141 research outputs found

    A Distributed Optimization Method for Optimal Energy Management in Smart Grid

    Get PDF
    This chapter presents a distributed optimization method named sequential distributed consensus-based ADMM for solving nonlinear constrained convex optimization problems arising in smart grids in order to derive optimal energy management strategies. To develop such distributed optimization method, multi-agent system and consensus theory are employed. Next, two smart grid problems are investigated and solved by the proposed distributed algorithm. The first problem is called the dynamic social welfare maximization problem where the objective is to simultaneously minimize the generation costs of conventional power plants and maximize the satisfaction of consumers. In this case, there are renewable energy sources connected to the grid, but energy storage systems are not considered. On the other hand, in the second problem, plug-in electric vehicles are served as energy storage systems, and their charging or discharging profiles are optimized to minimize the overall system operation cost. It is then shown that the proposed distributed optimization algorithm gives an efficient way of energy management for both problems above. Simulation results are provided to illustrate the proposed theoretical approach

    Joint Optimal Pricing and Electrical Efficiency Enforcement for Rational Agents in Micro Grids

    Full text link
    In electrical distribution grids, the constantly increasing number of power generation devices based on renewables demands a transition from a centralized to a distributed generation paradigm. In fact, power injection from Distributed Energy Resources (DERs) can be selectively controlled to achieve other objectives beyond supporting loads, such as the minimization of the power losses along the distribution lines and the subsequent increase of the grid hosting capacity. However, these technical achievements are only possible if alongside electrical optimization schemes, a suitable market model is set up to promote cooperation from the end users. In contrast with the existing literature, where energy trading and electrical optimization of the grid are often treated separately or the trading strategy is tailored to a specific electrical optimization objective, in this work we consider their joint optimization. Specifically, we present a multi-objective optimization problem accounting for energy trading, where: 1) DERs try to maximize their profit, resulting from selling their surplus energy, 2) the loads try to minimize their expense, and 3) the main power supplier aims at maximizing the electrical grid efficiency through a suitable discount policy. This optimization problem is proved to be non convex, and an equivalent convex formulation is derived. Centralized solutions are discussed first, and are subsequently distributed. Numerical results to demonstrate the effectiveness of the so obtained optimal policies are then presented

    Demand Side Management in the Smart Grid

    Get PDF

    Realizing the potential of distributed energy resources and peer-to-peer trading through consensus-based coordination and cooperative game theory

    Get PDF
    Driven by environmental and energy security concerns, a large number of small-scale distributed energy resources (DERs) are increasingly being connected to the distribution network. This helps to support a cost-effective transition to a lower-carbon energy system, however, brings coordination challenges caused by variability and uncertainty of renewable energy resources (RES). In this setting, local flexible demand (FD) and energy storage (ES) technologies have attracted great interests due to their potential flexibility in mitigating the generation and demand variability and improving the cost efficiency of low-carbon electricity systems. The combined effect of deregulation and digitalization inspired new ways of exchanging electricity and providing management/services on the paradigm of peer-to-peer (P2P) and transparent transactions. P2P energy trading enables direct energy trading between prosumers, which incentivizes active participation of prosumer in the trading of electricity in the distribution network, in the meantime, the efficient usage of FD and ES owned by the prosumers also facilitates better local power and energy balance. Though the promising P2P energy trading brings numerous advancements, the existing P2P mechanisms either fail to coordinate energy in a fully distributed way or are unable to adequately incentivize prosumers to participate, preventing prosumers from accessing the highest achievable monetary benefits and/or suffering severely from the curse of dimensionality. Therefore, this thesis aims at proposing three P2P energy trading enabling mechanisms in the aspect of fully distributed efficient balanced energy coordination through consensus-based algorithm and two incentivizing pricing and benefit distribution mechanisms through cooperative game theory. Distributed, consensus-based algorithms have emerged as a promising approach for the coordination of DER due to their communication, computation, privacy and reliability advantages over centralized approaches. However, state-of-the-art consensus-based algorithms address the DER coordination problem in independent time periods and therefore are inherently unable to capture the time-coupling operating characteristics of FD and ES resources. This thesis demonstrates that state-of-the-art algorithms fail to converge when these time-coupling characteristics are considered. In order to address this fundamental limitation, a novel consensus-based algorithm is proposed which includes additional consensus variables. These variables express relative maximum power limits imposed on the FD and ES resources which effectively mitigate the concentration of the FD and ES responses at the same time periods and steer the consensual outcome to a feasible and optimal solution. The convergence and optimality of the proposed algorithm are theoretically proven while case studies numerically demonstrate its convergence, optimality, robustness to initialization and information loss, and plug-and-play adaptability. Moreover, this thesis proposes two computationally efficient pricing and benefit distribution mechanisms to construct a stable grand coalition of prosumers participating in P2P trading, founded on cooperative game-theoretic principles. The first one involves a benefit distribution scheme inspired by the core tatonnement process while the second involves a novel pricing mechanism based on the solution of single linear programming. The performance of the proposed mechanisms is validated against state-of-the-art mechanisms through numerous case studies using real-world data. The results demonstrate that the proposed mechanisms exhibit superior computational performance than the nucleolus and are superior to the rest of the examined mechanisms in incentivizing prosumers to remain in the grand coalition.Open Acces

    Coordination of smart home energy management systems in neighborhood areas: A systematic review

    Get PDF
    High penetration of selfish Home Energy Management Systems (HEMSs) causes adverse effects such as rebound peaks, instabilities, and contingencies in different regions of distribution grid. To avoid these effects and relieve power grid stress, the concept of HEMSs coordination has been suggested. Particularly, this concept can be employed to fulfill important grid objectives in neighborhood areas such as flattening aggregated load profile, decreasing electricity bills, facilitating energy trading, diminishing reverse power flow, managing distributed energy resources, and modifying consumers' consumption/generation patterns. This paper reviews the latest investigations into coordinated HEMSs. The required steps to implement these systems, accounting for coordination topologies and techniques, are thoroughly explored. This exploration is mainly reported through classifying coordination approaches according to their utilization of decomposition algorithms. Furthermore, major features, advantages, and disadvantages of the methods are examined. Specifically, coordination process characteristics, its mathematical issues and essential prerequisites, as well as players concerns are analyzed. Subsequently, specific applications of coordination designs are discussed and categorized. Through a comprehensive investigation, this work elaborates significant remarks on critical gaps in existing studies toward a useful coordination structure for practical HEMSs implementations. Unlike other reviews, the present survey focuses on effective frameworks to determine future opportunities that make the concept of coordinated HEMSs feasible. Indeed, providing effective studies on HEMSs coordination concept is beneficial to both consumers and service providers since as reported, these systems can lead to 5% to 30% reduction in electricity bills

    Managing power system congestion and residential demand response considering uncertainty

    Get PDF
    Electric power grids are becoming increasingly stressed due to political and environmental difficulties in upgrading transmission capacity. This challenge receives even more interest with the paradigm change of increasing renewable energy sources and demand response (DR) programs. Among DR technologies, existing DR programs are primarily designed for industrial and commercial customers. However, household energy consumption accounts for 38% of total electricity consumption in the U.S., suggesting a significant missed opportunity. This dissertation presents an in-depth study to investigate managing power system congestion and residential DR program under uncertainty.First, an interval optimization model is presented for available transfer capability (ATC) evaluation under uncertainties. The conventional approaches of ATC assessment include deterministic and probabilistic methods. However, the proposed interval optimization model can effectively reduce the accuracy requirements on the renewable forecasting, and lead to acceptable interval results by mitigating the impacts of wind forecasting and modeling errors. Second, a distributed and scalable residential DR program is proposed for reducing the peak load at the utility level. The proposed control approach has the following features: 1) it has a distributed control scheme with limited data exchange among agents to ensure scalability and data privacy, and 2) it reduces the utility peak load and customers’ electricity bills while considering household temperature dynamics and network flow.Third, the impacts of weather and customers’ behavior uncertainties on residential DR are also studied in this dissertation. A new stochastic programming-alternating direction method of multipliers (SP-ADMM) algorithm is proposed to solve problems related to weather and uncertain customer behavior. The case study suggests that the performance of residential DR programs can be further improved by considering these stochastic parameters.Finally, a deep deterministic policy gradient-based (DDPG-based) HVAC control strategy is presented for residential DR programs. Simulation results demonstrate that the DDPG-based approach can considerably reduce system peak load, and it requires much less input information than the model-based methods. Also, it only takes each agent less than 3 seconds to make HVAC control actions. Therefore, the proposed approach is applicable to online controls or the cases where accurate building models or weather forecast information are not available

    Transactive Control of Coupled Electric Power and District Heating Networks

    Get PDF
    The aim to decarbonize the energy supply represents a major technical and social challenge. The design of approaches for future energy network operation faces the technical challenge of needing to coordinate a vast number of new network participants spatially and temporally, in order to balance energy supply and demand, while achieving secure network operation. At the same time these approaches should ideally provide economic optimal solutions. In order to meet this challenge, the research field of transactive control emerged, which is based on an appropriate interaction of market and control mechanisms. These approaches have been extensively studied for electric power networks. In order to account for the strong differences between the operation of electric power networks and other energy networks, new approaches need to be developed. Therefore, within this work a new transactive control approach for Coupled Electric Power and District Heating Networks (CEPDHNs) is presented. As this is built upon a model-based control approach, a suitable model is designed first, which enables to operate coupled electric power and district heating networks as efficient as possible. Also, for the transactive control approach a new fitted procedure is developed to determine market clearing prices in the multi-energy system. Further, a distributed form of district heating network operation is designed in this context. The effectiveness of the presented approach is analyzed in multiple simulations, based on real world networks
    • …
    corecore