speed limit that is
modelled as a sum of sigmoidal functions

vmax(s, t) = min
(
vlgmax(s),

∑
i

ai(s)
1 + ebi(s)t+ci(s)

)
, (A.10)

using traffic information. The proposed model for maximum dynamic speed
limit gives the flexibility to model flat regions, as well as steep and shallow
transitions. Here, ai(s), bi(s) and ci(s) are distance dependant coefficients.
Our analyses showed that (A.10) is able to model many realistic scenarios,
but the proposed method can identically be applied for other functions, as
long as the smoothness of the NLP (A.6) is preserved.

5 Case study and results
In this section, optimal planning of a driving mission is investigated for a
particular case study. An EV is driving in a 100 km long hilly terrain, as
illustrated in Fig. 6.3(b), subject to a legal speed limit of 90 km/h. For ped-
agogical purposes, a simple scenario is considered with a single traffic jam,
occurring at about 35 km, see Fig. 6. The traffic jam imposes dynamic speed
limits, which depend on the time of the day, may constrain EV speed down
to 30 km/h. Vehicle and simulation parameters are given in Table 1.
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Figure 6: Map of maximum dynamic speed limits, a simple scenario.

The resulting NLP (A.6) is discretized using the forward Euler method
with a sampling interval of 400 m. It is then solved in Matlab with the solver
IPOPT using the open source optimisation tool CasADi [28]. To alleviate
computational complexity due to nonlinearity in terms of the longitudinal
velocity in (A.3), kinetic energy, E(s), is used instead of longitudinal velocity,
as proposed in [27], using the one-to-one relation

E(s) = mv2(s)
2 . (A.11)

The NLP is warm-started by providing an initial guess, further detailed in
Appendix 1.

5.1 Choosing penalty factor for travel time
Penalising total travel time in (A.6a) strongly influences the electrical energy
consumption. To investigate this, problem (A.6) is solved for a wide range of
the time penalty factor, where the mission start time is allowed to vary within
half-hour time intervals starting from 6:30. Fig. 7 shows a contour plot of
upper bound on each half-hour mission start time for a given combination of
the consumed electrical energy and total travel time. It is observed that there
is a trade-off between the electrical energy consumption and travel time, i.e. by
increasing the penalty factor, the travel time decreases, but it leads to higher
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Table 1: Simulation parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρ = 1.29 kg/m3

Vehicle frontal area Af = 10 m2

Rolling resistance coefficient cr = 0.006
Vehicle mass m = 40 000 kg
Aerodynamic drag coefficient cd = 0.5
Wheel radius rw = 0.50 m
Final gear ratio rfg = 3
Cruising set speed vcru = 75 km/h
Route length 100 km
Number of samples N = 250
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Figure 7: Contour plot of upper bound on each half-hour start time interval for a
given pair of travel time and electricity use.

electricity use. Unsurprisingly, the curves of electricity use versus travel time
overlap for the start time intervals of 6:30-7:00 and 9:00-9:30, since the vehicle
never encounters the traffic jam in either cases. The demonstrated profile in
Fig. 7, provides promising information for e.g. logistics service managers, who
have wide range of choices to customise the vehicle’s mission. In this profile,
the region A corresponds to λt = 0, i.e. the most energy efficient driving. By
letting the penalty factor be negative, it is possible to further increase travel
time, which will actually cause increase in energy consumption. This implies
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Figure 8: Optimal time trajectories for each mission start time interval; corre-
sponding to region B.

that there is a low speed threshold, here about 35 km/h, below which the
benefit of reduced air drag is negated by the increased time of accumulating
powertrain losses.
Region B in Fig. 7 corresponds to a positive penalty factor that results in

keeping an average cruising speed of about vcru = 75 km/h when traffic jam
is avoided. For the remaining results in this paper, we use the time penalty
factor that enables operation in region B. Optimal time trajectory for the
region B, for each interval of the mission start time, is depicted in Fig. 8. It is
observed that by applying the proposed algorithm, the vehicle tries to avoid
the low speed area. The gray areas correspond to the infeasible time regions.
The travel distance in Fig. 8 is divided into three segments; (1): before traffic
congestion, (2): during traffic congestion and (3): after traffic congestion. The
mean optimal speed values per each distance segment and mission start time
interval together with electrical energy use and travel time are given in Table
2. For instance, by comparing the results of the intervals 6:30-7:00 and 7:30-
8:00, travel time is reduced by 5.5%, when the mission starts at 6:30 instead
of 8:00.
As an example, optimal longitudinal velocity profiles for the start time

intervals of 6:30-7:00 and 7:00-7:30 are shown in Fig. 9, together with their
corresponding guess velocity profiles. It is observed that for the interval of
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Table 2: Mean optimal speed for given road segment and time interval together
with electricity use and travel time, region B.
Start time
interval

v1
[km/h]

v2
[km/h]

v3
[km/h]

Elec.
[kWh]

Travel
time [h]

6:30-7:00 73.07 74.00 73.08 102.99 1.37
7:00-7:30 75.34 55.75 73.08 103.09 1.38
7:30-8:00 72.92 40.33 73.08 102.22 1.45
8:00-8:30 70.93 45.27 73.08 101.64 1.44
8:30-9:00 72.93 71.64 73.08 102.86 1.38
9:00-9:30 73.07 74.00 73.08 102.99 1.37
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Figure 9: Optimal longitudinal velocity profiles for the start time intervals of 6:30-
7:00 and 7:00-7:30 together with their corresponding guess velocity pro-
files.

7:00-7:30 the vehicle speeds up in the first distance segment compared to
the interval of 6:30-7:00 to avoid the traffic congestion. Optimal EM force
and braking force trajectories are depicted in Fig. 6.10(a). Also, optimal
force-speed operating points are given in Fig. 6.10(b). Note that Fig. 9 and
Fig. 6.10(a) are shown for zoomed distance segment of 20 km-60 km.

6 Conclusion
In this paper, an NLP is formulated in order to improve the transport efficiency
for an EV driving in a hilly terrain, by optimising the velocity profile and
mission start time. To alleviate the computational complexity, non-smooth
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Figure 10: Optimal EM force and braking force trajectories together with optimal
force-speed points, when the mission start time is allowed to vary over
7:00 to 7:30.

EM force and dynamic speed limits are modeled by smooth functions. The
mission start time is allowed to vary over half-hour intervals starting from
6:30. For pedagogical purposes a scenario with a single traffic jam is studied.
According to the simulation results, the proposed algorithm can find a possible
solution such that the vehicle avoids the traffic jam.

A17



Paper A

1 Initial guess for warm-starting
An initial guess of speed limits

vgmin(s, t) = max
{
vlgmin(s), vdynmin(s, t)

}
, (A.12)

vgmax(s, t) = min
{
vlgmax(s), vdynmax(s, t)

}
, (A.13)

are obtained by considering legal speed limits of the road, vlgmin(s) and vlgmax(s),
and dynamic speed limits, vdynmin(s, t) and vdynmax(s, t), for a given pair of travel
distance and travel time. To initialize the problem (A.6), a velocity profile,
vg(s, t) ∈ [vgmin(s, t), vgmax(s, t)], can be derived as a guess by filtering cruising
speed, vcru ∈ [vlgmin(s), vlgmax(s)], where the cruising speed can be set manually
by driver or automatically by a telemetry system. To compute vg(s), the rated
power of EM and legal/dynamic limits on speed are taken into consideration
in filtering the cruise speed [22], i.e. the vehicle will try to maintain vcru unless
EM and/or speed limit is reached.
Let

FWmax(v) = Fmax(v)− Fair(v)− Fα(s) (A.14)

represent the maximum EM force to be delivered at the wheels, for the vehicle
driving at the speed v. The guess longitudinal velocity, vg(s), and travel time,
tg(s), are computed in discrete space domain using the forward Euler method
as in Algorithm 1. In this algorithm, t0g is a guess for the travel time at
the first position, N is number of samples, amax is the maximum allowed
acceleration within a comfort zone, and ∆s is the sampling interval.
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1 Introduction

Abstract

This paper presents a computationally efficient algorithm for
eco-driving along horizons of over 100 km. The eco-driving
problem is formulated as a bi-level program, where the bottom
level is solved offline, pre-optimising gear as a function of lon-
gitudinal velocity (kinetic energy) and acceleration. The top
level is solved online, optimising a nonlinear dynamic program
with travel time, kinetic energy and acceleration as state vari-
ables. To further reduce computational effort, the travel time
is adjoined to the objective by applying necessary Pontryagin’s
Maximum Principle conditions, and the nonlinear program is
solved using real-time iteration sequential quadratic program-
ming scheme in a model predictive control framework. Com-
pared to average driver’s driving cycle, the energy savings of
using the proposed algorithm is up to 11.60 %.

1 Introduction
Excessive energy consumption of vehicles is recently being regarded as a cru-
cial concern for automotive industry leaders and transport service providers
due to economic, ecological and environmental issues. For instance, the Or-
ganisation for Economic Co-operation and Development (OECD) forecasts a
rapid growth in transport demand over the coming years, which may lead to
60 % increase in worldwide transport CO2 emissions by 2050, due to increase
in fossil fuel consumption [1]. One effective way to mitigate destructive con-
sequences from ever growing energy consumption by vehicles is to improve
transport efficiency. The transport efficiency can also be characterised as
tank-to-meter efficiency, referred to as the conversion of energy stored in fuel
into potential and kinetic energy required for displacement, and accompanied
losses.
Eco-driving has been concerned widely as an approach for increasing the

tank-to-meter efficiency by optimising velocity profile when considering road
information and traffic flow [2]–[6]. When driving in a hilly terrain, it is
preferable to vary the vehicle speed over a narrow interval while keeping the
maximum allowed travel time, i.e., speeding up when driving downhill and
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decreasing speed when climbing uphill, to have less energy waste at braking
pads compared to a constant speed driving [7]. Implementing this behaviour
over complex road topographies is generally achieved by model-based optimal
control methods that maximise energy efficiency by optimally coordinating
the energy use.
Dynamic programming (DP) [8] is the most commonly used algorithm to

optimise the velocity profile of vehicles due to its potential to tackle non-
convex, nonlinear and mixed-integer optimisation problems [9]–[14]. Fuel-
optimal look-ahead control strategies have been proposed in [9] and [10] using
DP, where in addition to optimising velocity, optimal gear shifting of conven-
tional trucks is also investigated. Furthermore, a DP-based method is applied
in [11] to minimise the energy consumption in fully electric vehicles (EVs) by
optimising vehicle speed on short-range trips, e.g. driving between two consec-
utive traffic lights. A combined energy management and eco-driving approach
using discrete DP is devised in [12] for hybrid electric vehicles (HEVs) driving
over limited horizons, where the velocity profile is allowed to be optimised to
further enhance fuel efficiency. Despite the promising contributions in solving
optimal control problems (OCPs), DP-based methods suffer from the curse
of dimensionality, which denotes to a fact that computational time increases
exponentially with the number of state variables and control signals [8]. Sev-
eral ways have been taken to decrease computational effort, for example by
limiting the look-ahead horizon of cruise controllers for HEVs. At the current
state, real-time capable DP-based control can only be applied for short pre-
diction horizon scenarios of HEVs [13]. Other approaches focus on simplifying
the powertrain model, by e.g. using a simplified internal combustion engine
(ICE) model or discarding system states, such as travel time, ICE on/off and
gear [14].
For high-dimensional optimisation problems, e.g. optimal control of HEVs

with more energy states, several alternative approaches have been proposed.
In [15] a mixed-integer quadratic program (MIQP) [16] has been applied for
power allocation of HEVs. A way to diminish computational complexity of
the high-dimensional problems is adjoining system dynamics to the cost func-
tion and neglecting constraints on state variables, as shown in [17]–[19]. In
[19] Pontryagin’s Maximum Principle (PMP) [20], [21] has been applied to
optimise vehicle speed, gear selection and energy use of HEVs, where integer
state variables have been neglected. Also, optimal speed and gear selection
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of vehicles driving on highways have been addressed in [22] under varying
parameters. Furthermore, in [23], [24] minimisation of energy consumption
using PMP and considering varying speed requirements has been studied. Al-
though PMP-based methods are computationally efficient for optimal velocity
problems over long look-ahead horizons, they do not provide the same com-
putational advantage for problems where state variables often activate their
bounds. This is especially relevant for single shooting methods used for solving
two-point boundary value problems (2PBVPs), as in e.g. [25].
Another portion of the conducted research benefits from the combination

of DP and other methods. Such approaches have been proposed by [26]–
[29], where real-valued decisions, e.g., planing optimal velocity, are made by
sequential convex optimisation, while integer decisions are taken by DP. These
strategies have also been shown to be effective when considering surrounding
traffic [28], or cooperative energy management of multiple vehicles [26], [29].
In [30] a PMP-DP method has been proposed to solve the optimal control of
vehicle speed, battery energy, gear selection and ICE on/off state. However,
the computational effort of the control algorithms is still highly susceptible to
long horizon lengths and high update frequencies.

High computational complexity may not be crucial when the eco-driving
problem is implemented offline, since the problem solving is generally allowed
to take a considerable amount of time. However, the offline implementa-
tion has drawbacks in situations where disturbances and/or constraints, for
e.g. traffic situation, change unpredictably and the vehicle is no longer able
to exactly follow the planned solution. Thus, the synergy among different
optimisation methods is generally performed by splitting the problem into
sub-problems arranged into multi-level or bi-level control architectures, where
different tasks, for e.g. disturbance rejection, are delegated to distinct lay-
ers based on horizon length, time constants, sampling interval and updat-
ing frequency. To this end, multi-level and bi-level model predictive control
(MPC) algorithms have been proposed for conventional vehicles (CVs), [31],
and HEVs, [32]–[35], respectively. The multi-level architectures allow solving
computationally intensive sub-problems, e.g. mixed-integer programs. When
solving such programs in an MPC fashion, a certain reference or a target state
are tracked, typically over look-ahead horizons of up to several of kilometers.
Even though such horizons may appear long, there are problems that are
naturally defined for even longer horizons.
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Problems with very long look-ahead horizons, in the order of hundreds of
kilometres, are typically addressed in electrified vehicles or logistics [36]. In the
case of electrified vehicles, a target battery state of charge may be provided
at charging locations along the route. For the logistics case, a target state
over the long horizon is the travel time, which is often given at the end of
the route by a logistics planner. Within the multi-level control architecture
mentioned earlier, these problems are delegated to the highest supervisory
level, generating reference travel time and battery state of charge trajectories
over hundreds of kilometres. Early results on developing online implementable
controllers that operate over long horizons, hereafter referred to as the eco-
driving supervisors, have been published in our previous work for the case of
CV, see [37].
In this paper, the eco-driving supervisor designed in [37] is generalised to

both CVs and EVs. The purpose of the eco-driving supervisor is to generate
optimal reference trajectories for the entire route, or for look-ahead horizons
that may stretch over hundreds of kilometres, using road and traffic informa-
tion compiled from look-ahead data and previous measurements. To do so,
an online-capable algorithm is developed in an MPC framework that has the
ability to anticipate future events and react to disturbances. For solving the
eco-driving supervision problem online, reducing the computational complex-
ity is the main concern, to allow the online solution to be obtained within the
update frequency of real-time execution. Furthermore, having small compu-
tation time can strongly enhance the optimality, since the suggested optimal
state of vehicle can be updated more frequently. Accordingly, the algorithm’s
computational effort is decreased in three steps: 1) a problem decomposition
into two sub-problems, where velocity and travel-time trajectory are optimised
online and gear shifting strategy is optimised offline; 2) a combination of an
indirect PMP solution and a direct nonlinear programming for reducing the
number of states in the online optimisation sub problem; 3) a real-time it-
eration (RTI) sequential quadratic programming (SQP) [38], which allows a
single quadratic program (QP) to be solved in an MPC manner [39].
The outline of the paper is as follows. In Section 2, dynamic model of vehicle

is presented. In Section 3, the energy minimisation problem is formulated.
Section 4 describes the computationally efficient algorithm. In Section 5 the
proposed algorithm is applied to a CV and an EV. In Section 6, the simulation
results are demonstrated. Finally, Section 7 concludes the paper.
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2 Physical Modelling
This section addresses vehicle dynamics, i.e. travel time and longitudinal
vehicle dynamics. Furthermore, static relations are given that translate torque
and rotational speed of actuator to traction force and longitudinal velocity.
Finally, lower bounds and upper bounds on longitudinal velocity, traction
force and acceleration are presented.

2.1 Travel time and longitudinal dynamics

According to Newton’s law of motion, preliminary governing equations of a
point mass vehicle model are

ṡ(t) = v(t) (B.1)
m v̇(t) = F (t) + Fbrk(t)− Fair(v)− Fα(s) (B.2)

where m is total lumped mass of the vehicle, t is travel time, s is travelled
distance, v is longitudinal velocity, F is traction force at the wheel side of the
vehicle generated by the actuator, and Fbrk is a non-positive force that includes
braking by the service brakes, a retarder, a compression release engine brake
and/or an exhaust pressure governor. For the case of a conventional vehicle,
more details on the braking force will be discussed later, in Section 5.1. Note
that the travelled distance and longitudinal velocity are functions of travel
time in (B.2). However, the explicit dependence is not shown for brevity,
when these signals are input arguments to functions, such as Fα(s(t)) and
Fair(v(t)). The nominal aerodynamic drag, Fair, and resistive forces that
depend on road gradient α, Fα(s), are defined as

Fair(v) = ρacdAfv
2

2 , (B.3)

Fα(s) = mg (sin(α(s)) + cr cos(α(s))) , (B.4)

where ρa is air density, cd is aerodynamic drag coefficient, Af is vehicle frontal
area, g is the gravitational acceleration, and cr is rolling resistance coefficient.
The road gradient can be directly obtained from a standard global positioning
system (GPS).
The vehicle longitudinal dynamics (B.1) and (B.2), are nonlinear due to
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the quadratic dependency of longitudinal velocity in the aerodynamical drag
function in (B.3) and the road gradient that can be an arbitrary nonlinear
function of distance in (B.4). Such nonlinearities may increase computational
complexity. To overcome this issue, it is possible to modify (B.1) and (B.2)
by changing independent variables. Thus, distance s is used as independent
variable instead of time t in (B.1), i.e. decisions are planned with respect to
s, as presented in [40]–[43]. Subsequently, for a given road topography, the
function Fα now becomes a fixed trajectory for the entire route. In addition,
the nonlinearity in (B.3) can be removed by a change of state variable v to
kinetic energy,

E(s) = mv2(s)
2 (B.5)

where E represents the kinetic energy of the vehicle. These transformations
are non-approximate as long as the studied vehicle does not stop or change
direction of its movement. Also, to study variations on speed and acceleration
of the driving vehicle, we introduce acceleration, a, as an additional state
variable. The change of acceleration in space coordinates, which resembles
jerk, j, now becomes the input signal to the vehicle system. The resulting
vehicle dynamics model becomes

t′(s) =
√ m

2E(s) (B.6)

E′(s) = ma(s) (B.7)
a′(s) = j(s) (B.8)

where t′ and a′ are used as short hand notations for dt/ds and da/ds, respec-
tively. The relation E′ = mvv′ is the product of mass and vehicle acceleration,
and

a(s) = 1
m (−caE(s) + F (s) + Fbrk(s)− Fα(s)) (B.9)

where ca = ρacdAf/m, gathers the drag related coefficients.
It can be noticed that (B.6) is still nonlinear with respect to E. More

information on how to tackle the nonlinearity in (B.6) is presented in Section
4.
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Transmission

ActuatorStorage

(ω, M)

Figure 1: Schematic diagram of the studied powertrain. The powertrain consists of
energy storage unit, actuator and transmission system, which transfers
shaft torque, M , with rotating speed ω.

Throughout this paper, all constants, which are not dependent on s are
shown in upright letters, e.g. m,Af, cd, ρa do not depend on s. Also, all the
states and control inputs are trajectories in terms of s, e.g. t(s) and E(s) are
the trajectories dependent on s, where in several places the dependency is not
displayed for simplicity.

2.2 Vehicle powertrain

A schematic diagram of the considered powertrain is illustrated in Fig. 1. The
powertrain consists of an energy storage unit, an actuator, e.g. an ICE or an
electric machine (EM), and a transmission system. The torque and speed at
the shaft between the actuator and transmission are denoted by M and ω,
respectively.
The transmission system is modelled considering the transmission and final

gear ratios as

v(s) = ω(s)R(γ), F (s) = M(s)
R(γ) , (B.10)
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where γ denotes selected gear, and

R(γ) = rw
rtg(γ)rfg

(B.11)

where rw is the wheel radius, rtg and rfg are transmission and final gear ratios,
respectively.
The traction force is bounded

F (s) ∈ [Fγmin(E), Fγmax(E)], (B.12)

where

Fγmin(E) = min
γ
Fmin(E, γ), (B.13)

Fγmax(E) = max
γ

Fmax(E, γ). (B.14)

The functions Fmin(E, γ) and Fmax(E, γ) are the traction force limits for a
given pair of kinetic energy (longitudinal velocity) and gear.
In turn, the acceleration limits,

a(s) ∈ [amin(E), amax(E)],

can be derived using (B.9) as a function of kinetic energy (longitudinal veloc-
ity) and considering the limits on traction force, as

amin(E) = max
{
a,
Fγmin(E)− caE + Fbrk − Fα

m

}
(B.15)

amax(E) = min
{
a, Fγmax(E)− caE − Fα

m

}
(B.16)

where a is the minimum and a is the maximum allowed acceleration within a
comfort zone and Fbrk denotes constant minimum total braking force. Here,
amin and amax are not necessarily smooth functions, as Fγmin and Fγmax may
not be smooth functions. This will be discussed in more details in Section 5.
In order to deliver a certain traction force, the actuator draws power from

the energy storage unit. Let Pw(v, F, γ) denote the drawn power, which in
the case of a combustion engine is a chemical, fossil fuel power, and in the
case of an electric machine, it is an electric power. Explicit representations of
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the internal power in terms of the kinetic energy (longitudinal velocity) and
traction force will be provided later, in Section 5.

3 Problem Statement
This section formulates the eco-driving OCP, which aims at planning an op-
timal velocity trajectory for the entire route such that the total energy con-
sumption is minimised and the travel time is upper bounded by the target
time given by a logistics planner.

3.1 Performance function
The performance function of the OCP is formulated as∫ sf

0

(
cegPw(v, F, γ)

v(s) + w1a
2(s) + w2j

2(s)
)
ds (B.17)

that incorporates total energy consumption by integrating the internal power
drawn from the storage unit, and the driver’s discomfort via the acceleration
and jerk. Here, ceg denotes the price of energy storage, and w1 and w2 are
penalty factors associated with the acceleration and jerk. The division of the
internal power with speed in (B.17) derives from the time to space transfor-
mation, ∫

Pw(v, F, γ)dt =
∫
Pw(v, F, γ)/v(s)ds.

3.2 Speed limits and travel time
In order to increase feasibility in realistic driving situations, we consider speed
limits that include not only legal, but also dynamic speed limits using available
information about the road and traffic. Surrounding traffic can impose such
dynamic constraints on the vehicle speed due to presence of e.g. traffic lights,
intersections, ramps and junctions. Total speed limits are computed as

vmin(s) = min
{
vlegalmin (s), vfl(s)

}
, (B.18)

vmax(s) = min
{
vlegalmax (s), vdynmax(s)

}
, (B.19)
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Figure 2: Examples of maximum legal and dynamic speed limits together with
minimum allowed speed limit and filtered speed trajectory, vfl. For cal-
culating vfl maximum power (acceleration) capability of the actuator has
been considered.

where vlegalmin and vlegalmax are legal speed limits, vdynmax is maximum dynamic speed
limit, and vfl is a filtered speed that will be discussed later in this section. The
legal and dynamic speed limits can be provided by new modern systems, e.g.
e-horizon technologies [44]. An illustration of the speed limits are shown in
Fig. 2, where the legal speed limits can generally change abruptly for different
segments of the driving road, whereas the maximum dynamic speed limit vary
smoothly in terms of travel distance. To avoid singularity in (B.6), the vehicle
speed is not allowed to drop to zero. However, with the use of variable scaling,
very small speed values are acceptable, and the speed may be rounded to zero
after the optimisation is finished. This could be useful when short duration
traffic stops are to be considered. For longer stops, it could be more convenient
to split the trip into two distinct trips, and optimise each individually [45].
To compute the upper bound on travel time, tf, it is possible to obtain the

velocity profile, vfl(s) ∈ [vmin(s), vmax(s)], as the average driver’s driving cycle,
by filtering cruising speed, vcru ∈ [vmin(s), vmax(s)]. The logistics planner may
send vcru via a telemetry system, or it can be set manually by the driver. The
rated power of the actuator and road/traffic limits on speed are taken into
consideration in the cruise speed filtering [26], [27], [37]. When deriving vfl,
it is assumed that the vehicle will try to maintain vcru unless instantaneous
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dynamic speed limit and/or actuator limit are reached.

vfl(s) = min
{
vdynmax, vcru,

∫ s

0

amax(vfl)
vfl(σ) dσ

}
(B.20)

By computing maximum arrival time as

tf =
∫ sf

0

ds
vfl(s) , (B.21)

where sf is the final position at the end of the route, a constraint can be
imposed

t(sf) ≤ tf (B.22)

that requires finishing the route in the same time or sooner than what would
be required when driving with vfl.

3.3 MPC for minimising energy consumption

The problem (B.17) is optimised in an MPC framework with a prediction
horizon of length sH, aiming at anticipating future events and reacting to
disturbances. The main goal of this paper is to develop a computationally
efficient algorithm that allows horizons that cover the entire route. However,
as computational resources are always limited, we impose an upper bound,
sHmax, hopefully in the range of hundreds of kilometres. The optimisation
problem can then be solved in a moving horizon MPC (MHMPC) framework if
sHmax < sf, or in a shrinking horizon MPC (SHMPC) framework if sHmax ≥ sf.
The optimisation variables are predicted at distance samples s ∈ [ζ, ζ + sH],
given information of the actual vehicle’s states at ζ. Thus, the actual horizon
length can be computed as

sH(ζ) = min{sHmax, sf − ζ}. (B.23)
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The problem can now be summarised as follows

min
j,Fbrk,γ

∫ ζ+sH(ζ)

ζ

(
cegPw(E,F, γ)√

2E(s|ζ)
m

+ w1a
2(s|ζ) + w2j

2(s|ζ)
)
ds,

(B.24a)

subject to:

t′(s|ζ) =
√ m

2E(s|ζ) (B.24b)

E′(s|ζ) = ma(s|ζ) (B.24c)
a′(s|ζ) = j(s|ζ) (B.24d)
F (s|ζ) = ma(s|ζ) + caE(s|ζ)− Fbrk(s|ζ) + Fα(s) (B.24e)

E(s|ζ) ∈ m
2 [v2

min(s|ζ), v2
max(s|ζ)] (B.24f)

a(s|ζ) ∈ [amin(E), amax(E)] (B.24g)
j(s|ζ) ∈ [j, j] (B.24h)
Fbrk(s|ζ) ∈ [Fbrk, 0] (B.24i)
t(ζ|ζ) = t0(ζ), E(ζ|ζ) = E0(ζ), a(ζ|ζ) = a0(ζ) (B.24j)
t(ζ + sH|ζ) ≤ tH(ζ) (B.24k)
γ(s|ζ) ∈ {1, 2, . . . ,γmax} (B.24l)

where j is the minimum and j is the maximum allowed jerk within a comfort
zone, t0, E0 and a0 are the values of the system states at instance ζ, and
γmax is the highest gear. The constraints (B.24b)-(B.24l) are enforced for all
s ∈ [ζ, ζ + sH(ζ)] and the problem is re-evaluated for all ζ ∈ [0, sf]. The max-
imum allowed travel time over the prediction horizon, tH, is computed as in
(B.21) for the distance sH. The problem (B.24) is a non-convex, mixed-integer
and dynamic nonlinear program, where t, E and a are real-valued state vari-
ables, j and Fbrk are real-valued control inputs, γ is an integer control input
and F is an output variable. Although from a control point of view j is the
control signal, in practice, a is applied to the vehicle. When solving such
computationally complex problem online, reducing the computational time is
the major bottleneck, since the online solution must be at least within the up-
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date frequency of real-time execution. Thus, we propose several reformulation
steps in the following that break down the problem (B.24) into optimisation
sub problems, which is solved with significantly reduced computational com-
plexity compared to the original problem.
For the sake of simplicity, the dependence on ζ will not be shown in most

following parts of the paper and the method is explained via a single MPC
update, e.g. the one with ζ = 0.

4 Computationally Efficient Algorithm
This section proposes three reformulation steps for reducing computational
complexity of the problem (B.24). These steps are: 1) formulating a bi-
level optimisation program that allows decoupling the integer variable, i.e.
gear, from a nonlinear optimisation program (NLP); 2) adjoining nonlinear
dynamics of travel time to the objective using necessary PMP conditions for
optimality; 3) Removing a loop on finding optimal time costate and applying
RTI SQP scheme.

4.1 Bi-level programming and gear optimisation
The mixed-integer problem (B.24) can be reformulated as a bi-level program:

min
j,Fbrk

∫ sH

0

(
cegPw(E,F, γ∗)√

2E(s)
m

+ w1a
2(s) + w2j

2(s)
)
ds (B.25a)

subject to:(B.24b)-(B.24k)
γ∗(s) = arg min

γ
Pw(E,F, γ) (B.25b)

subject to: γ(s) ∈ {1, 2, ...,γmax} (B.25c)
F (s) ∈ [Fγmin(E), Fγmax(E)] (B.25d)

where the gear optimisation resides only in the bottom level program, while
all the system dynamics reside in the top level program. Static modelling
of the actuator and transmission system allows separating the bottom level
and solving it offline, where v (or E) and F are regarded as parameters, and
optimal gear is computed as a function of these parameters. To this end, the
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bottom level can be solved as

f∗γ (E,F ) = arg min
γ
Pw(E,F, γ) (B.26a)

subject to: γ ∈ {1, 2, ...,γmax} (B.26b)
F ∈ F(E) = [Fγmin(E), Fγmax(E)] (B.26c)

E ∈ E(γ) = m[ω2
idle,ω

2
max]R2(γ)

2 (B.26d)

where f∗γ (E,F ) is a two-dimensional function describing the optimal gear
choices for all traction force versus speed (kinetic energy) combinations, E
and F are the feasible sets for kinetic energy and traction force respectively,
and ωidle and ωmax are rotational speed limits. By replacing the optimal gear
with the parametric function, the internal power can be written as

Pγ(E,F ) = Pw(E,F, f∗γ (E,F )), (B.27)

indicating power consumption when gear is optimally chosen. Note that
for CV case study the offline-optimised gear selection algorithm is extended,
which covers the negative force area originating from negative additional force.
More details will be given later in Section 5.

4.2 Necessary PMP conditions for optimality
In the second step of the algorithm, the problem (B.25) is reformulated, which
is facilitated by the necessary PMP conditions for optimality. The Hamilto-
nian is defined as

H(·) = cegPγ(E,F )
√ m

2E(s) + w1a
2(s) + w2j

2(s)+

+ λt(s)
√ m

2E(s) + λE(s)ma(s) + λa(s)j(s).
(B.28)

where the symbol · is a compact notation for a function of multiple variables.
Here, λt, λE and λa denote the costates of travel time, kinetic energy and
acceleration, respectively. It can be observed that the Hamiltonian is not an
explicit function of travel time, thus the optimal time costate, λ∗t , i.e. the
value for λt that satisfies the maximum travel time constraint (B.24k), is a
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constant value. Hence

λ′
∗
t (s) = −

(
∂H(·)
∂t

)∗
= 0. (B.29)

Furthermore, the travel time is a strictly monotonically increasing function
that may activate constraint (B.24k) only at the final instance. Consequently,
if λ∗t is known, it will be possible to remove the nonlinear constraint on travel
time (B.25) and adjoin the product of λ∗t (s) and the nonlinear function

√
m

2E(s)

to the objective function. This implies that the dynamic OCP can yet again
be formulated as a bi-level program

min
λt

∫ sH

0

(
cegPγ(E∗(λt, s), F ∗(λt, s)) + λt√

2E∗(λt,s)
m

+ w1a
∗2(λt, s) + w2j

∗2(λt, s)
)
ds

(B.30a)

subject to:

t′
∗(λt, s) =

√ m
2E∗(λt, s)

(B.30b)

E′
∗(λt, s) = ma∗(λt, s) (B.30c)

a′
∗(λt, s) = j∗(λt, s) (B.30d)

t∗(λt, 0) = t0, t∗(λt, sH) ≤ tH (B.30e)
[j∗(λt, s), F ∗brk(λt, s), F ∗(λt, s)] = arg min

j,Fbrk∫ sH

0

(
cegPγ(E,F ) + λt√

2E(s)
m

+ w1a
2(s) + w2j

2(s)
)
ds

(B.30f)

subject to: (B.24c)-(B.24i), E(0) = E0, a(0) = a0

where all constraints involving travel time have been moved to the top level,
while the bottom level, (B.30f), generates optimal control trajectories param-
eterised in λt. Similarly as before, the goal is to separate the two optimisation
levels. One way to do this is by trying different values for λt and then using
search methods, e.g. Newton or bisection, to find λ∗t that minimises the top
level’s cost.
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NLP using SQP, and to find λ∗.

Figure 3: Flowchart of the proposed algorithm to solve NLP in MPC framework.

By assuming that problem (B.30f) is an NLP that can be solved with SQP,
the procedure for solving the mixed-integer problem (B.24) will consist of
three nested loops as illustrated in Fig. 3a. The outermost loop updates the
MPC horizon, the middle loop finds the optimal value for λt and the innermost
loop sequentially solves a QP in order to find the solution of problem (B.30f)
for a given value of λt. The procedure is still computationally inefficient, as
it requires solving multiple QPs for given multiple λt values in each MPC
update. Our goal is to eliminate the inner most loops and for a given λt, solve
only a single QP in each MPC update, as illustrated in Fig 3b.
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4.3 Updating the time costate over the MPC loop
To eliminate the loop on finding λ∗t , it is considered that the optimal energy
consumption corresponds in general to driving slow, so it can be assumed
that the vehicle will use the entire travel time, i.e. t∗(λt, sH) ≈ tH. Hence,
the objective of the top level program in (B.30) is transformed to minimising
maximum travel time difference, as

min
λt
||t∗(λt, sH|ζ)− tH(ζ)|| (B.31)

where || · || may indicate any norm.
For the case that the problem (B.30) is solved in SHMPC framework, the

final time instance and the final point of the horizon are fixed regardless of
the update instance ζ, i.e. tH(ζ) = tf and ζ + sH(ζ) = sf, ∀ζ.
Lemma 1: If predicted disturbances do not change and there is no miss-

match between the control and plant model, then for an SHMPC implementa-
tion of problem (B.30) and for a given λt, it holds,

t∗(λt, sH|ζ) = t∗(λt, sH|ζ + δζ), ∀δζ ∈ [0, sf − ζ], (B.32)

i.e. the optimal travel time at the end of the horizon does not change for
different SHMPC updates.

Proof. The proof follows directly from Bellman’s principle of optimality, i.e.
any tail of an optimal trajectory is an optimal solution as well [8].

For an MHMPC, Lemma 1 does not hold even if disturbances are predicted
exactly and there is no model miss-match. This is because new information
is added as the prediction horizon moves forward at each MPC update. How-
ever, if the prediction horizon is much longer than the interval between two
consecutive updates, then for different ζ, it can be assumed

t∗(λt, sH|ζ)− tH(ζ) ≈ t∗(λt, sH|ζ+)− tH(ζ+) (B.33)

where ζ+ is the instance of the MHMPC update following that at ζ. Fig. 4
demonstrates the overlapped curves of the final time difference versus the time
costate for a CV and an EV, where ζ = 0 m and ζ+ = 300 m. Thus, it is also
possible for an MHMPC to update the time costate over the MPC loop.
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Figure 4: Difference between calculated time at the end of horizon and the desired
maximum time for varying time costate using MHMPC scheme, where
ζ = 0 m and ζ+ = 300 m. Overlap of the curves for different ζ values
shows that λt can be evaluated only once per each MPC update, rather
than waiting for a full convergence.

Problem (B.31) is then solved by a derivative free Newton method, where
the Newton iterates are spread across the MPC updates without waiting for a
full convergence, i.e. by performing one Netwon step per update. A flowchart
of the proposed algorithm is depicted in Fig. 3b, while more details on the
Newton method is provided in Appendix 1.

4.4 Real-time iterations SQP over the MPC loop
For a given λt it remains to solve problem (B.30f). It will be shown later, in
Section 5, that for the case of conventional and electric vehicle powertrians,
problem (B.30f) is indeed a smooth NLP that can be solved by SQP. However,
instead of sequentially solving a QP until linearization error is equal to zero,
it is computationally efficient to spread the SQP over MPC updates, which
is provided by RTI. The idea is to solve only a single QP per MPC update,
without waiting for a full convergence. The obtained solution is possibly sub-
optimal, but due to the contractivity of the RTI scheme as shown in [46], the
real-time iterates quickly approach the optimal solution during the runtime of
the process. Alternative algorithm for real-time solving of the NLPs has been

B20



5 Application to CV and EV

presented in [47].
As the SQP is stopped prematurely, it is important to show that the ob-

tained solution by solving a single QP is feasible in the original NLP. Fea-
sibility can be guaranteed if the domain of the QP, obtained by linearizing
the nonlinear constraints in problem (B.30f), is an inner approximation of the
feasible set of the NLP (B.30f). This is indeed the case for conventional and
electric vehicle powertrians, which will be shown in Section 5.

5 Application to CV and EV
This section proposes several steps that show how the computationally efficient
algorithm proposed in Section 4 is applied to a CV and an EV.

5.1 Conventional vehicle
A conventional powertrain includes an ICE to transform chemical fuel energy
to mechanical propulsion energy through a multiple-gear transmission.

A static fuel mass rate map for a given pair of rotational speed and engine
torque is obtained by gathering steady-state data from a dynamic simulation
model of a diesel engine, presented in [48]. Subsequently, efficiency map and
torque limits are derived, see Fig. 5. According to the efficiency isolines, it is
desirable to avoid operating the ICE at low speed and torque, where efficiency
is low.

Fig. 5 also illustrates a negative torque limit for an additional braking sys-
tem, including a retarder, a compression release engine brake and/or an ex-
haust pressure governor. The additional braking is preferred over the service
braking in order to reduce wear and avoid lock up of the braking pads. Using
(B.10), the negative torque is translated to negative force on the wheel side
as

Fbrk = FA + FS, (B.34)

where FS and FA are forces by the service brakes and the additional braking
system. The minimum negative additional force limit for a given kinetic energy
is

FAmin(E) = min
γ
FγA(E, γ) (B.35)
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Figure 5: Steady-state efficiency map and maximum torque limit of the ICE. The
negative torque limit illustrates the braking capability of the additional
braking system that includes a retarder, an exhaust pressure governor
and/or a compression release engine brake.

where FγA denotes the minimum negative additional force for each gear. The
lower bound on the traction force is zero, i.e. Fγmin(E) = 0.
The two-dimensional fuel mass rate map of the ICE translates to a three-

dimensional map on the wheels side. This three-dimensional map, denoted
as µw(E,F, γ), can be expressed in terms of kinetic energy, traction force
and gear using (B.5) and (B.10). Subsequently, a map, which represents the
parametric internal power function, Pw(E,F, γ), can be derived as

Pw(E,F, γ) = µw(E,F, γ)Qlhv (B.36)

where Qlhv is diesel heating value.
The bi-level program (B.25), can be extended for a CV case study, including

the negative force region, which originates from the summation of negative
additional force and service braking force, as

min
j,Fbrk

∫ sH

0

(
cegPw(E,F, γ∗)√

2E(s)
m

+ w1a
2(s) + w2j

2(s)
)
ds (B.37a)

subject to: (B.24b)-(B.24k)
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γ∗(s) =


arg minγ Pw(E,F, γ), if F + Fbrk ≥ 0.
arg maxγ FγA(E, γ), if FAmin(E) ≤ F + Fbrk < 0
arg minγ FγA(E, γ), if Fbrk ≤ F + Fbrk < FAmin(E)

(B.37b)
subject to: γ(s) ∈ {1, 2, ...,γmax} (B.37c)

F (s) + Fbrk(s) ∈ [Fbrk, Fγmax(E)] (B.37d)

Note that the traction force, F , and the total braking force, Fbrk, cannot have
non-zero values simultaneously, i.e. it is not the case that F > 0 and Fbrk < 0
at the same time.
To approach the offline-optimal gear selection problem (B.37), it is possible

to grid the feasible sets of kinetic energy and total force, i.e. F + Fbrk. To
this end, in the positive force region, for any feasible combination of longi-
tudinal velocity (kinetic energy) and traction force, the optimal gear is the
one that minimises energy consumption. In the negative force region, if the
total demanded force is higher than the minimum negative additional force,
the highest possible gear is selected, which avoids unnecessary down-shifting.
However, if total demanded force is lower than the minimum negative addi-
tional force, the lowest possible gear is selected, since it provides the most
possible negative additional force, see Fig. 6. The remaining demanded neg-
ative force is covered by the service brakes.
The optimal brake specific fuel consumption (BSFC) map and maximum

traction force curve are depicted in Fig. 7. The optimal BSFC refers to the
minimum burnt fuel, which is obtained by optimising the internal power in
(B.27).

The internal power drawn from fuel using (B.27), is approximated by the
following expression

Pγ(v, F ) ≈ pe0 + pe1v3(s) + pe2v(s)F (s) (B.38)

with pe0,pe1,pe2 ≥ 0. During a single driving mission, the parameters pe0,pe1
and pe2 are assumed constant, otherwise we will need to apply robust control
methods to tackle possible uncertainties.
As illustrated in Fig. 8, for the studied engine model it is sufficient to

use a first order term in F , although it is possible to include higher order
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Figure 6: Offline-optimised gear map together with maximum traction force and
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timal selected gear is the one that minimises fuel consumption, which
for the studied powertrain coincides with the highest feasible gear. In
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negative additional force, the lowest possible gear is selected, since it
provides the most possible negative additional force. The remaining de-
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unnecessary down-shifting, the highest possible gear is selected.
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The approximate limit is an inner approximation for the longitudinal
velocities above 8 km/h.

terms as well, without significant increase in computational effort. Similar
expressions for model abstraction of fuel mass rate are exploited in [26] and
several references therein. Using (B.5) and (B.38), the stage cost (B.30f)
transforms into

VCV(·, λt) ≈
ceg(pe0 + λ∗t )

√
m√

2E(s)
+ 2pe1

m E(s)+

+ pe2F (s) + w1a
2(s) + w2j

2(s)
(B.39)

which is a convex second order cone function in terms of E, a, j, F and Fbrk.
The maximum traction force limit, see Fig. 7, is approximated by

Fγmax(E) ≈ min
{
F , y0 + y1

√
m√

2E(s)

}
(B.40)

where F is the maximum constant traction force, and y1 resembles the max-
imum engine power, as it can be alternatively written as a division of power
with vehicle speed. The coefficients y0 and y1 are obtained by solving a linear
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Figure 8: Original and approximated internal power drawn from fuel for a given
longitudinal velocity and traction force.

program, see Appendix 2 for details. The approximated force limit (B.40)
is an inner approximation of the original force for speeds above 8 km/h, see
Fig. 7, which is acceptable for the highway scenarios investigated in this paper.
The problem (B.30) with the stage cost (B.39) is non-convex nonlinear

program, because of the nonlinear term y1/
√
E(s) in (B.40). Due to the sign

of y1 ≥ 0, this term is a convex function (a convex problem, though, requires
a concave function here). It is possible to transform (B.30) to a convex second
order cone program (SOCP) by linearizing the maximum force limit in (B.40).
Note that linearizing any convex function about any trajectory, is always
an inner approximation. Since the inner approximation is conservative, it is
guaranteed that despite possibly being sub-optimal, all obtained solutions (if
such solutions exist) are also feasible in the original non-convex problem. For
more details, see Appendix 3.
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Figure 9: Steady-state efficiency map of EM together with shaft torque limits.

5.2 Fully electric vehicle

In the fully electric powertrain, the EM converts electricity to mechanical
power in motoring mode, whereas it converts mechanical power to electricity
in generating mode of operation. In the generating mode, the energy is recu-
perated and stored in the electric battery, when decreasing kinetic energy by
braking or decreasing potential energy while rolling downhill. Note that the
electric powertrain is assumed to have a single-gear transmission system.
For a given pair of rotational speed and torque, EM efficiency map is shown

in Fig. 9, using static internal electric battery power. In Fig. 9, positive and
negative torque regions correspond to the motoring and the generating modes
of operation, respectively.

It is assumed that a single-gear transmission system conveys the power
from the battery to the wheels. Therefore, there is no need for offline gear
optimisation, i.e. Pγ(v, F ) = Pw(v, F, γ).
The internal power drawn from the electric battery is approximated by the

following expression

Pγ(v, F ) ≈ pm0 + pm1v
3(s) + pm2v(s)F (s)+

+ pm3v(s)F 2(s)
(B.41)

with pm0,pm1,pm2,pm3 ≥ 0. Fig. 10 demonstrates that the approximated
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model describes well the original internal battery power.
Using (B.5), (B.9) and (B.41), the stage cost (B.30f) transforms into

VEV(·, λt) ≈
ceg(pm0 + λ∗t )

√
m√

2E(s)
+ 2pm1

m E(s) + pm2F (s)+

+ pm2F
2(s) + w1a

2(s) + w2j
2(s).

(B.42)

The traction force limits, see Fig. 11, are approximated by

Fγmin(E) ≈ max
{
F , x0 + x1

√
m√

2E(s)

}
(B.43)

Fγmax(E) ≈ min
{
F , y0 + y1

√
m√

2E(s)

}
(B.44)

where F and F are constant traction force limits. The coefficients x0 and
x1, similar to the y0 and y1, are the solution of the linear program given in
Appendix 2.
According to the signs of x1 ≤ 0 and y1 ≥ 0, the term x1/

√
E(s) is a concave

function and y1/
√
E(s) is a convex function. Thus, the area between the two

force limits (B.43) and (B.44) include a concave force set, which leads the prob-
lem (B.30) with the stage cost (B.42) to be a non-convex nonlinear program.
By linearizing the force limits, the problem (B.30) with the stage cost (B.42)
can be formulated as a convex SOCP, see Appendix 3. Note that linearizing
any convex function about any trajectory, is always an inner approximation,
and linearizing any concave function about any trajectory, results in an outer
approximation. Furthermore, the approximations are conservative, therefore,
all obtained solutions are inside the feasible force area, see Fig. 11, and also
feasible in the original non-convex problem.

6 Results
In this paper, simulations are carried out for the CV and the EV over the
118 km long road from Södertälje to Norrköping in Sweden, which is the same
route as considered in [49]. The problems (B.66) and (B.70) are discretized
using the forward Euler method. The problems are solved in an SHMPC
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Table 1: Simulation parameters
Gravitational acceleration g = 9.81 m/s2

Air density ρ = 1.29 kg/m3

Vehicle frontal area Af = 10 m2

Rolling resistance coefficient cr = 0.006
Vehicle mass m = 40 000 kg
Aerodynamic drag coefficient cd = 0.5
Wheel radius rw = 0.50 m
Final gear ratio rfg = 3
Cruising set speed vcru = 80 km/h
Route length 118 km
Number of samples N = 500
Fuel cost cfeg = 1.51 EUR/litre
Electricity cost ceeg = 0.18 EUR/kWh

framework, i.e. sHmax ≥ sf, where travel time at the final position (end of the
route) is upper bounded by tf, using (B.21). The simulation parameters are
given in Table 1.
Within the simulations we investigate: (1) sensitivity analysis to evaluate

the impact of sampling interval on the solution of the proposed algorithm; (2)
how optimisation cost and optimal speed profile change for different discomfort
penalties; (3) convergence properties of the algorithm; (4) computation time
as a function of the number of samples in the horizon.

6.1 Sampling interval impact on total cost
To investigate the sampling interval’s impact on the total cost (B.25a), we
calculate normalised relative cost error for varying number of samples, as

relerror = costNtot − cost1200
tot

cost1200
tot

, (B.45)

for N ∈ [200, 1200] samples, where costNtot and cost1200
tot are the total cost

calculated for a sampling number of N and 1200, respectively. Note that the
obtained total cost value for the finest mesh, i.e. with N = 1200, is the most
accurate among the investigated meshes. It is observed in Fig. 12 that the
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Figure 12: Normalised relative error of calculated total cost with varying number
of samples. For number of samples equal to or greater than 500, the
normalised relative cost error is less than 0.5 %.

normalised relative cost error is less than 0.5 % for number of samples equal
to or greater than 500. Thus, in the rest of the investigations we choose the
number of samples equal to 500, i.e. the sampling interval is kept at 238 m as
the finer mesh for most of the simulations, unless stated otherwise.

6.2 Energy consumption vs. drivability
To study the cost components, i.e. energy cost and the cost due to penalising
discomfort, we compare three case studies: Casefl corresponds to a case with
the filtered speed, vfl, which corresponds to the average driver’s driving cycle.
For this case, the stage costs, (B.66) and (B.70) are calculated using (B.5),
(B.7) and (B.8). In Case 1, i.e. performance drive, the jerk penalty term in
(B.66) and (B.70) is kept to zero; and in Case 2, i.e. comfortable drive, non-
zero jerk penalty factor is used in (B.66) and (B.70). As an index to measure
drivability, the root mean square (RMS) value of jerk

jRMS =

√
1
sf

∫ sf

0
j2(s)ds (B.46)

is used. Note that we have observed the smooth speed profile could be achieved
by only penalising jerk, thus the penalty coefficient on the acceleration, w1,
is always kept to be zero for all three cases.
There is a trade-off between the energy cost and comfort, i.e. lower values of
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Figure 13: Energy cost investigation for different jerk penalty factors. For the large
penalty factors, RMS jerk is saturated.

RMS jerk yield higher energy cost, see Fig. 1.13(a) and Fig. 1.13(b) for such
trade-off for the CV and the EV respectively. Thus, vehicle manufacturers
have wide range of choice to customise the vehicle’s performance for a desired
energy use and comfort. Note that RMS jerk saturates for large jerk penalty
factors. Hereafter, the jerk penalty term in Case 2 is selected in a way that
the RMS jerk is equal to 0.0027 m/s3 for the CV and the EV.
Optimal longitudinal velocity, acceleration and jerk profiles of Case 1 and

Case 2 for the CV and the EV are demonstrated in Fig. 14. The velocity
profiles without discomfort penalty, i.e. Case 1, are saw-tooth shaped and
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60 65 70 75 80 85 90

Longitudinal velocity [km/h]

-15

-5

5

15

T
ra

ct
io

n
 f

o
rc

e 
[k

N
]

Traction force [kN]

Service braking force [kN]

(b) Optimal force-speed points of the EV.

Figure 15: Optimal longitudinal forces vs. vehicle speed for Case 2, i.e. when jerk
is penalised.

leads to more aggressive way of driving, however, the latter case provides
smoother and more comfortable driving, see Fig. 1.14(a) and Fig. 1.14(b).
Note that in addition to the RMS jerk, the RMS acceleration is also reduced
in Case 2 compared to Case 1 for the CV and the EV, whereas the acceleration
is not penalised in either cases, see Fig. 1.14(c), Fig. 1.14(d), 1.14(e) and
Fig. 1.14(f).
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Figure 16: Optimal gear profiles of CV for Case 2, i.e. which corresponds to com-
fortable drive. The most frequent selected gear is γ = 14.

Optimal traction and braking force points for the Case 2, i.e. comfortable
drive, of CV and EV are shown in Fig. 15. Also, according to the optimal gear
map in Fig. 6, for a pair of total force and longitudinal velocity, the optimal
gear is chosen. The optimised gear trajectory and distribution are shown in
Fig. 16, where the most frequently selected gear is γ = 14. We have observed
similar results for Case 1 as well.
The cost results of the whole driving mission and their corresponding RMS

jerk values for all three case studies of the CV and the EV are given in Table
2.

For the CV, the most fuel-efficient case is Case 1. There is a benefit of
11.60 % to optimize the velocity profile compared to the Casefl, whereas the
discomfort of the performance drive is accepted. Furthermore, the results
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Table 2: Simulation results, energy consumption vs. drivability
CV

Variable Casefl Case 1 Case 2
Fuel cost [EUR] 65.33 59.72 60.50

Drivability cost [EUR] 2.23 0 1.71
Total cost [EUR] 67.56 59.72 62.21
Improvement [%] - 11.60 7.92
jRMS [m/s3] 0.0026 0.0062 0.0027
||Fbrk|| [kN] 49.46 35.27 34.07

EV
Variable Casefl Case 1 Case 2

Electricity cost [EUR] 24.55 24.47 24.52
Drivability cost [EUR] 1.68 0 0.56

Total cost [EUR] 26.23 24.47 24.69
Improvement [%] - 6.71 5.87
jRMS [m/s3] 0.0038 0.0108 0.0027

||Fbrk + min(F, 0)|| [kN] 49.15 34.25 40.94

show 7.92 % reduction in total cost of Case 2 compared to the Casefl, despite
having 1.30% increase in fuel consumption compared to Case 1. As it has
been expected, the proposed algorithm minimises the braking at the pads, i.e.
the braking in Case 1 and Case 2 is significantly reduced compared to Casefl.
For the EV, Case 1 provides 6.71% reduction of the total energy cost com-

pared to Casefl and the total cost benefit of Case 2 is 5.87% compared to
Casefl. The comfortable drive, i.e. Case 2, leads to 0.20% increase in electric-
ity usage compared to the performance drive, i.e. Case 1. The RMS jerk in
Case 2 is reduced by 29% compared to Casefl, i.e. the RMS jerk is reduced
from 0.0038 m/s3 to 0.0027 m/s3.

6.3 Algorithm convergence
The convergence curve of the time costate versus shrinking prediction horizon
length is shown in Fig. 17. According to the algorithm given in Appendix 1, the
time costate is updated once per each MPC stage rather than waiting for the
full costate convergence. It can be observed that after few initial MPC stages,
the time costate converges to its optimum value. The disturbance rejection
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Figure 17: Travel time costate vs. prediction horizon length. The costate converges
after few MPC updates, even after disturbance is introduced (at horizon
length of 85 km) by suddenly increasing maximum travel time, e.g. due
to traffic congestion.

properties of the algorithm are verified in Fig. 17. At the prediction horizon of
85 km, maximum travel time changes due to e.g. traffic congestion. It can be
seen in Fig. 17 that the travel time costate converges to its new value, which
leads the vehicle to arrive to the final position within the updated maximum
travel time.

The convergence profile of the SQP algorithm is depicted in Fig. 18, where
the algorithm converges to an optimum obtained by solving (B.30) in 5 iter-
ations for both CV and EV case studies. Note that the cost value drops to
within 0.4% from the optimum value in the first iteration. We exploit this
behaviour through RTI in SHMPC framework, where only one QP is solved
in each MPC update rather than waiting for the full SQP convergence, since
the cost value in the first iteration is very close to the local optimum. Note
that the cost value in iteration 0 is calculated when the vehicle is driving with
the initial estimated trajectory, vfl.

6.4 Computation time
The computation time profile for various sampling intervals is depicted in
Fig. 19, where each QP in the SQP scheme is solved using HPIPM, known as
a high-performance tool for solving QPs [50]. Here, the entire route, 118 km,
is considered as the prediction horizon. The optimisation was run on a laptop
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Figure 18: SQP convergence profile. The cost value drops to within 0.4% from
optimum value in the first iteration. In iteration 0 the cost value is cal-
culated when the vehicle is driving with the initial estimated trajectory,
vfl.

PC with 6600K CPU at 2.81GHz and 16GB RAM. The trend is that as the
number of samples increases, the computation time also increases. For real-
time applications, it is preferable to have small sampling interval, however
the information on the topography should not be lost. In subsections 6.2 and
6.3, the number of samples is kept to 500 and the corresponding computation
time for solving the problems (B.66) and (B.70) is less than 20ms, which is
considerably low value for a horizon of 118 km with the sampling interval of
238 m.

7 Conclusion
In this paper a computationally efficient algorithm is proposed for eco-driving
over long look-ahead horizons. To this end, a bi-level program is formulated,
where integer variable, i.e. gear, is decoupled from the real-valued variables.
In the bottom level, the optimal gear map is derived in a way that the total
energy consumption is minimised. In the top level, the remaining online im-
plementable NLP is formulated. To provide more comfortable way of driving,
acceleration and jerk of the vehicle are penalised in the top level’s objective.
In the NLP, the dynamics on travel time is adjoined to the objective function,
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Figure 19: Computation time vs. prediction horizon length using HPIPM for var-
ious resolutions of the prediction horizon. The computation time in-
creases linearly with the number of samples.

using the necessary PMP conditions for optimality, since: 1) the Hamilto-
nian is not an explicit function of the travel time; 2) the travel time is strictly
monotonically increasing function; and 3) the constraint on final time may ac-
tivate at the final instance. The NLP is solved by applying RIT SQP scheme
in MPC framework, i.e. the time costate and the linearization trajectory are
updated once per each MPC update. The proposed algorithm is applied to a
CV and an EV using SHMPC framework.
According to the simulation results, there is a trade-off between cost and

comfort, i.e. driving comfortably is more expensive compared to the perfor-
mance drive. The energy increase because of penalising the driver’s discomfort
is 1.30% and 0.20% for the CV and EV, respectively, where the RMS jerk is
kept to 0.0027 m/s3. Also, by using the proposed algorithm, the total cost is
reduced up to 11.60% and 7.92% for the CV and EV, respectively, compared
to the average driver’s driving cycle. The computation time for the hori-
zon of 118 km is 20 ms, the sampling interval is equal to 238 m. For on-line
applications, the small computation time can enhance the optimality, since
the suggested optimal state of vehicle can be updated more frequently. Also,
in off-line analysis the small computation time can be applied to multi-path
problems, where the optimal path of the driving vehicle in terms of energy
consumption can be obtained within a small amount of time. The presented
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algorithm in this paper can also be applied to HEVs as well, where the battery
discharge trajectory is generated by the eco-driving supervisor and delivered
to lower control layers to charge depleting or charge sustaining operation.

1 Newton method for finding optimal time costate

In this paper, a modified Newton method is applied to find the λ∗t . Let

f(λt|ζ) = t∗(λt, sH|ζ)− tH(ζ). (B.47)

The rule for updating λt is

λt(ζ+) = λt(ζ)− f(λt|ζ)
f̃ ′(λt|ζ)

(B.48)

with

f̃
′
(λt|ζ) = min

λt

{
f
′
(λt|ζ), f

′

max

}
, (B.49)

f
′
(λt|ζ) = f(λt|ζ)− f(λt|ζ+)

λt(ζ)− λt(ζ+) , (B.50)

f
′

max = fmax − fmin

λmin
t − λmax

t
(B.51)

where λmin
t = 0EUR/s is the minimum and λmax

t is the maximum time costate.
Also, fmin and fmax are

fmin = t∗(λmax
t , sH|ζ)− tH(ζ), (B.52)

fmax = t∗(λmin
t , sH|ζ)− tH(ζ). (B.53)

To speed up the convergence to λ∗t in (B.48), it is possible to warm start the
algorithm by initialising λt at two consecutive instances ζ = 0 and ζ = 0+, as

λt(0) = λmin
t − fmax

f ′max
(B.54)

λt(0+) = λt(0)− f(λt|0)
f ′max

. (B.55)
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where λt(0) is simply the intersection point of f(λt|0) = 0 with a line con-
necting the two points (λmin

t , fmax) and (λmax
t , fmin).

2 Inner approximation of traction force limits

To approximate the force limits as inner approximations of the original non-
linear and non-smooth limits, a linear program is solved as:

J = min
x

(
fTx

)
subject to
Ax ≤ b (B.56)

such that the area between actual force limits and their approximations is
minimised. Therefore, the area between the approximated force limit and the
line F = 0 is maximised. To this end, for the minimum force limit

J = min
x

∫ vmax

v0

(x0 + x1

v
)dv (B.57)

and for the maximum force limit

J = min
x

∫ vmax

v0

−(y0 + y1
v

)dv. (B.58)

Thus,

A =
[
1 1

v

]
, (B.59)

for the minimum force limit, f, b, x are defined as

f = −
[

vmax − v0
ln(vmax)− ln(v0)

]
, b = Fγmin(v), x =

[
x0
x1

]
(B.60)

and for the maximum force limit as

f =
[

vmax − v0
ln(vmax)− ln(v0)

]
, b = Fγmax(v), x =

[
y0
y1

]
. (B.61)
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The vehicle speed, v, is allowed to vary between two limits

v ∈ [v0, vmax]

where for CV v0=8 km/h and for EV v0=55 km/h, and vmax is the maximum
reachable speed by the vehicle. In this formulation, the idea is to minimize
the area between the original force limit and the inner approximation.

3 Full statement of convex optimal energy
consumption program

Here, the full statement of convex optimal energy consumption problem is
given for CV and EV case studies. To this end, the nonlinear term f(E) =
1/
√
E(s) in (B.40) is linearized about a trajectory Ê(s),

f lin(E, Ê) ≈ f(Ê) + df(E)
dE

∣∣∣∣
Ê

(E(s)− Ê(s)). (B.62)

Thus, (B.40) is transformed into

F lin
γmax(E) = min

{
F , y0 + y1

√
m

2 f
lin(E, Ê)

}
(B.63)

and by using (B.16),

alinmax(E) = min
{
a,
F lin
γmax(E)− caE − Fα

m

}
. (B.64)

Also by having F lin
γmin(E) = 0 for the CV case study,

alinmin(E) = max
{
a,
−caE + Fbrk − Fα

m

}
. (B.65)

The convex dynamic optimisation problem for the CV case study is now
formulated as

min
j,Fbrk

∫ sH

0
VCV(·, λt, Ê)ds (B.66a)
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3 Full statement of convex optimal energy consumption program

subject to:
E′(s) = ma(s) (B.66b)
a′(s) = j(s) (B.66c)
F (s) = ma(s) + caE(s)− Fbrk(s) + Fα(s) (B.66d)

E(s) ∈ m
2 [v2

min(s), v2
max(s)] (B.66e)

a(s) ∈ [alinmin(E), alinmax(E)] (B.66f)
j(s) ∈ [j, j] (B.66g)
Fbrk(s) ∈ [Fbrk, 0] (B.66h)
E(0) = E0, a(0) = a0 (B.66i)

After each SQP iteration, which occurs at each distance step forward, the
trajectory about which that the problem is linearized is updated by moving
towards the direction of the current optimal solution, i.e.

Ê(i+1)(k) = Ê(i)(k) + β(E∗(i)(k)− Ê(i)(k)). (B.67)

where β is the step size that regulates the convergence rate.
For the EV case study, (B.43) is transformed into

F lin
γmin(E) = max

{
F , f lin(E, Ê)

}
(B.68)

using the linearized function, f lin(E, Ê). Therefore, by using (B.16)

alinmin(E) = max
{
a,
F lin
γmin(E)− caE − Fα

m

}
. (B.69)

Note that the maximum traction force limit for EV is approximated by
(B.40). Accordingly, the maximum linearized acceleration is calculated by
(B.64).

The convex dynamic optimisation problem for the EV case study is formu-
lated as

min
j,Fbrk

∫ sH

0
VEV(·, λt, Ê)ds (B.70a)

subject to: (B.66b)-(B.66i). (B.70b)

B43



Paper B

Acknowledgment
This work has been financed by the Swedish Energy Agency (project number:
32226312). The authors would also like to acknowledge Martin Sivertsson
from Volvo Cars, Mikael Askerdal from Volvo Truck, and Henrik Svärd and
Karl Redbrandt from Scania for the support and helpful discussions during
the project.

References
[1] I. T. Forum, ITF Transport Outlook 2019. OECD Publishing/ITF, 2019,

p. 200, isbn: 9789282103937.
[2] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Ecological

vehicle control on roads with up-down slopes”, IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 3, pp. 783–794, 2011.

[3] ——, “Model predictive control of vehicles on urban roads for improved
fuel economy”, IEEE Transactions on control systems technology, vol. 21,
no. 3, pp. 831–841, 2012.

[4] M. Vajedi and N. L. Azad, “Ecological adaptive cruise controller for
plug-in hybrid electric vehicles using nonlinear model predictive con-
trol”, IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 1, pp. 113–122, 2015.

[5] Y. Luo, T. Chen, S. Zhang, and K. Li, “Intelligent hybrid electric vehi-
cle acc with coordinated control of tracking ability, fuel economy, and
ride comfort”, IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 16, no. 4, pp. 2303–2308, 2015.

[6] G. Padilla, S. Weiland, and M. Donkers, “A global optimal solution to
the eco-driving problem”, IEEE control systems letters, vol. 2, no. 4,
pp. 599–604, 2018.

[7] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative”,
Energy Policy, vol. 38, no. 2, pp. 762–769, 2010.

[8] R. Bellman, Dynamic Programming. New Jersey: Princeton Univ Pr,
1957.

B44



References

[9] E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen, “Look-ahead con-
trol for heavy trucks to minimize trip time and fuel consumption”, Con-
trol Engineering Practice, vol. 17, no. 2, pp. 245–254, 2009.

[10] E. Hellström, J. Åslund, and L. Nielsen, “Design of an efficient algo-
rithm for fuel-optimal look-ahead control”, Control Engineering Prac-
tice, vol. 18, no. 11, pp. 1318–1327, 2010.

[11] W. Dib, L. Serrao, and A. Sciarretta, “Optimal control to minimize trip
time and energy consumption in electric vehicles”, in 2011 IEEE Vehicle
Power and Propulsion Conference, IEEE, 2011, pp. 1–8.

[12] G. Heppeler, M. Sonntag, U. Wohlhaupter, and O. Sawodny, “Predictive
planning of optimal velocity and state of charge trajectories for hybrid
electric vehicles”, Control Engineering Practice, vol. 61, pp. 229–243,
2016.

[13] H.-G. Wahl, K.-L. Bauer, F. Gauterin, and M. Holzäpfel, “A real-time
capable enhanced dynamic programming approach for predictive op-
timal cruise control in hybrid electric vehicles”, in 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013),
IEEE, 2013, pp. 1662–1667.

[14] L. Bühler, “Fuel-efficient platooning of heavy duty vehicles through
road topography preview information”, Master’s thesis, KTH, Stock-
holm, Sweden, 2013.

[15] P. Themann, A. Zlocki, and L. Eckstein, “Energieeffiziente fahrzeuglängs-
führung durch v2x-kommunikation”, in Fahrerassistenzsysteme und Ef-
fiziente Antriebe, W. Siebenpfeiffer, Ed. Wiesbaden: Springer Fachme-
dien Wiesbaden, 2015, pp. 27–33, isbn: 978-3-658-08161-4.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[17] E. Hellström, J. Åslund, and L. Nielsen, “Management of kinetic and
electric energy in heavy trucks”, SAE International Journal of Engines,
vol. 3, no. 1, pp. 1152–1163, 2010.

[18] T. van Keulen, B. de Jager, D. Foster, and M. Steinbuch, “Velocity
trajectory optimization in hybrid electric trucks”, in American Control
Conference, Marriott Waterfront, Baltimore, MD, USA, 2010, pp. 5074–
5079.

B45



Paper B

[19] T. van Keulen, B. de Jager, and M. Steinbuch, “Optimal trajectories for
vehicles with energy recovery options”, in IFAC World Congress, Milan,
Italy, 2011, pp. 3831–3836.

[20] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes. Interscience
Publishers, 1962.

[21] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints”, SIAM
review, vol. 37, no. 2, pp. 181–218, 1995.

[22] C. R. He, H. Maurer, and G. Orosz, “Fuel consumption optimization of
heavy-duty vehicles with grade, wind, and traffic information”, Journal
of Computational and Nonlinear Dynamics, vol. 11, no. 6, 2016.

[23] M. Held, O. Flärdh, and J. Mårtensson, “Optimal speed control of a
heavy-duty vehicle in urban driving”, IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 4, pp. 1562–1573, 2018.

[24] M. Held, “Fuel-efficient look-ahead control for heavy-duty vehicles with
varying velocity demands”, PhD thesis, KTH Royal Institute of Tech-
nology, 2020.

[25] T. van Keulen, J. Gillot, B. de Jager, and M. Steinbuch, “Solution for
state constrained optimal control problems applied to power split control
for hybrid vehicles”, Automatica, vol. 50, no. 1, pp. 187–192, 2014.

[26] N. Murgovski, B. Egardt, and M. Nilsson, “Cooperative energy man-
agement of automated vehicles”, Control Engineering Practice, vol. 57,
pp. 84–98, 2016.

[27] L. Johannesson, N. Murgovski, E. Jonasson, J. Hellgren, and B. Egardt,
“Predictive energy management of hybrid long-haul trucks”, Control
Engineering Practice, vol. 41, pp. 83–97, 2015.

[28] L. Johannesson, M. Nilsson, and N. Murgovski, “Look-ahead vehicle en-
ergy management with traffic predictions”, in IFAC Workshop on Engine
and Powertrain Control, Simulation and Modeling (E-COSM), vol. 48,
Columbus, Ohio, USA, 2015, pp. 244–251.

[29] M. Hovgard, O. Jonsson, N. Murgovski, M. Sanfridson, and J. Fredriks-
son, “Cooperative energy management of electrified vehicles on hilly
roads”, Control Engineering Practice, vol. 73, pp. 66–78, 2018.

B46



References

[30] S. Uebel, N. Murgovski, C. Tempelhahn, and B. Bäker, “Optimal en-
ergy management and velocity control of hybrid electric vehicles”, IEEE
Transactions on Vehicular Technology, vol. 67, no. 1, pp. 327–337, 2017.

[31] L. Guo, H. Chen, Q. Liu, and B. Gao, “A computationally efficient and
hierarchical control strategy for velocity optimization of on-road vehi-
cles”, IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 49, no. 1, pp. 31–41, 2018.

[32] V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead
control for fuel-efficient and safe heavy-duty vehicle platooning”, IEEE
Transactions on Control Systems Technology, vol. 25, no. 1, pp. 12–28,
2016.

[33] L. Guo, B. Gao, Y. Gao, and H. Chen, “Optimal energy management for
hevs in eco-driving applications using bi-level mpc”, IEEE Transactions
on Intelligent Transportation Systems, vol. 18, no. 8, pp. 2153–2162,
2016.

[34] N. Stroe, S. Olaru, G. Colin, K. Ben-Cherif, and Y. Chamaillard, “A two-
layer predictive control for hybrid electric vehicles energy management”,
IFAC-PapersOnLine, vol. 50, no. 1, pp. 10 058–10 064, 2017.

[35] S. Uebel, N. Murgovski, B. Baker, and J. Sjoberg, “A 2-level mpc for
energy management including velocity control of hybrid electric vehicle”,
IEEE Transactions on Vehicular Technology, 2019.

[36] B. B. Hanson and T. E. Hanson, Systems and methods for multi-mode
unmanned vehicle mission planning and control, US Patent 9,669,904,
Jun. 2017.

[37] A. Hamednia, N. Murgovski, and J. Fredriksson, “Predictive velocity
control in a hilly terrain over a long look-ahead horizon”, IFAC Paper-
sOnLine, vol. 51, no. 31, pp. 485–492, 2018.

[38] M. Diehl, “Real-time optimization for large scale nonlinear processes”,
PhD thesis, University of Heidelberg, 2001.

[39] M. M. Thomas, J. Kardos, and B. Joseph, “Shrinking horizon model
predictive control applied to autoclave curing of composite laminate ma-
terials”, in Proceedings of 1994 American Control Conference-ACC’94,
IEEE, vol. 1, 1994, pp. 505–509.

B47



Paper B

[40] N. Murgovski, X. Hu, L. Johannesson, and B. Egardt, “Filtering driving
cycles for assessment of electrified vehicles”, in Workshop for new energy
vehicle dynamic system and control technology, Beijing, China, 2013.

[41] T. Lipp and S. Boyd, “Minimum-time speed optimization along a fixed
path”, International Journal of Control, vol. 87, no. 6, pp. 1297–1311,
2014.

[42] N. Murgovski, L. Johannesson, X. Hu, B. Egardt, and J. Sjöberg, “Con-
vex relaxations in the optimal control of electrified vehicles”, in Ameri-
can Control Conference, Chicago, USA, 2015.

[43] R. de Castro, M. Tanelli, R. E. Araújo, and S. M. Savaresi, “Minimum-
time path-following for highly redundant electric vehicles”, IEEE Trans-
actions on Control Systems Technology, vol. 24, no. 2, pp. 487–501, 2016.

[44] O. Lindgärde, M. Söderman, A. Tenstam, and L. Feng, “Optimal com-
plete vehicle control for fuel efficiency”, Transportation Research Proce-
dia, vol. 14, pp. 1087–1096, 2016.

[45] A. Hamednia, N. Murgovski, and J. Fredriksson, “Time optimal and
eco-driving mission planning under traffic constraints”, in Intelligent
Transportation Systems (ITSC), Rhodos, Greece, 2020.

[46] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control”, SIAM Journal
on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

[47] T. Ohtsuka, “A continuation/gmres method for fast computation of non-
linear receding horizon control”, Automatica, vol. 40, no. 4, pp. 563–574,
2004.

[48] J. Wahlström and L. Eriksson, “Modelling diesel engines with a variable-
geometry turbocharger and exhaust gas recirculation by optimization
of model parameters for capturing non-linear system dynamics”, Sage
journals, vol. 225, no. 7, pp. 960–986, 2012.

[49] L. Eriksson, A. Larsson, A. Thomasson, and S. C. Ab, “Heavy duty
truck on open road–the aac2016 benchmark”, in IFAC Symposium on
Advances in Automotive Control, 2016.

[50] G. Frison and M. Diehl, “Hpipm: A high-performance quadratic pro-
gramming framework for model predictive control”, arXiv preprint, 2020.

B48


	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Motivation
	1.2 Thesis focus and contributions
	1.3 Thesis outline

	2 Modelling and energy analysis
	2.1 Powertrain modelling
	2.2 Travel time and longitudinal dynamics
	2.3 Vehicle driving mission
	2.4 Vehicle drive impact on energy efficiency

	3 Optimal mission planning
	3.1 Mission planner
	3.2 Logistics planner
	Problem formulation
	Bi-level programming and gear optimisation
	Dynamic nonlinear programming
	Selected results

	3.3 Eco-driving supervisor
	Problem formulation
	Methods for solving the eco-driving problem
	The proposed computationally efficient algorithm
	Selected results


	4 Summary of included papers
	4.1 Paper A
	4.2 Paper B

	5 Conclusion and future work
	5.1 Discussion and conclusion
	5.2 Future work
	Optimal mission planning of HEVs
	Optimal electricity charging coordination of electrified vehicles


	References

	II Papers
	A Logistics planner
	1 Introduction
	2 Vehicle modelling
	2.1 Travel time and longitudinal dynamics
	2.2 Electric machine and transmission system
	2.3 Driving mission

	3 Problem statement
	4 Smooth nonlinear programming
	5 Case study and results
	5.1 Choosing penalty factor for travel time

	6 Conclusion
	1 Initial guess for warm-starting
	References

	B Eco-driving supervisor
	1 Introduction
	2 Physical Modelling
	2.1 Travel time and longitudinal dynamics
	2.2 Vehicle powertrain

	3 Problem Statement
	3.1 Performance function
	3.2 Speed limits and travel time
	3.3 MPC for minimising energy consumption

	4 Computationally Efficient Algorithm
	4.1 Bi-level programming and gear optimisation
	4.2 Necessary PMP conditions for optimality
	4.3 Updating the time costate over the MPC loop
	4.4 Real-time iterations SQP over the MPC loop

	5 Application to CV and EV
	5.1 Conventional vehicle
	5.2 Fully electric vehicle

	6 Results
	6.1 Sampling interval impact on total cost
	6.2 Energy consumption vs. drivability
	6.3 Algorithm convergence
	6.4 Computation time

	7 Conclusion
	1 Newton method for finding optimal time costate
	2 Inner approximation of traction force limits
	3 Full statement of convex optimal energy consumption program
	References



