4,753 research outputs found

    Tethers in space handbook

    Get PDF
    The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended

    The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    Get PDF
    Background: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. Methods: We tested 10 able-bodied participants walking on a treadmill at 1.25 m.s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. Results: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Conclusions: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing

    EXPERIMENTAL VALIDATION OF A DEPLOYMENT MECHANISM FOR TAPE-TETHERED SATELLITES

    Get PDF
    The number of space debris orbiting our Earth has been continuously increasing since the beginning of the space era. The space community is converging on responsible conducts and self-regulations to address this serious problem that is degrading the near-Earth environment. In this context, green deorbiting technologies and strategies alternative to the traditional chemical propulsion are under investigation, including Electrodynamic Tethers (EDTs) because they are a promising option. To increase EDT technology maturity level, some critical points shall be addressed and experimentally evaluated, including the deployment of tape tethers, to demonstrate their reliability. This paper presents results of an experimental validation of the Deployment Mechanism (DM) proposed for the H2020 FET OPEN Project E.T.PACK \u2013 Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit. We developed a mockup that hosts the DM and other elements that are on board the tip mass of a tethered system, using off-the-shelf components. The DM is tested for the first part of the tether deployment maneuver employing the SPARTANS facility of the University of Padova. This facility includes a Testing Table where the mock-up can move with almost no friction and a Motion Capture system that provides an accurate estimation of the mock-up motion during this first part of the tether deployment maneuver

    Guidebook for analysis of tether applications

    Get PDF
    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. The guiding philosophy is that a brief analysis of all the common problem areas is far more useful than a detailed study in any one area. Such analyses can minimize the waste of resources on elegant but fatally flawed concepts, and can identify the areas where more effort is needed on concepts which do survive the initial analyses. The simplified formulas, approximations, and analytical tools included should be used only for preliminary analyses. For detailed analyses, the references with each topic and in the bibliography may be useful

    Debris rotation analysis during tethered towing for active debris removal

    Get PDF

    Tethers in Space Handbook

    Get PDF
    A new edition of the Tethers in Space Handbook was needed after the last edition published in 1989. Tether-related activities have been quite busy in the 90's. We have had the flights of TSSI and TSSI-R, SEDS-1 and -2, PMG, TIPS and OEDIPUS. In less than three years there have been one international Conference on Tethers in Space, held in Washington DC, and three workshops, held at ESA/Estec in the Netherlands, at ISAS in Japan and at the University of Michigan, Ann Harbor. The community has grown and we finally have real flight data to compare our models with. The life of spaceborne tethers has not been always easy and we got our dose of setbacks, but we feel pretty optimistic for the future. We are just stepping out of the pioneering stage to start to use tethers for space science and technological applications. As we are writing this handbook TiPs, a NRL tether project is flying above our heads. There is no emphasis in affirming that as of today spacebome tethers are a reality and their potential is far from being fully appreciated. Consequently, a large amount of new information had to be incorporated into this new edition. The general structure of the handbook has been left mostly unchanged. The past editors have set a style which we have not felt needed change. The section on the flights has been enriched with information on the scientific results. The categories of the applications have not been modified, and in some cases we have mentioned the existence of related flight data. We felt that the section contributed by Joe Carroll, called Tether Data, should be maintained as it was, being a "classic" and still very accurate and not at all obsolete. We have introduced a new chapter entitled Space Science and Tethers since flight experience has shown that tethers can complement other space-based investigations. The bibliography has been updated. Due to the great production in the last few years %e had to restrict our search to works published in refereed journal. The production, however, is much more extensive. In addition, we have included the summary of the papers presented at the last International Conference which was a forum for first-hand information on all the flights

    Tethers in space handbook, second edition

    Get PDF
    The Tethers in Space Handbook, Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it includes a summary of past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years. The great variety of these applications, from energy generation to boosting satellites to gravity wave detection is an indication that tethers will play a significant part in the future of space development. This edition of the handbook preserves the major characteristics of the original; however, some significant rearrangements and additions have been made. The first section on Tether Programs has been brought up to date, and now includes a description of TSS-2, the aerodynamic NASA/Italian Space Agency (ASI) mission. Tether Applications follows, and this section has been substantially rearranged. First, the index and cross-reference for the applications have been simplified. Also, the categories have changed slightly, with Technology and Test changed to Aerodynamics, and the Constellations category removed. In reality, tether constellations may be applicable to many of the other categories, since it is simply a different way of using tethers. Finally, to separate out those applications which are obviously in the future, a Concepts category has been added. A new section included here on Conference Summaries recognizes the fact that the tether community is growing internationally, and that meetings provide a means of rapid communication and interaction. Finally, the Bibliography section has been considerably updated to include all known references. These are listed by author and by subject and include the papers to be presented at the Third International Conference in May 1989
    • …
    corecore