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Abstract 

Electric power grids are becoming increasingly stressed due to political and 

environmental difficulties in upgrading transmission capacity. This challenge receives even 

more interests with the paradigm change of increasing renewable energy sources and 

demand response (DR) programs. Among DR technologies, existing DR programs are 

primarily designed for industrial and commercial customers. However, household energy 

consumption accounts for 38% of total electricity consumption in the U.S., suggesting a 

significant missed opportunity. This dissertation presents an in-depth study to investigate 

managing power system congestion and residential DR program under uncertainty. 

First, an interval optimization model is presented for available transfer capability (ATC) 

evaluation under uncertainties. The conventional approaches of ATC assessment include 

deterministic and probabilistic methods. However, the proposed interval optimization model 

can effectively reduce the accuracy requirements on the renewable forecasting, and lead to 

acceptable interval results by mitigating the impacts of wind forecasting and modeling errors.  

Second, a distributed and scalable residential DR program is proposed for reducing the 

peak load at the utility level. The proposed control approach has the following features: 1) it 

has a distributed control scheme with limited data exchange among agents to ensure 

scalability and data privacy, and 2) it reduces the utility peak load and customers’ electricity 

bills while considering household temperature dynamics and network flow. 

Third, the impacts of weather and customers’ behavior uncertainties on residential DR 

are also studied in this dissertation. A new stochastic programming-alternating direction 

method of multipliers (SP-ADMM) algorithm is proposed to solve problems related to 
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weather and uncertain customer behavior. The case study suggests that the performance of 

residential DR programs can be further improved by considering these stochastic parameters. 

Finally, a deep deterministic policy gradient-based (DDPG-based) HVAC control 

strategy is presented for residential DR programs. Simulation results demonstrate that the 

DDPG-based approach can considerably reduce system peak load, and it requires much less 

input information than the model-based methods. Also, it only takes each agent less than 3 

seconds to make HVAC control actions. Therefore, the proposed approach is applicable to 

online controls or the cases where accurate building models or weather forecast information 

are not available. 

 

Keywords: alternating direction method of multipliers (ADMM), available transfer 

capability (ATC), congestion management, deep deterministic policy gradient (DDPG), 

demand response (DR), electricity market, interval optimization, reinforcement learning 

(RL), stochastic programming (SP). 
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Chapter 1 Introduction 

Over the years, electric demand in the United States has increased significantly, and as 

a consequence, power system congestion has also been increased. However, few new 

transmission lines have been constructed to adapt to this change [1]. Power system 

congestion not only increases the locational marginal price at the congested load areas but 

also present severe threats to grid reliability by limiting the access to reserves [2]-[4]. 

Therefore, it is necessary to evaluate network congestion status and deploy demand response 

(DR) to reduce the system peak load as needed to maintain secure and economic operations 

of power grids.  

1.1 Network congestion evaluation 

Power system congestion happens when the transmission capacity is insufficient to 

simultaneously accommodate all requests for transmission service. To determine the 

congestion status, one of the most widely-used indices is the available transfer capability 

(ATC). In North America, transmission service providers (TSPs) are required to calculate 

the ATC and post it on the open access same-time information system (OASIS) to help the 

decision making of market participants [5]-[6]. ATC is defined as the remaining transfer 

capability in a transmission network for further commercial activities over already 

committed uses [7]. Underestimated ATC value may result in inadequate utilization of 

transmission system assets, while overestimated ATC value can cause overloading or system 

security issues [8]. There are two main types of ATC evaluation methods: deterministic and 

probabilistic [9]. 
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In deterministic methods, the DC power transfer distribution factor (PTDF) has the 

fastest computation speed, but it ignores voltage limits and reactive power flow [10]. 

Repeated power flow (RPF) and continuous power flow (CPF) algorithms incrementally 

increase the power transaction until one of the operation limits is violated [11]-[12]. Even 

though the results from the RPF and CPF algorithms are more accurate than the results of 

the DC-PTDF algorithm, these approaches are time-consuming and thus cannot be used for 

online calculation. The optimal power flow (OPF) method first solves the economic dispatch, 

and then formulates an optimization problem to maximize the power transfer between the 

source and the sink areas [13].  

Deterministic methods performed well when the uncertainty in power systems was small. 

However, with the increasing penetration of renewables, deterministic methods may fail to 

handle the large deviation between forecasted and actual values, limiting their potential for 

future power grid applications [14]. Therefore, growing attention has been paid to 

probabilistic methods, such as Monte Carlo simulation (MCS) and stochastic programming 

(SP) [15]-[16]. The fundamental idea is to convert the probabilistic problem into an 

equivalent deterministic problem. However, probabilistic methods heavily rely on weather 

forecasting technology. Much of the current literature assumes that uncertain parameters 

follow certain distributions, but this may not be aligned with the fact that the probabilistic 

distribution may not be readily available [17]-[19]. 

To overcome this challenge, interval optimization can be applied to ATC evaluation. The 

inputs of interval optimization are the bounds of the uncertain parameters, which reduces the 

requirements on input data and mitigates the impacts of wind modeling and forecasting 

errors. The outputs of interval optimization is also a range that contains possible ATC values. 



 

Xiao Kou (August 2020)  3 

1.2 Residential demand response 

DR has been viewed as a lower-cost solution to reduce the peak load at the congested 

load area by changing the customers’ electricity consumption behaviors [20]-[21]. Existing 

DR programs are primarily designed for industrial and commercial customers, since they 

tend to have larger electric loads that are much easier targeted. [22]. However, households 

account for 38% of the current total energy consumption in the United States, and over 212 

million homes around the world are expected to join the utility DR programs by 2025, 

indicating the significance of conducting congestion management with residential DR [23]-

[24]. Unlike the industrial or commercial load, the residential load is composed of numerous 

low-power home appliances. Further, the electricity consumption habits of customers are 

highly varied and dynamic. Therefore, residential DR algorithms must be scalable and 

consider customers’ different preferences.  

In literatures, there are two main residential DR management approaches: centralized 

methods and distributed methods [25]. 

Centralized methods apply to networks with customers’ sharing the same control targets, 

e.g. maximizing the community social welfare. In this framework, operational data and 

constraints within residential buildings are needed to form an optimization problem at a 

centralized location. However, this limits the applications of centralized control approaches 

to small networks as the computational and communication needs can grow significantly 

with each additional entity. 

In distributed schemes, optimization and controls are distributed to each residential 

building, leading to a reduced burden on the centralized system and a more scalable 

architecture. Moreover, as the information exchange between the centralized controller and 
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residential buildings is limited to economic signals and expected load responses, customers’ 

can keep their device operation schedule information private. 

Depending on the approach for driving the economic signal, residential DR can also be 

categorized into incentive-based or price-based [26]-[27]. 

In the incentive-based approach, the centralized system (often a load aggregator) make 

payments to the residential customers when the grid reliability is jeopardized or the market 

price is high. During the load reduction, the control center can either remotely control the 

residential load or penalize the residential customers who do not curtail their appliances. 

Examples of the incentive-based approaches include direct load control, curtailable service, 

and capacity market program [28]. 

In the price-based approach, the load aggregator offers Time of Use (ToU) rates to 

encourage customers to shift consumption. Price-based DR usually includes critical peak 

pricing, peak load pricing, and real-time pricing. Generally, residential customers can make 

their own choices on whether to change the load consumption for the 24-hour horizon or not 

[28]. 

The challenges for implementing large-scale optimization and controls of residential 

appliances are summarized as follows: 1) scalable algorithms to coordinate a large number 

of residential components, 2) data exchange mechanisms to protect customers’ privacy, and 

3) impacts of weather and customer behaviors uncertainties on system performance, and 4) 

model and parameter unavailability issues. 



 

Xiao Kou (August 2020)  5 

1.3 Dissertation outline 

Chapter 2 presents the methodology for evaluating the ATC in transmission systems 

considering renewable integration. An interval optimization model is presented, which only 

requires the bounds of uncertainty without the precise data of wind power probabilistic 

distribution. Further, strong duality theory and artificial binary variables are introduced to 

convert the original combinatorial max-min problem to a single level maximization problem 

for efficient calculation. 

Chapter 3 proposes a distributed and scalable algorithm for managing residential DR 

programs. First, a centralized optimization model is formulated to maximize community 

social welfare. Then, this model is solved in a distributed manner with the alternating 

direction method of multipliers (ADMM) by decomposing the original problem to a set of 

sub-problems. The advantages of this approach are 1) scalable and 2) only allows limited 

information exchange among agents to protect privacy. 

Chapter 4 develops a stochastic programming based ADMM algorithm to study the 

impact of weather and customers’ behavior uncertainties on residential DR programs. The 

proposed approach considers both the day-ahead and real-time electricity markets. In the 

first stage, residential customers determine the operating status of their devices (i.e. HVACs 

and electric water heaters (EWHs)), while the DSO calculates the needed amount of 

electricity to be purchased in the day-ahead market. In the second stage, the DSO participates 

in the real-time market  to either purchase insufficient electricity or sell surplus electricity to 

maintain the supply-demand balance. 

Chapter 5 presents a reinforcement learning based method to determine the HVAC 

operation status and realize the residential DR. The proposed deep deterministic policy 
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gradient (DDPG) algorithm does not require detailed building models or day-ahead weather 

forecast information. Rather, the control actions are calculated based on the current outdoor 

temperature, the current indoor temperature, the current time, and the non-responsive load 

in the system. The performance of the proposed approach is compared with the conventional 

thermostatic and model-based control approaches to demonstrate its performance. 

Chapter 6 concludes the dissertation and provides directions for potential future work on 

network congestion management with residential DR. 

1.4 Contributions 

The contributions of this dissertation are as follows: 

• This work proposes an interval optimization model to evaluate the congestion 

status of power systems under uncertainties. 

• This work develops a scalable and distributed model-based approach to realize 

the residential DR with customers’ privacy protected. 

• This work studies the impacts of weather and customers’ behavior uncertainties 

on model-based residential DR management programs. 

• This work presents a DDPG based HVAC control strategy for residential DR 

programs and compares its performance with conventional thermostatic and 

model-based approaches. 
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Chapter 2 Interval Optimization for Available Transfer 

Capability (ATC) Evaluation Considering Wind Power 

Uncertainty 

This chapter presents an interval optimization model for ATC evaluation to identify the 

power system congestion status. ATC is defined as the remaining amount of power that can 

be transferred between different areas over already committed capacity, and it provides 

valuable information for market participants. Under the paradigm of renewable power with 

uncertainty, it is reasonable to apply probabilistic ATC evaluation. However, the 

probabilistic distribution of uncertainty may not be readily available. In contrast, an interval 

optimization-based model only requires the bounds of uncertainty without the precise data 

of wind power probabilistic distribution. The purpose of introducing interval optimization is 

to determine the possible ATC range considering wind power uncertainty. In the proposed 

method, the original interval-based model is first decomposed into a lower boundary 

(optimistic) model and an upper boundary (pessimistic) model. Then, strong duality theory 

and artificial binary variables are applied to convert the combinatorial max-min problem in 

the pessimistic model to a single level maximization problem for efficient calculation. 

Nomenclature 

Sets and Indices 

l Index of transmission lines. 

N / i Set/index of buses. 

T / t Set/index of time intervals. 
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Parameters 

ci Coefficients of the variables in the objective function. 

Di,t Load demand at bus i during time interval t (MW). 

Fl,t The thermal limit of transmission line l during time interval t (MW). 

G
min 

i,t  / G
max 

i,t  Minimum/maximum generation capacities of the thermal unit at bus i 

during time interval t (MW). 

gci,t Generation cost of the thermal unit at bus i during time interval t ($/MWh). 

GSFi,l Generation shift factor to line l from bus i. 

Li / Ui Lower/upper bound of the variable ix . 

M A large positive constant. 

PCBM CBM (MW). 

PTRM TRM (MW). 

PTTC TTC (MW). 

Ri,t Ramping limits of the thermal units at bus i during time interval t (MW/h). 

, ,/i t i tW W  Lower/upper bound of the predicted wind power generation at bus i during 

time interval t (MW). 

α / β Positive weight factors for the multi-objective function. 

Variables  

D
’ 

i,t Load demand at bus i in the maximum transfer case during time interval t 

(MW). 

Gi,t Power generation at bus i in the base case during time interval t (MW). 

G
’ 

i,t Power generation at bus i in the maximum transfer case during time interval 

t (MW). 

J Multi-objective function value. 

L The Lagrange function. 

PATC Available transfer capability (MW). 

PETC Existing transmission commitment (MW). 

xi The variables in the primal problem. 

Z The objective function value in the generalized LP model. 

Zmax Upper bound of the objective function value in the generalized LP model. 
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Zmin Lower bound of the objective function value in the generalized LP model. 

λi The dual variable associated with the equality constraints in the primal 

problem. 

λ
a 

i  The dual variable associated with the power balance equation in the base 

case. 

λ
i 

b The dual variable associated with the power balance equation in the 

maximum transfer case. 

λ
i 

c The dual variable associated with the equality constraints other than the 

power balance equations in the primal problem. 

γ
L 

i   / γ
U 

i  The dual variable associated with the lower/upper bound of the variables in 

the primal problem. 

vi The dual variable associated with the inequality constraints in the primal 

problem. 

ωi Artificial binary variables. 

2.1 Introduction 

It is well known that many transmission infrastructures are becoming stressed due to the 

political and environmental difficulties in upgrading transmission capacity [29]. To solve 

this concern, the North American Electric Reliability Corporation (NERC) requires TSPs to 

evaluate ATC values of the transmission paths within their service regions [5]-[6]. Thus, 

operators can evaluate the congestion status of the grids and determine whether new power 

transaction requests can be approved. ATC also contributes to the identification and 

allocation of the transmission rights based on each TSP’s risk tolerance for load shedding 

and their predictions of future conditions. 

The conventional approaches to evaluate ATC are deterministic. For instance, a 

sensitivity-based DC power flow method is reported in [10]; a sensitivity-based AC power 

flow method is presented in [30]; in [31], the RPF method is implemented to evaluate the 
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ATC by gradually increasing the power transaction amount between the source and the sink 

areas; and in [9], a bi-level OPF approach is applied to calculate the ATC by formulating the 

ATC maximization problem in the upper level and the generation cost minimization problem 

in the lower level. 

While deterministic methods have performed well in the past decade, the new paradigm 

change with more variable generations drives the need to address uncertainty in ATC 

evaluation. Thus, more attention has been paid to the probabilistic methods to model 

uncertainty and fluctuation in the renewable generation as non-constant values [32]-[34]. 

The fundamental idea is to apply statistical methods to convert the probabilistic problem into 

a deterministic problem [35]. In [36], a Monte Carlo based model is developed for ATC 

assessment, but it increases the computational burden since it needs to evaluate a large 

number of samples. In [37], a SP-based approach is used for ATC evaluation, and the 

generator availabilities, transmission line availabilities, and load variation are viewed as 

uncertain parameters, which comply with binomial distribution and normal distribution, 

respectively. 

In summary, the uncertainty variables in previous works are usually assumed to follow 

certain pre-defined distributions, but this may not be aligned with the practical situations 

where probabilistic distribution may not be readily available [38]. Moreover, the 

performance of the previous research relies heavily on wind forecasting technology, which 

is subject to considerable errors or even data unavailability regarding wind probabilistic 

distribution, and therefore, it may further affect ATC calculations and the optimality of 

generation scheduling. To better address this challenge, an interval optimization-based 

approach is proposed in this chapter to evaluate ATC in power systems with renewables. 
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Interval optimization utilizes upper and lower boundaries to represent the uncertainty of 

random variables, and does not require the probability distribution function (PDF) of 

uncertain variables (e.g., wind power) [38]-[40]. In other words, the uncertain variables are 

modeled within a specific range, rather than via detailed and accurate probabilistic 

distribution. Further, the optimization result is also an interval, which is composed of a lower 

(optimistic) bound and an upper (pessimistic) bound. Therefore, interval optimization has a 

low requirement of input data regarding uncertainty without a PDF, but it can still give a 

range for the output variable. The interval optimization method is especially applicable to 

the cases where the PDF of uncertain factors is less accessible since it is much easier to 

obtain the boundaries of uncertain variables than their specific probabilistic description. 

Consequently, interval optimization is more practicable compared with other probability-

based methods. 

The main contributions of this chapter are summarized as the following: 

1) The inputs for the proposed algorithm are the bounds of uncertain wind generation, 

rather than the PDF of wind generation. The introduction of interval optimization leads to 

acceptable interval results by mitigating the negative impacts of wind forecasting and 

modeling errors. 

2) The pessimistic model in interval optimization is a combinatorial max-min 

optimization problem, which cannot be solved within polynomial time. This chapter 

improves the conventional solving algorithm by applying strong duality theory and 

introducing artificial binary variables for interval ATC evaluation. Finally, the pessimistic 

model is converted to a one-step maximization problem for efficient calculation. 
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3) As the system size grows, the solver for solving the pessimistic model may lead to 

unacceptable results. In this chapter, the power balance equation in the base case is relaxed 

to an inequality constraint to ensure the solvability of the solutions. Simulation results 

validate its effectiveness. 

The rest of this chapter is structured as follows: Section 2.2 formulates the mathematical 

model for ATC evaluation, Section 2.3 presents the algorithm for solving interval 

optimization models, Section 2.4 demonstrates case studies to validate the proposed method, 

and Section 2.5 concludes the chapter. 

2.2 The mathematical formulation for ATC evaluation 

The generic mathematical formulation for ATC is usually presented as: 

 ATC TTC ETC CBM TRMP P P P P= − − −  (2.1) 

where total transfer capability (TTC) indicates the maximum transfer capability of a 

transmission path before violating constraints or causing security issues; existing transfer 

commitment (ETC) denotes the sum of expected capacity to be used, which in many cases 

is represented by the line flow in the base case; capacity benefit margin (CBM) gives load 

serving entities  access to energy generation from elsewhere in the interconnected systems 

to lower the need of installed generating capacity, and it is only supposed to be used in times 

of emergency generation shortages; transmission reliability margin (TRM) accommodates 

the inherent uncertainties (e.g., aggregate load forecast uncertainties, load distribution 

uncertainty, transmission system topology uncertainty, generation dispatch variations) to 

enable reliable system operations. 



 

Xiao Kou (August 2020)  13 

In North America, the capacities of CBM and TRM are usually treated as fixed values 

and determined by independent system operators (ISOs) based on their specific system 

condition and reliability requirements [41]-[42]. Therefore, TSPs may only need to focus on 

the TTC and ETC values of each transmission path/flowgate to calculate the ATC values. In 

this chapter, the effects of CBM and TRM on ATC are also neglected for simplicity. 

Meanwhile, with the increasing penetration of variable wind generation, it is more 

popular to consider uncertain factors in ATC evaluation. Currently, most existing 

probabilistic methods are iteration-based. For example, the configuration of a typical Monte-

Carlo based ATC evaluation method is illustrated in Figure 2.1 [43]. 

 

 
Figure 2.1 Probabilistic-based ATC evaluation algorithm. 
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Since probabilistic methods require tremendous amounts of calculation, the 

computational time limits their potential applications in practice. In addition, as the current 

wind forecasting technology is still immature, the uncertainty and variability of renewables 

may become unmanageable with high wind power penetration or simply unavailable in terms 

of the PDF of wind power. It is also worth mentioning that the interval solution from the 

Monte Carlo method is only a subset of the actual interval [44], which is verified by the case 

study. Therefore, results from a Monte Carlo simulation underestimate the actual interval 

range, and may not provide good references under extreme conditions. 

To address these problems, the interval optimization method is applied in this chapter to 

evaluate the ATC considering uncertain wind power. The goal is to identify the objective 

function values in extreme cases and assess the potential impact of wind uncertainty on ATC 

calculations as well as generation cost. Unlike previous methods, interval optimization 

provides a superset of the actual interval, which provides a better option for applications that 

require the information of full ranges [44]. The detailed mathematical formulations are given 

next. Note, the geographical distance between the generation center and the load pocket is 

assumed to be far enough such that the load and wind generation at different buses may not 

influence each other. 

2.2.1 Objective function 

The objective function minimizes the overall generation cost while maximizing the ATC 

between different areas. The modeling process is based on two prerequisites: 1) since the 

ATC and generation cost under the current electricity market framework is usually modeled 

as linear functions, DC power flow is applied to conduct power scheduling ([9],[36],[45]); 

and 2) even though existing technology still has difficulties in obtaining the accurate PDF 
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of wind, it is much easier to predict future wind power output intervals from historical wind 

data. Hence, wind generation is modeled as an uncertain variable fluctuating in a specific 

range.  

The objective function is represented by: 

 ( )'

, , , ,

1 1

min
T N

i t i t i t i t

t i i source

J gc G - G G 
= = 

 
= − 

 
    (2.2) 

where the first term denotes minimizing generation cost, and the second term aims to 

maximize the ATC between the source and sink areas. 

2.2.2 Constraints 

The constraints are composed of power balance equations, generation capacity limits, 

generator ramping limits, transmission line thermal limits, generation constraints for 

source/sink areas, and demand constraints for source/sink areas, as expressed in formulas 

(2.3)-(2.14): 
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where (2.3) is the power balance constraint in the base case; (2.4) is the generation capacity 

limits in the base case; (2.5) and (2.6) are the generator ramp-up and ramp-down constraints; 

(2.7) is the transmission line limits in the base case; (2.8) is the power balance constraints in 

the maximum transfer case; (2.9) is the generator capacity limits in the maximum transfer 

case; (2.10) is the generation constraints in the source area; (2.11) is the generation 

constraints in the sink area; (2.12) is the demand constraints in the source area; (2.13) is the 

demand constraints in the sink area; and (2.14) is the transmission line limits in the 

maximum transfer case. 

It is worth mentioning that reactive power is neglected in the problem formulation. It is 

known that wind generators may consume reactive power, which may cause reactive power 

deficiency if not adequately compensated. To address this problem, the Federal Regulatory 

Commission issued Order 827 in 2016 to set reactive power compensation requirements for 

non-synchronous generators [46]. Order 827 requires that wind turbines must maintain a 

power factor within the range of 0.95 leading to 0.95 lagging at the point of interconnection 

as a prerequisite for interconnection. Therefore, under this regulation, wind power plants 

will not absorb much reactive power from the main grid. Based on these considerations, the 

reactive power issue is ignored and wind generators are treated as conventional units with 

uncertainties. 

Since both the objective function and the constraints in equations (2.2)-(2.14) are linear 

functions, the mathematical formulation for the interval optimization-based model can be 

generalized by: 
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 min  T

x
Z c x=  (2.15) 

 . . [ , ] :i i i i is t A x b b =  (2.16) 

 [ , ] :i i i i iE x d d   (2.17) 

  : ,L U

i i i i iL x U     (2.18) 

Note that in the ATC calculation model, the wind power generation is expressed as an 

interval in eq. (2.16), which leads to indeterminate constraints that cannot be processed 

directly. Therefore, the original interval optimization problem needs to be converted to its 

equivalent deterministic form to be solved. 

2.3 Interval optimization algorithm 

In the previous section, the model of ATC with uncertain wind power integration is first 

introduced, where the uncertain wind power is treated as interval variables and brings 

indeterminate constraints in the problem formulation. In this section, the interval 

optimization algorithm is further converted to its equivalent deterministic forms by 

introducing both strong duality theory and artificial binary variables. 

According to [47], the optimization models for solving the optimistic and pessimistic 

values can be expressed in (2.19)-(2.22), and (2.23)-(2.26), respectively: 

The optimistic model: 

 min min  T

x
Z c x=  (2.19) 

 . . i i i is t b A x b   (2.20) 

 i i iE x d  (2.21) 

 i i iL x U   (2.22) 

The pessimistic model: 
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 max max min  T

x
Z c x=  (2.23) 

 . . ( )    :i i i is t Ax b or b =  (2.24) 

  :i i i iE x d   (2.25) 

  : ,L U

i i i i iL x U     (2.26) 

After substituting the interval-based constraints into the optimistic model, the lower 

bound of the objective function (optimistic) value can be calculated from (2.4)-(2.6), (2.9)-

(2.13), and (2.27)-(2.31): 
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While substituting the interval-based constraints into the pessimistic model, the upper 

bound of the objective function (pessimistic) value can be obtained from (2.4)-(2.6), (2.9)-

(2.13), and (2.32)-(2.36): 
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From the above formulas, it is observed that the optimistic model is a trivial linear 

programming (LP) problem that can be easily solved. However, the pessimistic model is a 

combinatorial max-min problem with indeterminate parameters in the equality constraints. 

It is not known in advance whether the optimal value of the pessimistic model is obtained at 

the lower bound or the upper bound of the uncertain variables in (2.33) and (2.35). Therefore, 

the pessimistic model turns out to be an NP-hard problem and cannot be solved within 

polynomial time. The conventional method for finding the optimal solution for the 

pessimistic model needs to list all the possible combinations of wind generation, then 

individually solve each sub LP problem and select the maximum objective function value 

[48]. A flowchart of this algorithm is given in Figure 2.2. The total computational effort is 

to solve 2T·NW LP optimization problems. 
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Figure 2.2 Flowchart of the conventional algorithm. 

 

The conventional approach functions efficiently only when both the number of wind 

generators and the total time period are small. However, as the numbers of wind generators 

and time interval increase, the computational time also grows exponentially. For instance, if 

the system has two wind turbines, the computation effort for finding the global optimum will 

be solving 224×2 (more than 2.8×1014) LP problems. Such a computational time is 

unacceptable for practical applications. 

To overcome the above-mentioned combinatorial explosion problem, in this chapter the 

strong duality theory is utilized to convert the original max-min problem to its equivalent 

dual problem form, and then introduce the artificial binary variables to eliminate 

indeterminate constraints, thus making the proposed algorithm a one-step method and 

avoiding iterations [49]. The flowchart of the proposed algorithm is illustrated in Figure 2.3. 
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Figure 2.3 Diagram of the proposed method. 

 

The detailed algorithm of each step is summarized as follows: Step 1: Apply strong 

duality theory to convert the inner minimization problem to a maximization problem. The 

proof of the models using the strong duality theory can be found in Appendix A. 
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The new pessimistic model is shown in (2.40)-(2.43). Note that in the dual problem, the 

indeterminate parameter i  is switched from the constraints to the objective function. 
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   i i ib or b =  (2.43) 

Step 2: Since the value of coefficient ξ in the equation (37) is still indeterminate, binary 

variables i  and a large constant M are introduced to further transform the combinatorial 

problems into a mixed-integer linear programming (MILP) problem, as described in (2.44)-

(2.48): 

 max
, , , ,
max  ( ) +

L U

T T T T L T UZ b b b d L U
    

    = − − −  − −  (2.44) 

 s.t. i
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i i i iA E c   + − + = −  (2.45) 

 i i iM M  −      (2.46) 

 ( ) ( )1 1i i i i iM M    −  −   +  −  (2.47) 

 0  0  0L U

i i i    ； ；  (2.48) 

Constraints (2.46)-(2.47) guarantee that the value of i  is limited to 0 or i . When i

= 0, constraint (2.46) becomes binding and constraint (2.47) becomes redundant. At this 

point, δi is equal to 0, which means the worst case is obtained at the lower bound of the 

uncertainty variable in hour i. Likewise, when i = 1, constraint (2.47) becomes binding and 

constraint (2.46) becomes redundant. At this point, δi = λi, which means that the worst case 

is obtained at the upper bound of the uncertainty variable in hour i. 

Step 3: The pessimistic problem has now been converted to a MILP with deterministic 

parameters, which can be further solved by the General Algebraic Modeling System (GAMS) 

or any other MILP solver. 

Therefore, instead of solving and comparing the results of 2T·NW sub-problems, the 

proposed method only needs to address one MILP problem to obtain the globally optimal 

solution, which considerably improves computational efficiency. However, as the number 
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of variables becomes larger, the solver may have unbounded results. To solve this problem, 

the following assumptions are made to relax the original model. 

Assumption 1: the sum of power generation in the base case is relaxed to no less than 

the sum of the load at all times. 

From eq. (2.15)–(2.18), the Lagrange function of the generalized LP problem is 

formulated as below: 

 ( ) ( ) ( ) ( )+ ( ) ( ) +
T T

T T T L UL LEc x A Ux dx b x x   = − +− − −−  (2.49) 

In eq. (2.49), the second term is associated with equality constraints, which can be further 

decomposed into power balance constraints for the base case, power balance constraints for 

the maximum transfer case, and other equality constraints. After the relaxation, since 

∑P≥∑D-∑W, and λ𝑎 is non-negative, the Lagrangian function is represented by eq. (2.50). 
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Therefore, the pessimistic model becomes: 
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 0; 0; 0; 0a L U

i i i i        (2.57) 

Since the sum of generation is assumed to be greater than the sum of the load, the power 

balance equation in the base case may not be held in some cases when the ramping capacity 

of all the generators is insufficient. Therefore, another assumption is introduced in this 

chapter. 

Assumption 2: the ramping capacity of all the generators is always greater than the rate 

of load change during all the time intervals, but the ramping of a single generator can be 

smaller than the rate of load change. 

As a matter of fact, even though the power balance constraint in Assumption 1 is relaxed, 

the sum of generation is always equal to the sum of the load, because the optimal solutions 

are always obtained at the vertices in LP problems. As the goal is to minimize the sum of 

generation cost and subtract ATC, excess generation yields worse optimization results. 

Therefore, the sum of the generation should be equal to the sum of the load. 

2.4 Case study 

The proposed algorithm is implemented on the PJM 5-bus system and the IEEE 118-bus 

system through a hybrid platform, MATLAB 2016a and GAMS 24.7, where MATLAB is 

used for creating input data profiles and storing computation results. The MILP problem is 

solved by CPLEX in GAMS. The hardware environment is a laptop with Intel i7 2.5 GHz 

CPU, and 8.00 GB RAM. 
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2.4.1 Case study on the PJM 5-bus test system 

The configuration of the 5-bus system is depicted in Figure 2.4. The test system is 

composed of two areas: the generation center (including Bus A and Bus E) and the load 

center (including Bus B, Bus C, and Bus D). There are two aggregated wind farms connected 

to the system at Bus A and Bus D, respectively. The maximum power output of each wind 

farm is 100 MW. 

The forecasted day-ahead wind generation for the two wind farms is plotted in Figure 

2.5. The forecasting error is 5%. The line parameter settings are the same as in [9]. Since tie 

lines A-B and D-E have already reached their capacity limits under the regular economic 

dispatch condition, the goal is to find the maximum ATC between the generation center and 

load center. 

 

 
Figure 2.4 The configuration of the PJM 5 bus system. 
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Figure 2.5 Forecasted upper and lower boundaries for wind power generation. 

 

As mentioned in the previous section, the original interval optimization-based model is 

first decomposed into an optimistic model and a pessimistic model. In the optimistic model, 

there are 432 decision variables, 144 equality constraints, and 996 inequality constraints. In 

the pessimistic model, there are 1,860 decision variables, 48 binary variables, 432 equality 

constraints, and 384 inequality constraints. The value of α is set to zero to achieve the 

maximum ATC for the PJM 5-bus system. The results for a day-ahead ATC interval are 

illustrated in Figure 2.6. 

In Figure 2.6, the maximum ATC value is 437.0 MW, obtained from the optimistic 

model. The minimum ATC value is 380.9 MW, obtained from the pessimistic model. It is 

also observed that the optimistic ATC values and the pessimistic ATC values follow the 

same trend over time. Both the optimistic model and the pessimistic model obtain the 

maximum ATC values at 3 p.m. and the minimum ATC values at 9 p.m. 

50

60

70

80

90

100

110

1 3 5 7 9 11 13 15 17 19 21 23

w
in

d
 o

u
tp

u
t/

(M
W

)

time/(h)

WT1 WT2



 

Xiao Kou (August 2020)  27 

 
Figure 2.6 Day-ahead ATC intervals for the PJM 5 bus system. 

 

Table 2.1 Computational time of the optimistic and pessimistic model. 

Duration/(h) Optimistic/(s) Pessimistic/(s) 

3 0.326 0.638 

6 0.335 0.665 

9 0.338 0.689 

12 0.339 0.851 

15 0.342 0.893 

18 0.352 1.051 

21 0.367  1.062 

24 0.375 1.126 

 

 

Table 2.1 compares the computational speed of the optimistic model and the pessimistic 

model for different time scales. Even though the length of test hours increases from 3 to 24, 

the computational time of the pessimistic model is still around one second. Further, the 

computational speed of the optimistic model is always faster than that of the pessimistic 
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model, because the optimal value for the optimistic model is a linear optimization problem 

with deterministic constraints, whereas for the pessimistic model it is a MILP problem. 

2.4.2 Impact of wind forecasting error on ATC calculations 

In this section, the effect of wind forecasting error on generation cost and maximum 

ATC values is studied. The test system is the same as the PJM 5-bus system from the 

previous subsection except that the wind forecasting error increases from 10% to 30%, for 

illustrative purposes. 

When the forecasting error is 10%, the minimum generation cost ranges from 

$467,674.90 to $475,370.30, and the maximum ATC interval ranges from 391.1 MW to 

433.8 MW. When the forecasting error is 30%, the minimum generation cost ranges from 

$459,979.40 to $483,065.80, and the maximum ATC interval is from 353.7 MW to 478.4 

MW. Once the wind forecasting error becomes larger, the optimistic objective function value 

decreases, whereas the pessimistic objective function value increases. As the error becomes 

larger, the objective function values in both optimistic and pessimistic models deviate further 

from the actual ATC and generation cost. Therefore, accurate wind power forecasting data 

yields to narrower ranges of both generation cost and ATC, which  reasonably supports the 

better decision-making for the grid operators. 

2.4.3 Efficiency and accuracy of the proposed algorithm 

The performance of the proposed algorithm is compared with that of the conventional 

approach and MCS using the same test system as shown in Figure 2.4. Due to the 

combinatorial explosion issue, it is impossible to evaluate the 24-hour ATC using the 
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conventional approach with a regular laptop (as discussed in section III). Therefore, for 

illustrative purposes, the number of time intervals is set to 3. 

With the conventional approach, the computational burden is to solve 64 LP problems 

and then select the minimum ATC value as the pessimistic solution. The computational time 

is 27.14 sec, and the average ATC over 3 hours is from 387.13 MW to 407.87 MW. 

With the MCS, the wind power in different scenarios is assumed to be uniformly 

distributed between the lower and upper boundaries, and the number of scenarios is 1000. 

The computational time for MCS is 860.01 sec, and the range of ATC over 3 hours is 

between 399.66 MW and 406.56 MW. 

With the proposed interval optimization-based algorithm, it needs to solve the optimistic 

value and the pessimistic value, respectively. The proposed algorithm spends 0.33 sec to 

solve the optimistic model and 0.63 sec to solve the pessimistic model. The total 

computational time is 0.96 sec. The result of the average ATC interval is from 387.13 MW 

to 414.78 MW. 

The case studies verify that both MCS and the proposed method are very close to the 

conventional approach. However, the proposed interval optimization-based approach is 

much faster than the other approaches. The conventional approach needs to consider all 

possible combinations of the upper and lower bounds of all uncertain variables, and the MCS 

needs to evaluate a large number of random samples. Both require a significant amount of 

optimization runs. The proposed interval optimization-based approach is much faster. This 

demonstrates the great efficiency of the proposed interval optimization-based algorithm. 
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It is also observed that both the MCS and the proposed interval approach give very close 

results to the actual range (calculated from the conventional approach considering all 

possible combinations). While the result from the MCS is a subset of the actual ATC interval, 

the result from the proposed algorithm is a slight superset of the actual ATC interval. This 

observation is aligned with the discussion in Section 2.2. 

2.4.4 Case study on the IEEE 118-bus test system 

To validate the performance of the proposed method in large systems, the proposed 

algorithm is further deployed on a modified IEEE 118-bus system. The configuration of the 

system is shown in Figure 2.7. The test system is composed of three areas, where Area 1 and 

Area 3 are the generation centers, and Area 2 is the load center. 

 

 
Figure 2.7 The configuration of the IEEE 118 bus system. 
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There are five aggregated wind farms in this system, located on bus 17, bus 44, bus 54, 

bus 82, and bus 86, respectively. The generation capacity of all the wind farms is set to 50 

MW. The forecasted day-ahead wind generation for the wind turbines is plotted in Figure 

2.8. The forecast error in this case study is 10%. Other transmission line parameters settings 

are the same as in [9]. 

In the optimistic model, there are 8,496 decision variables, 14,596 equality constraints, 

and 2,832 inequality constraints. In the pessimistic model, there are 29,524 decision 

variables, 120 binary variables, 8,496 equality constraints, and 960 inequality constraints. 

The goal is to minimize the generation cost while maximizing the ATC. The ratio between 

the weight factors β and α is set to five. The results of the day-ahead ATC interval for the 

IEEE 118-bus system are given in Figure 2.9. 

 

   
Figure 2.8 Forecasted wind power generation. 
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Figure 2.9 Day-ahead ATC intervals for IEEE 118 system. 

 

Unlike the previous case, the minimum/maximum ATC values of the optimistic and 

pessimistic models in the IEEE 118-bus system are not acquired at the same time. In the 

optimistic model, the maximum ATC value is obtained at 4 a.m., while the minimum ATC 

value is obtained at 12 midnight. However, in the pessimistic model, the maximum ATC 

value is obtained at 12 noon and the minimum ATC value is obtained at 5 p.m. 

2.4.5 Impact of weighting factors of generation cost and ATC 

Since both of the weight factors are non-negative numbers, increasing the value of α will 

result in generation cost reduction, while raising the value of β leads to ATC increase. 

Therefore, the influence of weight factors on generation costs and ATC values can be 

explored by changing the ratio between β and α. The results are shown in Figure 2.10 and 

Figure 2.11. 
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Figure 2.10 Influence of weight parameters on the generation cost range. 

 

 
Figure 2.11Influence of weight parameters on the ATC range. 

 

From Figure 2.10, the generation cost is shown as being positively correlated with the 

ratio of β/α. In the beginning, the generation cost does not change much as the ratio value 

increases. When the value of β/α equals to ten, the generation cost starts to increase sharply. 

Finally, by continuously increasing the ratio, the generation cost curve tends to be flat again. 
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In Figure 2.11, the values of ATC become greater when the value of β/α increases. It is 

observed that when increasing the weighting factor ratio from one to ten, the amount of ATC 

is doubled. In addition, similar to Figure 2.10, the ATC value will also remain unchanged at 

the very end, because the transmission capacity between the different areas must obey 

physical laws, and it has already reached the saturated capacity. 

Furthermore, from Figure 2.10 and Figure 2.11, it is observed that the ATC value in the 

optimistic model is always greater than that in the pessimistic model, while the generation 

cost in the optimistic model is always less than that in the pessimistic model. 

In deregulated electricity markets, the goal of ISOs is to maximize social welfare. 

Therefore, the impact of generation cost on power scheduling should always be considered 

(i.e., the weight factor α must always be greater than 0). The physical interpretation of the 

ratio of weights can be viewed as the tolerance for line congestion, which may be determined 

by ISOs’ own reliability requirements. As the strategies of reserving transmission corridors 

deserve another full-fledged chapter, they will not be further discussed in this chapter. 

2.5 Chapter Summary 

In this chapter, an interval optimization-based algorithm for ATC calculations is 

proposed. Uncertain wind power is modeled as a variable varying within a specific range. 

Then, the original interval-based model is decomposed into an optimistic model and a 

pessimistic model to calculate the lower bound and the upper bound of the objective function 

value, respectively. The optimistic model is a regular LP problem, while the pessimistic 

model is a difficult combinatorial max-min problem. To solve the pessimistic problem, 

strong duality theory and artificial binary variables are introduced to convert the NP-hard 
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pessimistic model to a single-level maximization problem for efficient calculation. 

Furthermore, the power balance equation in the base case is relaxed to an inequality 

constraint to ensure the solvability of the proposed algorithm in large systems. Case studies 

demonstrate that the computational speed of the proposed interval-based algorithm is 

insensitive to the number of variables. Increasing the number of time intervals or system size 

will not significantly affect the computational time, hence validating the feasibility of the 

proposed algorithm in real-world applications. Also, the impacts of forecasting error and 

weighting factors are studied. Accurate wind forecasting yields more accurate ATC values, 

thus providing a better reference for grid operators and market participants. 
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Chapter 3 A Scalable and Distributed Algorithm for 

Managing Residential Demand Response Programs Using 

Alternating Direction Method of Multipliers 

For effective engagement of residential demand-side resources (DSRs) and to ensure 

efficient operation of distribution networks, the challenges of controlling and coordinating 

residential components and devices at scale must be overcome. This chapter presents a 

distributed and scalable algorithm with a three-level hierarchical information exchange 

architecture for managing residential DR programs. First, a centralized optimization model 

is formulated to maximize community social welfare. Then, this centralized model is solved 

in a distributed manner with the ADMM by decomposing the original problem into utility-

level and house-level problems. The information exchange between the different layers is 

limited to the primary residual (i.e., supply-demand mismatch), Lagrangian multipliers, and 

the total load of each house to protect each customer’s privacy. Simulation studies are 

performed on the IEEE 33 bus test system with 605 residential customers. The results 

demonstrate that the proposed approach can reduce both customers’ electricity bills and the 

peak load at the utility level without much-affecting customers’ comfort and privacy. Finally, 

a quantitative comparison of the distributed and centralized algorithms shows the scalability 

advantage of the proposed ADMM-based approach, and it gives benchmarking results for 

future research works.  
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Nomenclature 

Sets and Indices 

d Index of iterations. 

NL / l Set / index of distribution lines. 

NM / j, k Set / index of buses (aggregators). 

Ck Set of child buses of bus k 

NN / i Set / index of residential customers. 

NT / t Set / index of time. 

Parameters 

a / b Electricity cost coefficients ($/kW2, $/kW). 

C
house 

i  Thermal capacitance of house i (J/℃). 

C
wh 

i  Thermal capacitance of the EWH in house i (J/℃). 

/
CC
iiESS ESS  Minimum/maximum charging power capacity of the ESS in house i 

(kW). 

/
DD
iiESS ESS  Minimum/maximum discharging power capacity of the ESS in house i 

(kW). 

E
ESS 

i  Energy capacity of the ESS in house i (kWh). 

p
hvac 

i  / q
hvac 

i  Real/reactive power rating of the HVAC in house i (kW/kVar). 

p
nr 

i,t  / q
nr 

i,t  Real/reactive power consumption of the non-responsive devices in house 

i at time t (kW/kVar). 

p
pv 

i,t  PV power output of house i at time t (kW). 

pcc

p  Maximum contracted load limit at the PCC (kW). 

p
wh 

i / q
wh 

i  Real/reactive power rating of the EWH in house i (kW/kVar). 

r
line 

j-k  / x
line 

j-k  Resistance/reactance of the distribution line connecting bus j and bus k 

(Ω). 

R
house 

i  Thermal resistance of house i (℃/kW). 

R
wh 

i  Thermal resistance of the EWH in house i (℃/kW). 

/ iiSOC SOC  Minimum/maximum ESS state-of-charge in house i at time t. 
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/
inin
iiT T  Minimum/maximum indoor temperature of house i (℃). 

T
in,set 

i  Indoor temperature setpoint of house i (℃). 

T
out 

t  Day-ahead outdoor temperature forecast (℃). 

/
whwh
iiT T  Minimum/maximum water temperature of the EWH in house i (℃). 

T
wh,set 

i  Water temperature setpoint of house i (℃). 

α / β Weight factors ($/℃). 

εR / εS Primary/secondary feasibility tolerance value. 

η
C 

i  / η
D 

i  Charging/discharging efficiency of the ESS in house i at time t. 

λvio Peak load violation rate ($/kW). 

ρ Penalty factor of the augmented Lagrangian term. 

Continuous variables  

dis
hvac 

i,t  Indoor temperature discomfort of customer i at time t (℃). 

dis
wh 

i,t  Water temperature discomfort of customer i at time t (℃). 

ESS
C 

i,t / ESS
D 

i,t Charging/discharging power of the ESS in house i at time t (kW). 

I
line 

j-k,t  Power flow of line j-k at time t (kW). 

p
cus 

i,t  / q
cus 

i,t  Net real/reactive load of house i at time t (kW/kVar). 

p
agg 

k,t  / q
agg 

k,t  Net real/reactive load of aggregator k at time t (kW/kVar). 

p
line 

j-k,t / q
line 

j-k,t  Real/reactive power flowing in distribution line j-k at time t (kW/kVar). 

p
pcc 

t  Amount of electricity purchased from the PCC at time t (kW). 

pvio Maximum amount of load that exceeds the maximum load limit at the 

utility level (kW). 

Rt Primal residual of ADMM at time t. 

Si,t Secondary residual of ADMM at time t. 

SOCi,t State-of-charge of the ESS in house i at time t. 

T
in 

i,t  Indoor temperature of house i at time t (℃). 

T
wh 

i,t  Water temperature of the EWH in house i at time t (℃). 

Vj,t / Vk,t Voltage magnitude of bus j / k at time t. 

λt Lagrangian multiplier. 

Binary Variables 
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b
hvac 

i,t  Operating status of the HVAC in house i at time t. 

b
wh 

i,t  Operating status of the EWH in house i at time t. 

μ
C 

i,t / μ
D 

i,t  Charging/discharging status of the ESS in house i at time t. 

3.1 Introduction 

DR research and demonstration projects have been ongoing for several decades. New 

communication infrastructure and methodologies along with more distributed intelligence 

have led to an increase in research and development for DSRs and distributed energy 

resources (DERs). More recently, a substantial focus was placed on the quantity and 

capability of DSR and DER assets needed to provide ancillary services [50]-[52]. In 2012 

and 2013, an extensive study evaluated the potential quantity and quality of DSRs and DERs, 

potential market value, and barriers to technology maturation [53]-[54]. While the study 

noted that the residential sector appeared to have significant resource potential, the available 

communication and computation infrastructure was not sufficient to coordinate large 

numbers of low-power devices and customers’ highly diverse electricity consumption 

patterns [55]. Therefore, these resources were often deemed cost-prohibitive to implement 

when compared to larger providers, such as commercial buildings and industrial loads. 

Hence, an effective approach that can manage and integrate residential DSRs and DERs 

remains critical to the use of these loads in the long-term. 

The changing landscape of communication technology and the development of the 

Internet have led to the interconnection of many intelligent devices and have provided a 

wealth of opportunities to control and optimize energy use in ways that were not previously 

possible. Communication systems such as Wi-Fi and Zigbee via smart home energy 

management systems (HEMS) provide access to controllable end-use systems [56]-[57] and 
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can securely bridge house-level components to utility-level applications [58]. For example, 

new smart heating, ventilation, and air conditioning (HVAC) systems and EWHs have been 

identified as promising candidates for DR. The large power ratings and thermal inertia 

(changing device operating status does not have a significant impact on customers’ comfort 

in the short term) make HVAC systems and EWHs opportune resources [59]-[61]. 

Currently, available control algorithms for managing DSRs are categorized as either 

centralized or distributed [25]. In the centralized control approach, the models and control 

actions are computed and issued by the control center according to collected measurement 

inputs from sub-systems. In [62], a centralized energy management model is proposed for 

determining the operation schedules of plug-in hybrid electric vehicles (EVs), HVAC 

systems, EWHs, and pool pumps in residential buildings. The simulation results from this 

work demonstrated that coordinated DER scheduling could increase net benefits to the 

customer. In similar research [63], a centralized model is formulated to minimize the power 

purchasing cost of residential customers in a dynamic pricing market. The results suggest 

that centralized scheduling can substantially improve customers’ cost benefits. The 

centralized approach, when it is applied at a small-scale and utilizes customers with common 

goals, is straightforward and functional. However, customers in the centralized structure 

have to release device operating information and allow the utility to directly control the 

devices. Moreover, as the number of customers grows, the computational complexity 

increases significantly. 

In the distributed control approach, customers independently conduct local optimizations 

to determine the optimal scheduling of devices. In [64], a distributed direct load control 

approach is presented to shave the peak load in a low-voltage unbalanced distribution 
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network. Simulation results indicate that the proposed approach is scalable and can 

maximize the welfare of both the utility and customers. In [65], the authors compare the 

performance of three control methods (centralized, decentralized, and distributed) on 

mitigating the impact of solar generation on the distribution network. The results show that 

the centralized approach has the best performance but is non-scalable, while the distributed 

approach does scale well. In the distributed approach, the major part of the calculation is 

performed by local HEMS, distributing the intelligence and reducing the centralized 

computational requirements. Since each HEMS is independent, calculations are all run in 

parallel reducing the needed computational time. Customer privacy is also better protected 

as minimal information is shared with a central system. However, the distributed control 

algorithms often suffer from convergence challenges and do not always reach the optimal 

solution. 

Additional literature discusses the residential DR management topic further. In [66], a 

Stackelberg game-based model is presented to study competition among utility and multiple 

load aggregators (LAs), but this algorithm is not scalable since as the number of aggregators 

increases, the number of dual variables and Karush-Kuhn-Tucker (KKT) constraints also 

increases significantly. In [67], Benders decomposition is proposed to solve the optimal 

scheduling problem for EV drivers to swap their depleted batteries at battery stations. The 

drawbacks are that the algorithm requires global information and cannot be scaled for large 

applications. The work in [68] improves the algorithm in [67] by relaxing the binary 

decisions to continuous variables and then naively rounding the results to discretize the 

solutions. However, such relaxation may cause an infeasible solution or constraint violations 

[69]. In [70], dual decomposition is applied to solve the residential load control problem, but 
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the algorithm may suffer from slow convergence [71]. In [72], a robust algorithm is 

presented for residential DR applications. While the results demonstrate the proposed 

approach is scalable and can protect customers’ privacy, the household temperature 

dynamics and the network flow are neglected. 

In recent years, the ADMM, which is a robust iteration-based algorithm that solves 

arbitrary-scale optimization problems and supports distributed computation, has gained 

growing popularity in solving DR problems [73]. The basic idea of the ADMM is to 

formulate a centralized model, decompose the model into a set of small sub-problems, and 

solve each sub-problem independently [71]. In [74], a dual census ADMM algorithm is 

developed for asynchronous distributed DR, but this work does not consider the distribution 

network flow model. In [75], the ADMM is applied to solve the DC-OPF problem with DR, 

but the system power loss is ignored. A similar issue exists in [76], where the ADMM is 

used for solving optimal tracking problems. In [77], both the Frank-Wolfe method and the 

ADMM are applied to solve EV charging coordination problems. However, the Frank-Wolfe 

method may not work for the proposed problem in this chapter since some of the decision 

variables are binary. 

To address these challenges, a three-level hierarchical DR algorithm is proposed for 

vertically integrated monopoly utilities to coordinate the scheduling of residential DSRs and 

shave the peak load at the utility level. In the proposed DR program, customers are allowed 

to customize their preferred indoor and water temperature ranges, and only report the total 

load information to the aggregators. The resistance-capacitance (RC) thermal model is used 

to simulate household temperature dynamics, and DistFlow equations are introduced to 

calculate network power flow [78]-[79]. Further, the ADMM has been selected as the 
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solution methodology. Even with a large number of binary variables (ON/OFF status 

variables of HVAC systems and EWHs, and the binary charge/discharge status variables of 

energy storage systems (ESSs)), the computational complexity is distributed through the use 

of ADMM. 

The main contributions of this chapter are summarized as follows: 1) a distributed control 

scheme with limited data exchange among agents to ensure feasibility for large-scale 

applications and maintain data privacy, and 2) a DR management approach that reduces the 

utility peak load and reduces customers’ electricity bills while considering household 

temperature dynamics and network flow equations. 

This chapter is organized as follows: Section 3.2 presents the three-level hierarchical 

architecture of the distribution networks, Section 3.3 formulates the mathematical model of 

the centralized DR management system, Section 3.4 decomposes the centralized model to a 

utility-level sub-problem and a set of house-level sub-problems, Section 3.5 presents case 

studies, and Section 3.6 concludes the chapter. 

Notation conventions: superscript hvac refers to HVAC, superscript wh refers to EWH, 

superscript cus refers to residential customers, superscript agg refers to LAs, and superscript 

line refers to distribution lines. 

3.2 The architecture of the hierarchical distribution networks 

In this chapter, a comprehensive three-level hierarchical architecture for managing 

residential DR programs is proposed. The detailed configuration is shown in Figure 3.1. The 

three levels are composed of the utility, LAs, and end-use customers which form the top, 

middle, and bottom levels, respectively. 
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Figure 3.1 Hierarchical distribution network architecture. 

 

Notice that the LAs act as intermediates between the vertically integrated utility and 

customers, and they provide a means to support end-user participation in these markets [80]-

[82]. In addition, aggregators reduce the utility communication requirements since 

communication needs are now reduced to a single entity instead of many assets. 

The aggregators in this chapter are assumed to be profit neutral (i.e., the revenue and the 

operation cost of the aggregators should be equal). The revenue of aggregators comes from 

the customers who participate in the DR program. Each customer is required to pay a fixed 

amount of membership fee to its corresponding aggregator. Any excess payment will be 

refunded and deficiency will be repaid at the end of each month or year, which is very similar 

to the business model of ISOs [83]. However, since the operation cost of aggregators is 

beyond the scope of this chapter, the details are omitted. 

Furthermore, residential customers are clustered by geographical locations and 

interconnection to the distribution system for each aggregator. From the network flow 

viewpoint, aggregators are treated as buses and interconnected to form a distribution network.  

Pi,t Qi,t λt

Pn,t Qn,t

λt

λtλt

Pi,t Qi,t

P1,t Q1,t

house 1,1 house 1,2 house 1,m house n,1 house n,2 house n,m

aggregator 1 aggregator j aggregator n

utility



 

Xiao Kou (August 2020)  45 

   
Figure 3.2 Home energy management system. 

 

At the house level, HEMSs are responsible for receiving data from aggregators and local 

weather service centers to perform optimization and decision-making on behalf of customers. 

The diagram of the HEMS is illustrated in Figure 3.2. 

3.3 Modeling of the centralized residential DR management systems 

In this section, the residential DR management optimization problem is formulated as a 

centralized model to maximize the social welfare of the community. The objective is to 

minimize the power purchasing cost of the community, customer discomfort, and the peak 

load violation cost. Then in the next section, this centralized model is decomposed and 

solved distributively to improve computational efficiency. 

3.3.1 Objective function 

The objective function of the centralized model is given by: 
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 ( ) ( )
2

, ,min
T M

pcc pcc hvac wh vio vio

t t i t i t

t N i N

a p b p dis dis P  
 

 
 +  +  +  +  

 
   (3.1) 

where the first two terms represent the utility’s power purchasing cost from the grid, the 

third term represents the customers’ discomfort cost due to indoor temperature deviating 

from the setpoint, the fourth term represents the customers’ discomfort cost due to water 

temperature deviating from the setpoint, and the last term represents the peak load violation 

charge. 

Notice that the utility’s power purchasing cost is represented by a quadratic function 

[84]-[86]. In this chapter, quadratic terms are used to model dynamic pricing and to 

encourage customers to shift the load from peak to off-peak hours. In eq. (3.1), the peak load 

violation charge is defined as the product of a “peak load violation” rate and the maximum 

amount of load that exceeds the allowable load limit at the point of common coupling (PCC). 

The load violation amount can be calculated from eq. (3.2). In this chapter, the peak load 

violation charge is set to $5/kW. 

 ( )= max ,0    for all 
pccvio pcc

t Tp p p t N−   (3.2) 

3.3.2 HVAC model 

In this chapter, a simplified version of the RC model in [79] is used to calculate the 

indoor temperature dynamics. Details on HVAC modeling are provided in Appendix B. The 

input parameter for the HVAC model is the day-ahead forecasted outdoor temperature, and 

the HVAC model is represented by: 
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, , 1 , 1 ,[( ) / ] /in in out in house hvac hvac house

i t i t t i t i i t i iT T T T R b p t C− −= + − −    (3.3) 

 ,

inin in
ii i tT T T   (3.4) 

 , ,

hvac in ins

i t i t idis T T= −  (3.5) 

where eq. (3.3) is used for calculating the indoor temperature of house i at each time step t, 

eq. (3.4) is the minimum/maximum indoor temperature limit constraint for each house, and 

eq. (3.5) represents customers’ discomfort due to indoor temperature deviating from the 

setpoint. The detailed parameter settings of HVAC units are given in  Table 3.1, and the 

power factor of HVAC is set to 0.81. 

3.3.3 EWH model 

Similar to the HVAC model, the EWH model is represented by: 

 
, , 1 , , 1 ,[( ) / ] /wh wh in wh wh wh wh wh

i t i t i t i t i i t i iT T T T R b p t C− −= + − +    (3.6) 

 ,

whwh wh
ii i tT T T   (3.7) 

 , ,

wh wh whs

i t i t idis T T= −  (3.8) 

where eq. (3.6) calculates the water temperature of house i at each time step t, eq. (3.7) is 

the minimum/maximum water temperature limit constraint for each house, and eq. (3.8) 

calculates customers’ discomfort due to water temperature deviating from the setpoint. The 

detailed parameter settings of EWHs are given in Table 3.2, and the EWH power factor is 

set to 1.0. 

 

 Table 3.1 HVAC parameter settings. 

C
house 

i  U[1.0, 1.5] J/℃ R
house 

i  U[25.6, 38.4] J/℃ 

Phvac 3.5 kW T
ins 

i  21~23 ℃ 
in

iT  T
ins 

i,t -1 ℃ 
in

iT  T
ins 

i,t +1 ℃ 
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Table 3.2 EWH parameter settings. 

C
wh 

i  U[0.1, 0.15] J/℃ R
wh 

i  U[48.0, 72.0] J/℃ 

Pwh 2.5 kW T
whs 

i,t  55.0~57.5 ℃ 

in

iT  T
whs 

i,t -5℃ 
wh

iT  T
whs 

i,t  +5℃ 

 

 

3.3.4 ESS model 

The ESS model is represented by: 

 
, , 1C D

i t i t + =  (3.9) 

 , , ,

C CC C C
i ii t i t i tESS ESS ESS      (3.10) 

 , , ,

DDD D D
iii t i t i tESS ESS ESS      (3.11) 

 ( ), , 1 , ,

C ESS D ESS

i t i t i t i i t iSOC SOC ESS E ESS E −= +  −   (3.12) 

 , ,ii i tSOC SOC SOC t    (3.13) 

 
, , ,

D C

i t i t i tESS ESS ESS= −  (3.14) 

 
, 1 , Ti t i t NSOC SOC= ==  (3.15) 

where eq. (3.9) limits the ESS such that it cannot be charged and discharged at the same time, 

eq. (3.10) is the charging power capacity constraint of the ESS, eq. (3.11) is the discharging 

power capacity constraint of the ESS, eq. (3.12) calculates the state-of-charge (SOC) of the 

ESS at each time, eq. (3.13) is the minimum/maximum SOC limit constraint, eq. (3.14) 

calculates the power output of the ESS at each time, and eq. (3.15) is the final SOC status 

constraint for the ESS. The detailed parameter settings of ESSs are given in Table 3.3, and 

the initial SOC of ESSs is set to 50%. 
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Table 3.3 ESS parameter settings. 

C

iESS ,
D

iESS  0 kW 
C

iESS ,
D

iESS  5 kW 

ESS

iE  15 kWh C , D  95% 

iSOC  20% iSOC  90% 

 

 

3.3.5 Load model 

In this chapter, power output from a solar panel is viewed as a negative load. Therefore, 

the load of each house is equal to the sum of the responsive load (including HVAC and EWH) 

and the non-responsive load minus solar generation. The load model is given by: 

 
, , , , , ,

cus hvac hvac wh wh nr pv

i t i i t i i t i t i t i tp p b p b p ESS p=  +  + − −  (3.16) 

 
, , , ,

cus hvac hvac wh wh nr

i t i i t i i t i tq q b q b q=  +  +  (3.17) 

where eq. (3.16) calculates the real power load of each house, and eq. (3.17) calculates the 

reactive power load of each house. The power factor of the non-responsive load is set to 0.89. 

3.3.6 Network flow model 

The DistFlow model in [87] is applied to model power flow in the balanced radial 

network. An illustration of the network structure is given in Figure 3.3. The detailed 

mathematical formulations are given by eqs. (3.18)-(3.24). 
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Figure 3.3 Illustration of the DistFlow model. 

 

 

 , ,

agg cus

k t i t

i k

p p


=   (3.18) 

 , ,

agg cus

k t i t

i k

q q


=   (3.19) 

 ( )
2

, , , ,k

k

line line agg line line

j k t k C t k t j k t j k

k C

p p rp I− − − −

 −

= + +   (3.20) 

 ( )
2

, , , ,k

k

line line agg line line

j k t k C t k t j k t j k

k C

qq q I x− − − −

 −

= + +   (3.21) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 222

, , , , ,2 line line line line line line line

k t j t j k j k t j k j k t j k t j k j kr xV V r p x q I− − − − − − −
 = −  +  +  +
  

 (3.22) 

 ( ) ( ) ( ) ( )
2 2 22

, , , ,

line line line

j k t j k t j t j k tq Ip V− − −+      (2.23) 

 0 1,

pcc line

t tp p −=  (3.24) 

where eqs. (3.18) and (3.19) are the net real and reactive load of aggregator k at time t 

respectively, eqs. (3.20) and (3.21) are the real and reactive power flow of line j-k at time t 

respectively, eq. (3.22) calculates the voltage magnitude of bus k at time t, eq. (2.23) is the 

branch flow constraint, and eq. (3.24) is the supply-demand balance constraint at the PCC. 

Notice that constraints (3.20)-(3.22) are linear if (Vj,t)
2, (Vk,t)

2, and (I
line 

j-k,t )
2 are viewed as 

variables, and eq. (2.23) becomes a second-order cone constraint after relaxing the “equal” 

sign to the “less than or equal to” sign. 
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3.4 Decomposing the centralized model with ADMM 

Despite the fact that many off-the-shelf packages (e.g. CPLEX, SCIP, BARON) can 

handle mixed-integer problems, they cannot be directly applied to solve the proposed 

centralized model due to the model’s large number of binary variables and constraints. To 

address this challenge, the ADMM is introduced to decompose the original model into sub-

problems and solve the residential DR problem in a distributed manner to ensure the 

scalability of the proposed method. The ADMM applies to optimization problems with 

separable objective functions. It was initially designed for convex problems (e.g. [88]), but 

has also demonstrated its effectiveness in solving non-convex problems with binary 

variables (e.g. [89]). In [72], the ADMM is used to decompose a large mixed-integer 

nonconvex problem into multiple sub-problems to distribute the computational complexity. 

Also, in [90] the ADMM is applied to determine the ON/OFF operation schedules of the 

HVACs in residential houses. The general ADMM problem formulation is given as follows 

[71]: 

 min ( ) ( )f x g z+  (3.25) 

 A x B z c +  =  (3.26) 

where x and z are two sets of variables, and f(x) and g(z) are two separable objectives. Also, 

eq. (3.26) is the equality coupling constraint, which contains both variable x and variable z.  

The augmented Lagrangian form of ADMM can be represented as: 

 ( )
2

2
, , ( ) ( ) ( ) 2T

pL x z y f x g z y Ax Bz c Ax Bz c= + +  + − +  + −  (3.27) 
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where y is the dual variable associated with the equality coupling constraint, and ρ is the 

penalty factor of the augmented Lagrangian term. In general, there is no unique standard on 

the selection of the penalty factor [90]. In this chapter, the value of ρ is set to 2. 

Also, the primary and secondary residuals of ADMM in the dth iteration are defined by 

eqs. (3.28) and (3.29) as: 

 
( ) ( ) ( )d d dR Ax Bz c= + −  (3.28) 

 ( ) ( )( )1( ) d dd TS A B z z
−

= −  (3.29) 

To split the objectives, within each iteration, eq. (3.27) is minimized over x with z fixed 

and vice versa. Therefore, the equations for updating the values of x, z and y can be 

represented by eqs. (3.30)-(3.32): 

 ( ) ( 1) ( 1)arg min ( , , )d d d

x px L x z y− −=  (3.30) 

 ( ) ( ) ( 1)arg min ( , , )d d d

z pz L x z y −=  (3.31) 

 ( )( ) ( 1) ( ) ( )d d d dy y Ax Bz c−= + + −  (3.32) 

The iteration will stop when both ||R(d)||2 and ||S(d)||2 are respectively less than the primary 

and secondary feasibility tolerance values [91]-[92]. 

In the proposed model, the primary residual and the secondary residual are defined in 

eqs. (3.33) and (3.34) as: 

 ( ) ( ) ( )

0 1

d line d pcc dR p p−= −  (3.33) 

 ( )( ) ( ) ( 1)d cus d cus d

i i iS p p −=  −  (3.34) 

Moreover, f(x) represents the customers’ objective that aims to minimize the indoor and 

hot water temperature discomfort costs. The decision variable x includes the operating 

schedules of HVAC units, EWHs, and ESSs for the next day. g(z) represents the utility’s 
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objective function that aims to minimize electricity cost and peak load violation charge. The 

decision variable z is the amount of electricity supply at each time. Further, the coupling 

constraint is the supply-demand balance constraint in eq. (3.24), which contains variables 

from both the utility-level and house-level (since the aggregators do not have objective 

functions and are only responsible for aggregating house-level load). Therefore, the 

proposed centralized model can be decomposed into a utility-level optimization problem, 

aggregator-level calculation, and a set of house-level optimization problems. 

3.4.1 House-level sub-problem 

In the x-update step, each residential customer minimizes his/her discomfort cost and 

primary residual (i.e. power mismatch). The house-level objective function is represented as: 

 

( )

( )

( 1) ( )

, , , ,

2
( 1) ( )

, ,
2

+

min

2
T

dhvac wh d d

i t i t t t N i t i t

d d d
t N

t N i t i t

dis dis R N P P

R N P P

  



−

−


   +   − +
  

 
+  − + 
 

  (3.35) 

According to the solution algorithm in eqs. (3.30)-(3.32), the augmented Lagrangian 

form of the ADMM in eq. (3.27) is first minimized over x with z fixed. Therefore, the first 

two terms in eq. (3.35) are essentially the f(x) in eq. (3.27). Further, since the value of z is 

fixed in the x-update step, the g(z) term in eq. (3.27) becomes a constant and is excluded 

from the objective function in eq. (3.35). Finally, the remaining terms in eq. (3.35) are the 

penalties for violating the coupling constraints in eq. (3.24). 

The constraints for the house-level optimization problem are eqs. (3.3)-(3.17). 

The aggregators then collect local load information and report it to the utility: 
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 ( ) ( )

, ,

agg d cus d

k t i t

i k

p p


=   (3.36) 

 ( ) ( )

, ,

agg d cus d

k t i t

i k

q q


=   (3.37) 

In the x-update step, the information flows from the bottom hierarchy (i.e. houses) to the 

top hierarchy (i.e. utility). The messages sent from customers to their corresponding 

aggregators are arrays that contain the total real and reactive load usage data (p
cus 

i,t  and q
cus 

i,t ) 

of each house at different times. After receiving the data, aggregators calculate the total load 

consumption within their service region (p
agg 

k,t  and q
agg 

k,t ) and report it to the utility. An 

illustration of the information exchange among different agents in this step is shown in 

Figure 3.4(a). 

 

 

house iaggregator kutility

, ,,cus cus

i t i tp q
, ,,agg agg

k t k tp q

 
(a) x-update step. 

λt , Rt λt , Rt

house iaggregator kutility  
(b) z-update step. 

Figure 3.4 Information exchange among agents.  
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3.4.2 Utility-level sub-problem 

In the z-update step, the information flows from the top hierarchy (i.e. utility) to the 

bottom hierarchy (i.e. houses). The utility minimizes the electricity cost, the peak load 

violation cost, and the primary residual. The objective function of the utility-level 

optimization problem at the dth iteration is given by (3.38).  

 ( ) 2 2
( ) ( ) ( )

2
min

T

dpcc d pcc d d vio vio

t t t t t

t N

a p b p R R p 


  +  +  + +    (3.38) 

The first two terms and the last term in eq. (3.38) are essentially the g(z) in eq. (3.27). 

Further, since the value of x is fixed in the z-update step, the f(x) term in eq. (3.27) becomes 

a constant and is excluded from the objective function in eq. (3.38). Finally, the remaining 

terms in eq. (3.38) are the penalties for violating the coupling constraints in eq. (3.24). 

The constraints for the utility level optimization problem are eqs. (3.2), (3.20)-(2.23), 

and (3.33). 

Also, the utility updates the dual variable associated with the supply-demand balance 

equation (y-update) after solving the utility-level problem: 

 ( ) ( 1) ( )d d d

t t tR  −= +   (2.39) 

The messages sent from the utility through aggregators to customers are the primary 

residual (Rt) and the dual variable associated with the supply-demand balance equation (λt) 

at each time. An illustration of the information exchange in the z-update step between 

different agents is shown in Figure 3.4(b). 
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3.4.3 Solving process of the proposed algorithm 

In summary, the process of using the ADMM to solve the scalable residential DR 

management problem is provided in Algorithm 1.  

Algorithm 1. ADMM for scalable residential DR management systems 

1. Each HEMS pulls the day-ahead weather forecast information from the local weather service 

     center. 

2. Initialize λt, Rt, p
cus 

i,t  and q
cus 

i,t  

3. while ‖𝑅(𝑑)‖
2

> 𝜀𝑅  or ‖𝑆𝑖
(𝑑)

‖
2

> 𝜀𝑆 do 

4. Each HEMS updates the operation schedule of the responsive devices based on the λt and Rt, 

then sends the p
cus 

i,t  and q
cus 

i,t  to its corresponding aggregator (x-update). 

5. Each aggregator collects the load information of customers within its service region and reports 

p
agg 

k,t  and q
agg 

k,t  to the utility. 

6. Utility updates 𝑅𝑡 and 𝜆𝑡, and broadcasts the information to all the aggregators (z-update and 

y - 

update). 

7. Aggregators broadcast the 𝑅𝑡 and 𝜆𝑡 information to their customers. 

8.  End 

During the iteration process, the house-level HEMS receives the arrays of the dual 

variables associated with the power balance equations and the primal residual of the ADMM, 

then updates the real/reactive load consumption data at each time accordingly. The 

aggregator is responsible for calculating the total load within its service region and passing 

through information between customers and the utility. Finally, the utility receives the 

real/reactive load information from aggregators and updates the primary residual and dual 

variable information at each time. 

3.5 Case study 

The proposed approach is tested on a radial distribution network through a hybrid 

simulation platform, MATLAB 2018a and GAMS 24.7, where MATLAB is used for 

creating input data files for GAMS and storing the results. The hardware environment is a 

laptop with Intel (R) CoreTM i7-8650U 1.90GHz CPU, and 16.00GB RAM. The utility-level 
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sub-problem is solved by CPLEX, and the house-level sub-problems are solved by BARON 

and SCIP [93]. 

3.5.1 Input data 

The configuration of the test system is shown in Figure 3.5 [94]. The time step is 15 

minutes, and the time horizon is 24 hours. The total number of houses is 605. There are 606 

agents in the system, one agent for each house plus one agent for the utility. Also, the 

residential houses are allocated to different aggregators based on the original load at each 

bus in the IEEE 33-bus system. There are 31 homes that have HVACs, EWHs, ESSs, and 

solar installed; 31 homes have HVACs, EWHs, and ESSs installed; 93 homes have HVACs, 

EWHs, and solar installed; and the remaining homes only have HVACs and EWHs installed. 

The outdoor temperature and standard solar output forecast information are plotted in 

Figure 3.6 [95]-[96]. The discomfort weight factor for indoor temperature is $0.05/℃, while 

the discomfort weight factor for water temperature is $0.01/℃. 

 

 
Figure 3.5 The IEEE 33 bus system configuration. 
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Figure 3.6 Outdoor temperature and solar generation data. 

 

 
Figure 3.7 Non-responsive load data. 

 

The non-responsive load profile is given in Figure 3.7 [97]. Random samples from 

normal distributions of solar power outputs and non-responsive loads are considered for each 

house to provide variation [98]. 

Three cases were designed to compare the performance of different scenarios, as 

explained in Table 3.4. Note that in Case 1 (conventional thermostatic-based control), the 

responsive devices will not change their operating status unless the indoor/water temperature 

falls out of the pre-specified boundaries. 
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Table 3.4 Different cases for testing the performance. 

Case # # of houses Responsive devices Control approach 

1 605 HVAC, EWH Conventional 

2 605 HVAC, EWH ADMM 

3 605 HVAC, EWH, ESS ADMM 

 

 

The mathematical formulations for this conventional thermostatic control logic are 

described as [99]: 

 

, ,

, 1 , , 1 ,

,

1 if 0 if 

0 if  1 if  

otherwise otherwise

in wh
in wh

i ii t i t

in whhvac in wh wh

i ii t i t i t i t

hvac wh

t i t

T T T T

b T T b T T

b b

+ +

  
 
 

=  =  
 
  

 (3.40) 

 

3.5.2 Simulation results 

Since the proposed centralized model is a nonlinear programming problem with 116,160 

binary variables, 364,417 continuous variables and 712,897 constraints, the ADMM is 

applied to solve the model in Case 2 and Case 3. Figure 3.8 compares the resulting load 

profiles for the different cases. In Case 1, the peak load of the utility appears at 7:00 pm and 

is 1853.25 kW, which exceeds the 1700 kW maximum load limit. In Case 2, the peak load 

is reduced to 1699.70 kW, and the maximum load appears at 5:00 pm. In Case 3, the 

maximum load is 1662.71 kW, and it appears at 6:15 pm. From this graph, it is concluded 

that the proposed model significantly reduces the peak load at the utility level with respect 

to conventional control. 
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Figure 3.8 Comparison of the load profiles at the PCC for different cases. 

 

 

 
Figure 3.9 Comparison of the electricity prices for different cases. 

 

Figure 3.9 shows the electricity prices for different cases. Since the Lagrangian 

multiplier in non-convex optimization problems may not reflect the real change in the 

objective function value when the parameter on the right side of the coupling equation 

changes, λ (which is the dual variable associated with the supply-demand balance equation) 

is not used for calculating electricity prices [100]. In this chapter, the electricity price is 

composed of two parts: the first part is determined by the electricity purchasing cost at the 

PCC, while the second part is determined by the peak load violation charge. The peak load 

violation cost is then distributed to all the residential customers and added to the electricity 



 

Xiao Kou (August 2020)  61 

price on a pro-rata basis. From Figure 3.9, it is observed that due to the peak load violation 

charge, the electricity price in Case 1 (purple curve) is always higher than the other cases. 

Further, the electricity prices in Case 2 (blue curve) and Case 3 (green curve) are similar. 

Table 3.5 provides the average cost of each house for different cases. It can be concluded 

that due to the high discomfort cost and peak load violation charge, the average customer’s 

cost in Case 1 is the highest. In Case 2, both the regular electricity cost and peak violation 

cost are lower than in Case 1. The total cost is reduced to $6.71, which is only about 67.98% 

of the cost in Case 1. In Case 3, the regular electricity cost is almost equal to that in Case 2, 

but the discomfort cost is further decreased. Therefore, the customers in Case 3 have the best 

performance. 

Figure 3.10 and Figure 3.11 compare the indoor and water temperatures in house 1 for 

different cases. It is observed that Case 3 has the least deviations from the setpoints. Also, 

as the thermostatic control in Case 1 can only change the operating status of HVACs and 

EWHs when the temperatures fall out of the boundaries, Case 1 has the largest temperature 

deviations. 

 

Table 3.5 The average cost of each house for different cases. 

Cost Case 1 Case 2 Case 3 

Discomfort ($) 5.50 3.92 3.80 

Electricity ($) 3.10 2.79 2.80 

Peak Violation ($) 1.27 0 0 

Total ($) 9.87 6.71 6.60 
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Figure 3.10 Comparison of the indoor temperature in house 1 for different cases. 

 

  
Figure 3.11 Comparison of the water temperature in house 1 for different cases. 

 

Figure 3.12 and Figure 3.13 show the operating status of the HVAC and EWH in house 

1 over time. It is observed that the operating status of the HVAC and EWH in Case 2 and 

Case 3 changes more frequently than in Case 1. Notice that in this chapter, it is assumed that 

the HVACs and EWHs cannot change their operation status within the time cycle to avoid 

the short-cycling issue. Although some literature considers startup and shutdown costs, 

adding these costs will introduce extra binary variables to the house-level sub-problems and 

further increase the computation time. Moreover, considering that the lifespans of HVACs 

and EWHs are usually longer than 15 years, the startup and shutdown costs are considered 
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marginal and would not significantly affect the optimization results. Therefore, the 

startup/shutdown costs of HVACs and EWHs are not considered in this chapter. 

 

 

 

 

 
Figure 3.12 HVAC operation schedule in house 1 for different cases. 
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Figure 3.13 EWH operation schedule in house 1 for different cases. 

 

3.5.3 Discussions 

Figure 3.14 illustrates the convergence process of the ADMM in Case 2. The graph 

shows that the proposed solution algorithm takes 23 iterations to converge. It is worth 

mentioning that the number of iterations depends on specific problems and varies case by 

case. However, the iteration number is also closely related to the value of the penalty factor 

ρ. Generally, a smaller ρ yields better optimization results, but it comes with the risk of 

convergence issues. On the other hand, a larger ρ may give a sub-optimal solution, but it 

makes the algorithm easier to converge. 
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Figure 3.14 The primary and secondary residuals in each iteration. 

 

 

The ρ value may also be tuned automatically by using adaptive ADMM algorithm, as 

discussed in [101]. However, in this chapter, only the conventional ADMM is used to solve 

the residential device management problems. 

The computational time of the proposed approach for the different cases are also studied. 

In Case 2, the total computational time is 187.76 sec. In practice, since the house-level 

optimizations will run in parallel, the house that has the largest computational time 

determines the computational time of each iteration. The house-level model is a mixed-

integer quadratic programming problem, and the first iteration has the longest computational 

time (88.25 sec), while the maximum utility-level model computational time in each iteration 

is 0.57 sec. In Case 3, the proposed approach takes 403.78 sec to converge, and the maximum 

computational time of the utility-level problem in each iteration is 0.34 sec. 

In this chapter, the communication delays among different agents are not considered. 

Therefore, the time consumption in practical applications should be slightly longer than the 



 

Xiao Kou (August 2020)  66 

time mentioned previously. From the results, it is concluded that the proposed algorithm can 

satisfy the computational time requirements for managing residential DR programs. 

Finally, Table 3.6 compares the optimization results from the centralized and distributed 

(ADMM-based) solution algorithms. The CPLEX solver in GAMS is used to solve the 

centralized problem, and the maximum computational time is specified as one hour. 

As the table shows, in the distributed algorithm, the computational time does not increase 

with the number of houses because the iteration numbers of the ADMM for solving 

nonconvex problems are not positively correlated with the problem size. When the number 

of houses equals 15 or 20, it takes more iterations for the proposed approach to converge, 

thus making computational time slightly longer than the other three cases. Nevertheless, it 

is clearly shown that the ADMM approach is highly scalable and much faster than the 

centralized approach. 

 

Table 3.6 Comparison of centralized and distributed algorithms. 

 No. of houses 15 20 25 30 35 

Centralized 

Electricity cost ($) 2.48 2.53 3.26 3.66 n/a 

Discomfort cost ($) 2.02 2.06 1.99 1.99 n/a 

Total cost ($) 4.50 4.59 5.25 5.65 n/a 

Time (sec) 3600 3600 3600 3600 3600 

Distributed 

(ADMM-based) 

Electricity cost ($) 1.93 1.97 1.90 1.94 1.98 

Discomfort cost ($) 3.03 3.14 3.01 3.19 3.04 

Total cost ($) 4.96 5.11 4.91 5.13 5.02 

Time (sec) 68.63 68.10 31.21 24.31 34.35 

Note: The computing time limit for the centralized approach is 1 hour (3600 sec), and the centralized approach 

cannot converge to a solution with 35 houses or more. 
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Further, Table 3.6 shows that the centralized solution approach performs slightly better 

than the distributed ADMM algorithm when the total number of houses is 20 or less, which 

is reasonable; when the house number grows to 25 or 30, the ADMM outperforms the 

centralized approach because the problem scale is large and the centralized solver essentially 

gives a sub-optimal solution; further, when the house number is 35 or more, the centralized 

approach cannot converge. This clearly demonstrates that the centralized approach is not 

scalable, while the distributed ADMM shows a very consistent performance.  

Thus, the comparative study results in Table 3.6 present a benchmarking performance of 

centralized and distributed algorithms at increasing system scales, and these results have 

achievable values for future research works. 

3.6 Chapter Summary 

In this chapter, a scalable residential DR management solution is proposed for a 

hierarchical network structure, which is composed of a utility, LAs, and residential 

customers, to maximize community social welfare. However, this centralized model is 

neither directly solvable nor feasible due to the problem size and data privacy issues. 

Therefore, the ADMM is applied to decompose the centralized model into a utility-level sub-

problem and a set of house-level sub-problems to reduce computational complexity. 

Since the optimization model can be solved in a distributed manner, the proposed 

approach is especially applicable to distribution networks with large numbers of houses. The 

information exchange among the utility, LAs, and customers is limited to power 

consumption, the dual variable of the power balance equation, and the primary residual, 

which considerably protects customer privacy and makes the approach more practical. 
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Further, a comparative study is given in the case study section to present a benchmarking 

performance of the centralized and distributed ADMM algorithms with increasing system 

scales, and it provides references for future research works. 

The limitation of this chapter is that the proposed DR management approach assumes 

the utility has the full information of the electricity cost function. However, in an open-

market environment, the impact of day-ahead locational marginal price and real-time pricing 

signals on residential DR program performance should also be considered. 
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Chapter 4 A Comprehensive Scheduling Framework 

using Stochastic Programming-Alternating Direction 

Method of Multipliers for Residential Demand Response 

with Weather and Customer Uncertainties  

This chapter presents a comprehensive scheduling framework for residential DR 

programs considering both the day-ahead and real-time electricity markets. In the first stage, 

residential customers determine the operating status of their responsive devices such as 

HVAC systems and EWHs, while the distribution system operator (DSO) computes the 

amount of electricity to be purchased in the day-ahead electricity market. In the second stage, 

the DSO purchases insufficient (or sells surplus) electricity in the real-time electricity market 

to maintain the supply-demand balance. Due to computational complexity and data privacy 

issues, the proposed model cannot be directly solved in a centralized manner, especially with 

a large number of uncertain scenarios. Therefore, this chapter proposes a combination of the 

SP and the ADMM algorithms, called SP-ADMM algorithm, to decompose the original 

model and then solve each sub-problem in a distributed manner while considering multiple 

uncertain scenarios. The simulation study is performed on the IEEE 33-bus system including 

121 residential houses. The results demonstrate the effectiveness of the proposed approach 

for large-scale residential DR applications under weather and customer uncertainties.  
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Nomenclature 

Sets and Indices 

d Index of iterations. 

NM / j, k Set / index of buses (aggregators). 

Ck Set of child buses of bus k. 

NN / i Set / index of residential customers. 

Ns / s Set / index of scenarios. 

NT / t Set / index of time. 

Parameters 

a / b Electricity cost coefficients. 

cwater Specific heat capacity of water (J/(kg·℃)). 

C
house 

i  Thermal capacitance of house i (J/℃). 

C
wh 

i  Thermal capacitance of the EWH in house i (J/℃). 

m
water 

i,t,s  Hot water consumption of house i at time t in scenario s (kg). 

p
hvac 

i  / q
hvac 

i  Real/reactive power rating of the HVAC in house i (kW). 

p
nr 

i,t,s / q
nr 

i,t,s Real/reactive load of the non-responsive devices in house i at time t in 

scenario s (kW). 

pcc

P  Maximum contracted load limit at the PCC (kW). 

p
pv 

i,t,s PV generation of house i at time t in scenario s (kW). 

p
wh 

i  / q
wh 

i  Real/reactive power rating of the EWH in house i (kW). 

r
line 

j-k  / x
line 

j-k  Resistance/reactance of the distribution line connecting bus j and bus 

k (Ω). 

R
house 

i  Thermal resistance of house i (℃/kW). 

R
wh 

i  Thermal resistance of the EWH in house i (℃/kW). 

/
inin
iiT T  Minimum/maximum indoor temperature limit of house i (℃). 

T
ins 

i  Indoor temperature setpoint of house i (℃). 

T
out 

i,t,s Outdoor temperature forecast at time t in scenario s (℃). 
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/
whwh
iiT T  Minimum/maximum water temperature limit of the EWH in house i 

(℃). 

T
whs 

i  Hot water temperature setpoint of house i (℃). 

Vpcc Voltage magnitude at the PCC. 

α / β Weight factors ($/℃). 

εR / εS Primary/secondary tolerance value. 

Δt Length of the time interval. 

λrtp / λrts Electricity purchasing/selling price in the real-time market ($/kW). 

λvio Peak load violation rate ($/kW). 

ρ Penalty factor of the augmented Lagrangian term. 

Continuous Variables 

dis
hvac 

i,t,s  Indoor temperature discomfort of customer i at time t in scenario s (℃). 

dis
wh 

i,t,s Water temperature discomfort of customer i at time t in scenario s (℃). 

p
cus 

i,t,s / q
cus 

i,t,s Real/reactive load of house i at time t in scenario s (kW / kVar). 

p
agg 

j,t,s  / q
agg 

j,t,s  Real/reactive load of aggregator j at time t in scenario s (kW / kVar). 

p
line 

j-k,t,s / q
line 

j-k,t,s Real/reactive power flowing from node j to node k at time t in scenario 

s (kW / kVar). 

p
da 

t,s  The amount of electricity purchased from the day-ahead market at time 

t in scenario s (kW). 

p
pcc 

t,s  Actual load at the PCC at time t in scenario s (kW). 

p
rtp 

t,s  / p
rts 

t,s  The amount of electricity purchased from/sold to the real-time market 

at time t in scenario s (kW). 

p
vio 

s  The maximum amount of load that exceeds the contracted load limit in 

scenario s (kW). 

Rt,s Primal residual of the ADMM at time t in scenario s. 

Si,t,s Secondary residual of house i at time t in scenario s. 

T
in 

i,t,s Indoor temperature of house i at time t in scenario s (℃). 

T
wh 

i,t,s Water temperature of the EWH in house i at time t in scenario s (℃). 

Vj,t,s Voltage magnitude of bus j at time t in scenario s. 
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λt,s Dual variable associated with the power balance equation at time t in 

scenario s. 

Binary Variables 

b
hvac 

i,t  Operating status of the HVAC in house i at time t. 

b
wh 

i,t  Operating status of the EWH in house i at time t. 

4.1 Introduction 

The ever-increasing electric load and renewable integration have posed severe threats to 

the secure and economic operations of power grids [102]-[103]. One solution to address this 

challenge is implementing the DR [104]. Existing DR programs are primarily designed for 

industrial and commercial customers, who tend to have larger electric loads that are more 

easily targetable [54]. However, residential loads account for 38% of the total energy 

consumption in the United States, indicating the significant potential in this sector [105]. 

Since residential loads are composed of numerous low-capacity home appliances, it is 

imperative to have an effective algorithm that can coordinate the operating schedules of 

residential components and devices at scale to improve DR impact and performance [55]. 

In recent years, advances in communication technology have provided tremendous 

opportunities for grid operators to send messages to (or receive messages from) residential 

customers through secured two-way communication channels [57]. With the support of 

HEMSs, DSOs can connect with customers to realize system-wide control objectives, e.g., 

DR. Existing control structures for residential DR programs are categorized into centralized 

and distributed approaches [25]. In [62] and [63], residential DR management problems are 

formulated as centralized models, where the control actions are computed and executed by 

the control center according to the measurements from sub-systems. Centralized approaches 
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are straightforward and applicable to small-scale networks with customers sharing common 

goals. However, end-users may have to release their device operation information and allow 

the utility to control their appliances. Moreover, as the number of customers grows, the 

computational complexity will be significantly increased. In [64] and [65], distributed 

residential DR models are proposed, where customers independently conduct local 

optimizations to determine the optimal scheduling of devices. The major part of the 

calculation is performed by local HEMSs, distributing the intelligence and reducing the 

centralized computational requirements. Since each HEMS is independent, calculations are 

all run in parallel, reducing the needed computational time. Meanwhile, privacy can also be 

better protected, as only minimal information is shared with the electric utility company. 

In addition to scalability and privacy issues, DR programs may also confront challenges 

of handling uncertain parameters, e.g., weather and customer uncertainties [106]-[108]. The 

conventional approach is to treat uncertain parameters as fixed values. However, as 

forecasting technology is still immature, extra spinning reserve capacity and supplemental 

reserve have to be ensured, which increases the electricity cost [109]. To address this 

challenge, attention has been paid to optimization methods that model uncertainty and 

fluctuation as non-constant values [110]. In [111], a robust optimization model is proposed 

to shave the system peak load and reduce residential customers’ electricity bills while 

considering weather and occupancy uncertainties. The results indicate that the aggregator 

can still reduce the peak load even in the worst case where none of the customers agree with 

the system-level objectives. Generally, the inputs for robust optimization are the bounds of 

the uncertain parameters. This allows robust optimization to avoid the risks of constraint 

violations in extreme conditions. In [112], a SP model for HEMSs is presented, which aims 
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to reduce customers’ electricity costs while considering the uncertainties of the availability 

of electric vehicles (EVs) and renewable generation. The results demonstrate that residential 

customers can save up to 31% as compared to the deterministic approach. Unlike robust 

optimization, SP assumes the uncertain parameters comply with certain probabilistic 

distributions, such that it can be converted to an equivalent deterministic problem. In [113], 

SP and robust optimization are applied to solve a real-time price-based DR management 

problem. The results suggest that both approaches can mitigate the financial risk introduced 

by the price uncertainty. Another observation is that SP has higher computational 

requirements but yields a lower electricity cost solution as compared to robust optimization. 

To conclude, even though previous works have already explored the parameter 

uncertainty problems in DR, there is still a lack of a comprehensive scheduling framework 

to coordinate the operating schedules of numerous home devices at scale while considering 

the weather and customer uncertainties. The main contributions of this chapter are 

summarized as follows: 

1) a comprehensive scheduling framework that considers both the day-ahead and real-

time electricity markets is proposed to mitigate the impacts of weather and customers’ 

behavior uncertainties on residential DR performance; 

2) a limited information exchange mechanism is developed among the DSO, LAs, and 

customers to better protect residential customers’ privacy; and 

3) a new solution algorithm called SP-ADMM is proposed which combines the SP and 

ADMM algorithms. The proposed SP-ADMM model decomposes the original model into 

sub-problems to ensure the feasibility of the proposed algorithm for large-scale applications 

while considering a large number of uncertain scenarios. 
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The rest of this chapter is structured as follows: Section 4.2 presents the architecture of 

the residential distribution networks, Section 4.3 formulates the proposed comprehensive 

framework for residential DR, Section 4.4 discusses the solution algorithm, Section 4.5 

conducts the case studies, and Section 4.6 concludes the chapter. 

Notation conventions: superscript hvac refers to HVAC, superscript wh refers to EWH, 

superscript cus refers to residential customers, superscript agg refers to LAs, and superscript 

line refers to distribution lines. 

4.2 Distribution network architecture 

Four types of uncertain parameters are studied in this chapter, including 1) outdoor 

temperature, 2) solar generation, 3) non-responsive load, and 4) hot water consumption. To 

reduce the impact of uncertain parameters on residential DR, a two-stage scheduling model 

has been formulated. In the first stage, residential customers determine the operating status 

of responsive devices, while the DSO computes the amount of electricity to be purchased in 

the day-ahead market. In the second stage, the DSO purchases insufficient (or sells surplus) 

electricity in the real-time market to maintain the supply-demand balance. A graph 

illustrating this process is provided in Figure 4.1. 
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scenario 1

scenario 2

scenario 3

scenario 4

scenario s

day-ahead real-time timeline

• DA electricity purchase

• HVAC and EWH scheduling • RT electricity purchase/sell

scenario 

realization

 
Figure 4.1 The proposed two-stage residential management approach. 

 

4.3 Problem formulation 

The proposed residential distribution network has a three-level hierarchical architecture, 

including the DSO, LAs, and residential customers, which are the top, middle, and bottom 

levels, respectively. In this study, LAs are the intermediates between the DSO and customers. 

The reason for introducing LAs is that the flexible load resource of a single residential 

customer is far less than the DSO’s minimum capacity threshold. LAs can collect small load 

resources for the DSO and help residential customers to participate in the electricity market 

[80]-[82]. Moreover, LAs reduce DSO communication requirements since communication 

needs are now reduced to a single entity instead of many assets. 

Further, it is assumed that the residential customers are clustered by geographical 

locations and interconnected to the distribution system through LAs. From the power flow 

viewpoint, LAs are treated as buses and interconnected to form a distribution network. At 

the house level, HEMSs are responsible for receiving data from LAs and local weather 

service centers to perform optimization and decision-making on behalf of customers. The 

responsive devices considered in this study are HVACs systems and EWHs. 



 

Xiao Kou (August 2020)  77 

4.3.1 Objective function 

The objective of the residential DR program is to maximize community social welfare, 

as described by: 

 ( ) ( )min ,f x E Q x  
 +  (4.1) 

 ( ) ( )
2

T

da da

t t

t N

f x a p b p


=  +  
   (4.2) 

 ( ) ( ) ( ), , , , , ,,
T T N

vio vio rtp rtp rts rts hvac wh

s t s t s i t s i t s

t N t N i N

Q x p p p dis dis     
  

=  +  −  +  +     (4.3) 

where f(x) represents the first-stage objective, Q(x, ξ) represents the second-stage objective, 

(4.2) calculates the DSO’s electricity purchasing cost in the day-ahead market represented 

by a quadratic function [84], (4.3) calculates the sum of peak load violation charge, 

electricity trading cost in the real-time market, and customers’ discomfort cost. Note that in 

(4.3), the peak load violation charge is defined as the product of a peak load violation rate 

and the maximum amount of load that exceeds the contracted load limit at the PCC [114]. 

The load violation amount can be calculated from (4.4) and (4.5). In this chapter, the peak 

load violation rate is set to $10/kW. 

 , , ,

pcc da rtp rts

t s t t s t sp p p p= + −  (4.4) 

 ( ),= max ,0    for all 
pccvio pcc

s t s Tp p p t N−   (4.5) 

4.3.2 HVAC model 

The input parameter for the HVAC model is the day-ahead outdoor temperature forecast 

in each scenario. The HVAC model is represented by: 
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 , , , 1, , , , 1, ,[( ) / ] /in in out in house hvac hvac house

i t s i t s i t s i t s i i t i iT T T T R b p t C− −= + − −    (4.6) 

 , ,

inin in
ii i t sT T T   (4.7) 

 , , , ,

hvac in ins

i t s i t s idis T T= −  (4.8) 

where (4.6) calculates the indoor temperature of house i at each time in different scenarios, 

(4.7) is the minimum/maximum indoor temperature limit constraint for each house, and (4.8) 

calculates customers’ discomfort due to indoor temperature deviating from the setpoint in 

different scenarios. The detailed parameter settings of HVAC are given in Table 4.1, and the 

power factor of HVAC is set to 0.81. 

4.3.3 EWH model 

Similar to the HVAC model, the input parameter for the EWH model is the indoor 

temperature and the amount of hot water consumption in each scenario. The discrete-time 

form of the EWHs model is represented by: 

 ( ), , , 1, , , , 1, , , , 1, , , ,[( ) / ] /wh wh in wh wh water water wh in wh wh wh

i t s i t s i t s i t s i i t s i t s i t s i t i iT T T T R c m T T b p t C− − −= + − −  − +    (4.9) 

 , ,

whwh wh
ii i t sT T T   (4.10) 

 , , , ,

wh wh whs

i t s i t s idis T T= −  (4.11) 

where (4.9) calculates the water temperature of house i at each time in different scenarios, 

(4.10) is the minimum/maximum water temperature limit constraint for each house, and 

(4.11) calculates customers’ discomfort due to water temperature deviating from the setpoint 

in different scenarios. The detailed parameter settings of EWH are given in Table 4.2, and 

the power factor of EWH is set to 1.0. 
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Table 4.1 Parameter settings of the HVAC. 

C
house 

i  U[1.0, 1.5] J/℃ R
house 

i  U[6.4, 9.6] J/℃ 

P
hvac 

i  3.5 kW T
ins 

i  U[21, 23] ℃ 

T
in 

i  T
ins 

i -1℃ T
in 

i  T
ins 

i +1℃ 

 

 

Table 4.2 Parameter settings of the EWH. 

C
wh 

i  U[0.1, 0.15] J/℃ R
wh 

i  U[48.0, 72.0] J/℃ 

P
wh 

i  2.5 kW T
whs 

i  U[55.0, 57.5] ℃ 

T
wh 

i  T
whs 

i -5℃ T
wh 

i  T
whs 

i +5℃ 

 

 

4.3.4 Load model 

In this chapter, the power output of the solar PV is viewed as a negative load. Therefore, 

the load of each house is equal to the sum of the responsive load (including HVAC and EWH) 

and the non-responsive load minus the solar generation. The load model is given by: 

 , , , , , , , ,

hvac hvac wh wh nr pv

i t s i i t i i t i t s i t sp p b p b p p=  +  + −  (4.12) 

 , , , , , ,

hvac hvac wh wh nr

i t s i i t i i t i t sq q b q b q=  +  +  (4.13) 

where (4.12) calculates the real power load of each house in different scenarios, and (4.13) 

calculates the reactive power load of each house in different scenarios. 

4.3.5 Network model 

The DistFlow equations in [87] are applied to solve the network flow problem in the 

distribution network. The detailed mathematical formulations for distribution network flow 

are given as follows: 
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 , , , ,

agg cus

k t s i t s
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

=   (4.14) 

 , , , ,

agg cus

k t s i t s

i k

q q

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 ( ) ( ) ( ) ( ) ( ) ( )
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 ( ) ( ) ( ) ( )
2 2 22

, , , , , , , ,

line line line

j k t s j k t s j t s j k t sq Ip V− − −+     (3.19) 

 , 0 1, ,

pcc line

t s t sp p −=   (3.20) 

where (4.14) calculates the net real load at aggregator k in different scenarios, (4.15) 

calculates the net reactive load at aggregator k in different scenarios, (3.16) and (3.17) 

respectively represent the real and reactive branch power flow of line j-k at time t in different 

scenarios, (3.18) calculates the voltage magnitude of each bus k at each time in different 

scenarios, (3.19) is the conic constraints, and (3.20) is the power balance constraint at the 

PCC. 

Notice that constraints (3.16)-(3.18) are linear if (Vj,t,s)
2 , (Vk,t,s)

2, and (I
line 

j-k,t,s)
2 are viewed 

as variables, and eq. (3.19) becomes a second-order cone constraint after relaxing the “equal” 

sign to the “less than or equal to” sign. 

4.4 Solution methodology 

The above model involves a large amount of variables if a centralized optimization 

algorithm is applied. For example, in the next section of case studies, the IEEE 33-bus 

system including 121 residential houses will be used as the test system, where the 

optimization problem has 887,040 continuous variables, 23,232 binary variables, 654,720 

equality constraints, and 1,059,168 inequality constraints. 
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Due to the massive problem size, it would be difficult to directly solve this model with 

available solvers. Therefore, the ADMM is introduced to decompose the original problem 

into a DSO-level problem and a set of house-level sub-problems to reduce the computational 

complexity. Meanwhile, there are multiple uncertain scenarios in the residential DR 

behavior, so a mathematical model considering such uncertainties must be addressed as well. 

Therefore, a solution algorithm called SP-ADMM, which combines SP and ADMM to solve 

the model in section 4.3 is proposed. The proposed SP-ADMM algorithm for solving 

comprehensive DR scheduling is illustrated next.  

In this chapter, f(x) represents the customers’ objective that aims to minimize the indoor 

temperature and water temperature discomfort cost. The decision variable x includes the 

operating schedules of HVACs and EWHs for the next day. g(z) represents the utility’s 

objective function that aims to minimize the contracted load violation charge plus the 

electricity purchasing cost in both the day-ahead and real-time electricity markets. The 

decision variable z is the amount of electricity purchased from (or sold to) the electricity 

markets. Moreover, the coupling constraint is the supply-demand balance constraint in 

(3.20), which contains variables from both the utility-level and house-level (since the LAs 

do not have objective functions and are only responsible for aggregating the house-level 

load). Therefore, the proposed centralized model can be decomposed into a utility-level 

optimization problem and a set of house-level optimization problems. The primary residual 

and the secondary residual are calculated by (4.21) and (4.22), respectively: 

 ( ) ,( ) ,( )

0 1,

d pcc d line d

s s sR p p −= −  (4.21) 

 ( )( ) ,( ) ,( 1)

, , ,

k cus d cus d

i s i s i sS p p −=  −  (4.22) 

The dual variable associated with the coupling constraint is calculated by: 
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 ( ) ( 1) ( )d d d

s s sR  −= +   (4.23) 

After the decomposition, the deterministic equivalent of the house-level optimization 

problem can be represented by: 
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where the first two terms minimize the customers’ discomfort cost, and the remaining terms 

present the penalty for violating the power balance constraints. 

The constraints for the house-level optimization problem are (4.6)-(4.13), and (4.22). 

The aggregator-level calculation collects local real and reactive load information and 

reports it to the DSO, as given by (4.14)-(4.15). 

The deterministic equivalent of the DSO-level objective function becomes: 
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 (4.25) 

where the first two terms represent the electricity purchasing cost in the day-ahead market, 

the third term is the peak load violation charge, the fourth and fifth terms are the cost/revenue 

for trading electricity in the real-time electricity market, and the rest represents the penalty 

terms for violating the power balance constraints. 

The constraints for the DSO level optimization problem are (4.4)-(4.5), (3.16)-(3.19), 

(4.21), and (4.23). 
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In summary, the messages sent from the DSO through LAs to all the customers are arrays 

that contain the dual variable associated with the power balance equation and the primary 

residual of the ADMM in each scenario. The messages sent from customers to their 

corresponding LAs are arrays that contain the total real and reactive load usage data in each 

scenario. Finally, the messages sent from LAs to the DSO are the total real and reactive 

power consumption within their service region in each scenario. 

The flowchart of using SP-ADMM to solve the two-stage residential DR management 

problems is given in Figure 4.2.  

 

 

 
Figure 4.2 Flowchart of the proposed algorithm. 

 

HEMS determines the operation 

schedules of responsive devices

HEMS sends the total load 

information to its aggregator

Aggregator sends aggregated load 

information to DSO

DSO solves the sub-problem and 

broadcasts λt, Rt to aggregators.

Aggregators pass through the λt 

and Rt information to the houses

end

k = k +1

HEMS pulls weather forecast data

k = 0

Y

N
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During the iteration process, the house-level HEMS receives the arrays of the dual 

variables associated with the power balance equations and the primal residual of the ADMM 

in each scenario, then it updates the real/reactive load consumption data in each scenario 

accordingly. The aggregator is responsible for calculating the total load within its service 

region and passing the information to the DSO. Finally, the DSO receives the real/reactive 

load information from each aggregator and updates the primal residuals and dual variables 

associated with the coupling constraints in each scenario. The iteration will stop when both 

||R
(k) 

s ||2 and ||S
(d) 

i ||2 satisfy the tolerance criteria. 

4.5 Case study 

The proposed algorithm is tested on the IEEE 33-bus system including 121 residential 

houses. As previously mentioned in the beginning paragraph in Section 4.4, the optimization 

model has 887,040 continuous variables, 23,232 binary variables, 654,720 equality 

constraints, and 1,059,168 inequality constraints. This level of complexity, as well as the 

privacy protection and uncertain scenarios, motivates the proposal of the SP-ADMM 

approach. The solution is done through a hybrid simulation platform, MATLAB and GAMS. 

The hardware environment is a laptop with Intel i7 1.90GHz CPU and 16.00GB RAM. The 

utility-level sub-problem is solved by CPLEX and MINOS, and the house-level sub-

problems are solved by SCIP. 

4.5.1 Parameter settings 

The time resolution of the case study is 15 minutes, and the total time horizon is 24 hours. 

The total number of houses is 121. The number of residential houses allocated to different 

LAs are based on the original load at each bus in the IEEE 33-bus system [94]. 
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Figure 4.3 Configuration of the IEEE 33-bus test system. 

 

There are 31 houses that have HVAC, EWH, and PV installed, while the other 90 houses 

only have HVACs and EWHs installed. The discomfort weight factor for indoor temperature 

is $0.05/℃, and the discomfort weight factor for water temperature is $0.01/℃. These 

weights are empirically chosen and also aligned with the parameters in the previous work 

[115]. 

 

 
Figure 4.4 Outdoor temperature and solar generation data for generating samples. 
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Figure 4.5 Non-responsive load data for generating samples. 

 

Table 4.3 Range of uncertain parameters. 

Parameter Lower range Upper range 

Outdoor temperature -20% +20% 

Solar output -20% +20% 

Non-responsive load -20% +20% 

Water consumption -20% +20% 

 

 

Table 4.4 Probability of each scenario. 

Scenario 1 2 3 4 5 6 7 8 9 10 

Probability 0.08 0.11 0.04 0.16 0.11 0.07 0.13 0.16 0.07 0.07 

 

 

The outdoor temperature and standard solar output forecast information data for 

generating the test scenarios are plotted in Figure 4.4, and the non-responsive load data for 

generating the test scenarios is given in Figure 4.5. Moreover, Monte Carlo sampling is 

employed to provide variation and uncertainty in different scenarios. The ranges of the 
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uncertain parameters are given in Table 4.3. Consequently, 100 samples are generated 

according to the PDF of the uncertain parameters. 

Since it is intractable and time-consuming to include all the samples into considerations, 

scenario reduction is conducted to reduce the computational burden [116]. First, the min-

max normalization is applied to rescale different uncertain parameters, then used the 

SCENRED tool in GAMS to reduce the number of scenarios [93][117]-[118]. By applying 

the fast-backward algorithm, a subset of scenarios is selected from the initial samples and 

each of them is assigned with a new probability. Thus, the initial 100 samples are reduced 

to 10 scenarios considering the tradeoff between accuracy and computational time. The 

resulting probabilities of the reduced scenarios are given in Table 4.4. 

Also, three test cases are designed to compare the performance of different DR 

management approaches. In Case 1, the responsive devices do not change their operating 

status unless the indoor/water temperature falls out of the pre-specified boundaries (i.e., 

conventional thermostatic control). In Case 2, the DSO treats uncertain parameters as fixed 

values and applies the deterministic ADMM to coordinate the operating schedule of 

responsive devices. Finally, Case 3 implements the SP-ADMM algorithm to manage the 

operating schedules of residential components. 

4.5.2 Simulation results 

Figure 4.6 and Table 4.5 compare the resulted load profiles in different cases. In Case 1, 

the peak load of the DSO is 445.50 kW and appears in Scenario 10 after the scenario 

reduction. The weighted average peak load of the DSO for all the scenarios is 416.97 kW. 

Therefore, both the peak and average loads exceed the 390-kW contracted load limit. In Case 
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2, the peak load of the DSO is 422.63 kW and appears in Scenario 5 after the scenario 

reduction. The weighted average peak load of the DSO for all the scenarios is 403.70 kW. 

In Case 3, the peak load of the DSO is further reduced to 386.28 kW and it appears in 

Scenario 10 after the scenario reduction. The weighted average peak load of the DSO for all 

the scenarios is 374.42 kW. 

 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Figure 4.6 Load profiles in different test cases. 



 

Xiao Kou (August 2020)  89 

Table 4.5 Peak load in different cases. 

Scenarios 1 2 3 4 5 6 7 8 9 10 

Case1 (kW) 407.18 389.67 430.41 431.84 386.58 419.25 440.00 418.93 399.05 445.50 

Case2 (kW) 390.88 416.38 390.86 399.86 422.63 398.24 417.49 388.22 400.98 402.75 

Case3 (kW) 372.21 378.26 384.74 375.10 383.96 353.56 383.06 361.31 371.44 386.28 

 

Table 4.6 Peak load violation in different cases. 

Scenarios 1 2 3 4 5 6 7 8 9 10 

Case1 (kW) 17.18 0 40.41 41.84 0 29.25 50 28.93 9.05 55.50 

Case2 (kW) 0.88 26.38 0.86 9.86 32.64 8.24 27.49 0 10.98 10.75 

Case3 (kW) 0 0 0 0 0 0 0 0 0 0 

 

Table 4.6 provides the peak load violation in different cases. It is observed that the 

highest average peak load charge appears in Case 1, which is $27.38. By applying the 

deterministic ADMM approach, the average peak load charge can be reduced to $13.85. The 

proposed SP-ADMM algorithm can further decrease the peak load charge to $0. From the 

graph and tables, it can be concluded that SP-ADMM significantly reduces the peak load 

and peak demand violation charge compared to the conventional control and deterministic 

ADMM control. 

Table 4.7 and Table 4.8 provide the average discomfort cost and average electricity cost 

of residential customers in different scenarios. It is observed that the customers in Case 1 are 

expected to have more discomfort and pay higher costs than the customers in the other two 

cases. The sum of the discomfort and electricity costs in Case 1 is $13.64. In Case 2, either 

the discomfort or electricity cost is lower than that in Case 1. The total cost is reduced to 

$9.15, which is only about 67.08% of the cost in Case 1. In Case 3, the sum of the discomfort 

and electricity cost is $8.49, which is 62.24% of the cost in Case 1. Therefore, Case 3 gives 

the best performance. 
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Table 4.7 Average discomfort cost in different cases. 

Scenarios 1 2 3 4 5 6 7 8 9 10 

Case1 ($) 5.62 5.66 5.64 5.72 5.72 5.67 5.66 5.66 5.69 5.67 

Case2 ($) 4.02 3.88 3.99 3.78 3.93 3.83 3.67 3.62 3.75 3.83 

Case3 ($) 3.72 3.63 3.70 3.53 3.65 3.57 3.46 3.44 3.52 3.57 

 

Table 4.8 Average electricity cost in different cases. 

Scenarios 1 2 3 4 5 6 7 8 9 10 

Case1 ($) 12.23 11.23 14.31 5.32 8.67 5.10 4.69 6.39 10.67 9.06 

Case2 ($) 5.57 7.79 5.45 6.08 8.05 6.32 7.58 4.20 6.27 6.27 

Case3 ($) 4.93 4.91 4.82 4.80 4.89 4.78 4.95 4.98 5.15 5.18 

 

 

The impact of uncertainties on indoor temperature is also investigated, as shown in 

Figure 4.7. The minimum and maximum indoor temperature limits for house 1 are 20.50℃ 

and 22.50℃, respectively. In Case 1, the indoor temperature range of house 1 in all the 

scenarios is from 19.91℃ to 22.80℃. In Case 2, the indoor temperature range of house 1 in 

all the scenarios is from 20.78℃ to 22.76℃. In Case 3, the indoor temperature range of 

house 1 in all the scenarios is from 20.51℃ to 22.47℃. From Figure 4.7, it is observed that 

the indoor temperature deviation in Case 1 is much larger than that in the other two cases. 

Further, due to the outdoor temperature uncertainty, the indoor temperature in Case 2 may 

violate the temperature constraints. By contrast, the indoor temperature in Case 3 is always 

within the pre-defined limits. 
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(a) Case 1 

 

(b) Case 2 

 
(c) Case 3 

Figure 4.7 Indoor temperature of house 1 in different cases. 

 

Figure 4.8 shows the water temperature of house 1 in different cases. The minimum and 

maximum water temperatures for house 1 are 45.50℃ to 55.50℃, respectively. In Case 1, 

the water temperature range of house 1 in all the scenarios is from 44.30℃ to 58.90℃. In 

Case 2, the water temperature range of house 1 in all the scenarios is from 45.73℃ to 

55.01℃. In Case 3, the water temperature range of house 1 in all the scenarios is from 45.66 

to 55.27℃. Therefore, both the water temperature in Case 2 and Case 3 satisfy the pre-

defined limits. 
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(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Figure 4.8 Water temperature of house 1 in different cases. 

 

4.5.3 Discussions 

This section discusses the impact of scenario reduction on optimization results and 

computational time. First, three test cases are created, with each case having a different 

number of scenarios. Then the optimal operating schedules for these cases are solved and 

substituted back to the original 100 samples to evaluate system performance. The results are 

given in Table 4.9.  
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Table 4.9 Impact of scenario reduction on results. 

No. of scenarios 10 15 20 

Avg. peak load (kW) 386.06 380.93 384.63 

Avg. load violation (kW) 2.42 0.36 1.08 

Avg. discomfort cost ($) 3.68 3.46 3.49 

Avg. electricity cost ($) 5.49 6.28 6.01 

Avg. total cost ($) 9.37 9.77 9.59 

 

 

The table shows the average peak load in all three cases are below the 390-kW contracted 

limit. The average load violations in the three cases are 2.42 kW, 0.36 kW, and 0.18 kW, 

respectively. Further, when the number of scenarios is 10, residential customers would pay 

less for electricity costs, but they are also expected to experience more discomfort than in 

cases with higher numbers of scenarios. From the results, it is concluded that the difference 

among the results in the three cases is not significant, and therefore setting the number of 

scenarios to 10 does not much affect the system performance. 

Further, the computational time of the proposed approach is given in Table 4.10. The 

proposed approach takes nine iterations to converge. 

 

Table 4.10 Computational time of the proposed method. 

Iteration 1 2 3 4 5 6 7 8 9 

DSO (sec) 0.34 0.32 0.37 0.33 0.34 0.34 0.33 0.38 0.33 

House (sec) 304.07 2.07 13.69 5.86 13.70 3.68 11.75 2.34 2.12 
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Since the house-level optimization is run in parallel, the computational time of each 

iteration is determined by the house, which has the largest computational time. Also, the 

house-level model is a mixed-integer quadratic programming problem, and the first iteration 

has the longest computational time (for initializing the problem). For the utility-level, it only 

takes around 0.5 seconds to finish the calculation in each iteration. The total computational 

time for solving the residential DR problem with the SP-ADMM algorithm is 6 minutes 3 

seconds. Since the communication delay among different agents is not considered in this 

chapter, the time consumption in practical applications would be slightly longer than the 

times in Table 4.10. From the table, it is concluded that the proposed algorithm satisfies the 

computational time requirements for residential DR applications. 

4.6 Chapter Summary 

This chapter presents a comprehensive scheduling framework for scalable residential DR 

programs considering day-ahead and real-time electricity market operations. Due to 

computational complexity and privacy concerns, the model is not suitable for a DSO to solve 

as a centralized optimization, especially when multiple uncertain scenarios must be 

considered in the DR programs. Therefore, this chapter proposes a new algorithm combining 

SP and ADMM to form the SP-ADMM algorithm, which can decompose the original 

centralized DR scheduling model to a utility-level problem and a set of house-level sub-

problems to distribute the computational complexity and to incorporate multiple uncertain 

scenarios. 

The case study demonstrates that the proposed approach can reduce customers’ 

electricity bills, discomfort, and the peak load at the utility level. Since the optimization 

model is solved in a distributed manner, increasing the number of houses does not affect the 
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number of variables. Thus, it does not significantly impact the computing performance. 

Therefore, the proposed approach is applicable to large scale applications. The information 

exchange among the utility, LAs, and customers is limited to real and reactive power 

consumption, dual variables, and the power mismatch in each scenario, which protects 

customers’ privacy. Finally, the results show that the proposed SP-ADMM model can 

improve residential DR performance and prevent constraint violations as compared to the 

conventional and deterministic ADMM approaches. 
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Chapter 5 Deep Deterministic Policy Gradient Based Heating, 

Ventilation, and Air Conditioning Control Strategy for 

Residential Demand Response Programs 

Model-based residential DR methods can significantly reduce customers’ electricity 

costs and the peak load at the utility level when the thermodynamic behaviors of buildings 

are accurately modeled. However, it may not always be possible to use functional 

relationships to describe complex temperature dynamics in the real world. Further, 

parameters, such as the thermal resistance and thermal capacitance of buildings, are usually 

not readily available. To overcome these challenges, a DDPG based HVAC control strategy 

is presented in this chapter for residential DR programs. The proposed approach does not 

require detailed building models or day-ahead weather forecast information. Rather, it 

continuously interacts with the environment and determines HVAC control actions based on 

the current outdoor temperature, current indoor temperature, current time, and non-

dispatchable load information. The simulation study is conducted on a one hundred house 

system, and the results are compared with that of the conventional thermostatic and model-

based approaches to demonstrate the performance.   

Nomenclature 

Sets and Indices 

NN / i Set/index of residential houses. 

j Index of sample. 

k Index of iteration. 
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NT / t Set / index of time. 

Parameters 

M Size of the mini-batch in DDPG. 

NE Number of episodes. 

p
hvac 

i  Power rating of the HVAC in house i (kW). 

p
nr 

i,t  Real load of the non-responsive devices in house i at time t (kW). 

pcc

p  Maximum contracted load limit at the PCC (kW). 

in

iT  Minimum indoor temperature of house i (℃). 

in

iT  Maximum indoor temperature of house i (℃). 

T
ins 

i  Indoor temperature setpoint of house i (℃). 

T
out 

t  Outdoor temperature at time t (℃). 

α Discomfort weight factor ($/℃). 

ηQ Learning rate of the critic network. 

ηπ Learning rate of the behavior network. 

λvio Peak load violation charge ($/kW). 

Variables 

b
hvac 

i,t  ON/OFF status of the HVAC. 

costi,t Electricity cost of house i at time t ($). 

dis
hvac 

i,t  Indoor temperature discomfort of customer i at time t (℃). 

p
cus 

i,t  Real load of house i at time t (kW). 

p
pcc 

t  Aggregated load at the PCC at time t (kW). 

p
vio 

t  Amount of load violation at time t. 

Q Action value. 

ri,t Immediate reward of house i at time t 

T
in 

i,t  Indoor temperature of house i at time t (℃). 

π Policy. 

θ Weight factors in the neural networks. 
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5.1 Introduction 

As the electrical load continues to grow, there is an increasing need to examine 

opportunities of shifting the peak load to improve the utilization rate of electricity 

infrastructure. One method to realize this goal is to use some means of storing energy, for 

example, battery energy storage systems (BESS) [119]. However, building loads such as 

HVAC can also provide support through thermal energy storage via the building envelope 

[55]. The use of residential appliances is a potentially lower cost solution compared to the 

utilization of large ESSs [120]. 

Existing DR research has primarily focused on deployments for industrial or commercial 

customers [54]. These customers tend to have large loads that are more easily targetable by 

energy management systems. However, residential load accounts for 38% of the total 

electricity consumption in the United States (2013) and represent a significant missed 

opportunity [121]-[122]. Still, there are challenges to energy shifting for residential loads. 

Unlike the industrial or commercial load, the residential load is composed of numerous low-

power home appliances. In addition, the electricity consumption habits of residential 

customers are highly varied and dynamic.  

Many efforts have been dedicated to investigating load controls and optimizations in 

residential networks. In [123], a linear relationship among outdoor temperature, indoor 

temperature, HVAC coefficient of performance, and HVAC power rating is used to calculate 

the indoor temperature dynamics of residential houses in the direct load control programs.  

In [124], a HVAC equivalent thermal parameter model is utilized to evaluate the impacts of 

uncertain parameters (e.g. floor area, thermal resistance, and air change rate) on aggregate 

DR. In [125], a simplified differential equation is used to simulate HVAC cooling operations, 
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and formulas for calculating building thermal resistance and the air mass inside a building 

are provided. In [126], the RC model is employed to define the thermal dynamics of a 

building zone, where the thermal resistance and capacitance parameters are estimated from 

the construction data or measurement data by using a parameter identification technique. 

The literature review reveals that many researchers assume that the thermal dynamic 

behaviors of residential houses are accurately modeled. However, it may not always be 

possible to use the functional relationship to represent the complex temperature dynamics in 

real-world implementations. Moreover, parameters such as the thermal resistance and 

thermal capacitance of buildings are usually not readily available. 

In recent years, with the development of machine learning algorithms, considerable 

attention has been focused on using data-driven approaches to solve residential DR problems. 

In data-driven methods, the agents continuously interact with the environment and learn 

behaviors from experience to determine the control actions. In [127], model predictive 

control (MPC) based co-scheduling is compared to data-driven building automation 

algorithms. The results demonstrate that both approaches can achieve significant energy cost 

reductions. In [128], a reinforcement learning (RL) based bidding strategy is proposed for 

the HVAC systems in the double-auction markets, and the data-driven method performs 

similarly to the model-based bidding strategy. Further, in [129], a deep RL based algorithm 

is presented for building HVAC controls. The simulation shows that the proposed control 

strategy can reduce the energy cost while maintaining the indoor temperature within the 

desired range. 

In summary, these works demonstrate the significant potential of using data-driven 

approaches to reduce residential customers’ electricity bills. However, most of the literature 
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solely focuses on HVAC control within a single building, and lacks a control strategy to 

coordinate the operations of HVACs over a wide area with multiple residential houses to 

realize system-level objectives. To address this problem, a DDPG based HVAC control 

strategy is proposed for residential DR programs in this chapter. The main contributions of 

this chapter are listed as follows: 

1) a distributed system architecture to reduce the action space dimension and ensure the 

feasibility of the proposed approach for large-scale applications is presented, 

2) a RL based approach, which does not require detailed building models or day-ahead 

weather forecasting to determine the HVAC control actions is proposed 

3) the DDPG-based method is compared with conventional thermostat and model-based 

control approaches to demonstrate the performance. 

The rest of this chapter is organized as follows, Section 5.2 formulates the residential 

DR problem, Section 5.3 explains the HVAC control strategy with the DDPG algorithm, 

Section 5.4 conducts the case study, and Section 5.5 concludes the paper. 

5.2 Problem formulation 

5.2.1 System architecture 

As illustrated in Figure 5.1, the architecture of the proposed approach is composed of a 

utility and multiple residential customers. The benefit of using a distributed structure over a 

centralized structure is that the action space dimension of the agent is significantly reduced 

when the number of DR participants is large. Therefore, it is more applicable to scalable 

applications. 
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Figure 5.1 Illustration of the communication exchange in the proposed approach. 

 

In addition, the HVAC within each house is identified as a DR resource due to its large 

power ratings and thermal inertia (changing device operating status does not have a 

significant impact on customers’ comfort in the short term). It is assumed that the HEMS 

within each house is responsible for communicating with the utility on behalf of customers, 

providing training for the neural networks, and making HVAC control actions. 

5.2.2 Information exchange 

Figure 5.2 explains the process of information exchange between the utility and 

residential customers. Within each training episode, customers first send their non-

responsive load information to the utility. Then the utility calculates the aggregated non-

responsive load and broadcasts this information to all the customers. After receiving the 

aggregated non-responsive load messages, the HEMS in each house determines the 

operation status of the HVAC based on the system state, and reports the total load 

information to the utility. Finally, the utility calculates the electricity price and broadcasts it 

to all the customers. 

house 1 house i house NN

utility
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Figure 5.2 Information exchange between the utility and customers in each episode. 

 

5.2.3 System states 

The current system state is assumed to only be related to the system state and control 

action in the last time slot, and it is not related to the system states and actions in the other 

time slots. Therefore, the HVAC control problem is formulated as a finite Markov decision 

process [130]. Four features are identified to represent the system states, including: 

1) the current outdoor temperature: 
out

tT  

2) the current indoor temperature: ,

in

i tT  

3) the current time: t 

Start

Customers send the non-responsive load 

information to the utility

Utility calculates the sum of non-responsive 

load and broadcasts it to customers

Customers determine the HVAC on/off status

Customers report the total load information to 

the utility

t = 1

Utility broadcasts the electricity price 

t   NT?

End

Yes

No
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4) the sum of non-responsive load in the system at time t: ,

NN nr

i ti 1
p

= . 

5.2.4 Control actions 

The control actions (switching the HVAC on/off) are determined by the HEMS and based 

on the system states. Once a control action is made, the HEMS is not allowed to change the 

HVAC operation status until the next 15-minute time period comes. 

5.2.5 Reward function 

The objective of the residential DR program is to minimize the sum of electricity cost, 

discomfort cost, and load violation cost. The immediate reward of customer i at time t is 

calculated by: 

 , , ,

hvac vio vio

i t i t i t t Nr cost dis p N = − −  −   (4.1) 

where the first term is the electricity cost of customer i at time t, the second term is the 

discomfort cost of customer i at time t due to indoor temperature deviating from the setpoint, 

the third term represents the peak load violation charge when the peak load exceeds the 

contracted load limit at the utility level. 

The electricity cost term in eq. (4.1) is calculated by: 

 , , ,

cus hvac hvac nr

i t i i t i tp p b p=  +  (4.2) 

 ( ), ,

cus pcc

i t i t tcost p a p b=   +  (4.3) 

 

where eq. (4.2) calculates the total load of customer i at time t, eq. (4.3) calculates the 

electricity cost of customer i at time t, b
hvac 

i,t  is a binary variable that represents the operation 

status of the HVAC (1 means ON, and 0 means OFF). 
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The discomfort in eq. (4.1) is defined as the difference between the actual indoor 

temperature and the indoor temperature setpoint, as calculated by: 

 , ,

hvac in ins

i t i t idis T T= −  (4.4) 

Finally, the amount of peak load violation is calculated by eq. (4.5), and the peak load 

violation charge is set to $10/kW in this chapter. 

 ( )= max ,0
pccvio pcc

tP P P−  (4.5) 

5.3 HVAC control strategy with DDPG 

The goal of HVAC control is to maximize the sum of accumulative reward 
,

T

i i t

t 1

R r
=

=   

in each house. However, due to the complex thermodynamic behaviors of buildings and 

ambient weather disturbances, it is challenging to develop a function to describe indoor 

temperature dynamics with high accuracy. To overcome this challenge, the DDPG algorithm, 

which is a RL algorithm that combines the deep Q network and deep policy gradient, is 

applied to solve the HVAC control problem [131]. 

As illustrated in Figure 5.3, the DDPG is composed of four neural networks, including 

actor behavior network π(s|θπ), actor target network π’(s|θπ’), critic behavior network 

Q(s,a|θQ), and critic target network Q’(s,a|θQ’). The inputs to the actor networks are the 

system states, and the outputs from the actor networks are deterministic control actions. The 

inputs to the critic networks are the system states and control actions that are generated by 

the action network, and the outputs from the critic networks are the action values Q. 
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Figure 5.3 Information flow in the DDPG algorithm. 

 

During the training process, the equations for updating the critic networks are given by: 

 ( )
''

, , , , , , , , , ,, Q

i j t i j t i j t 1 i j t 1 i j t 1y r Q s a + + += +   (4.6) 

 ( ) ( ), , , , , , , ,min ,
M 2

Q Q

i i i j t i j t i j t i j t

j 1

L Q s a y M 
=

 = −
   (4.7) 

 , , ,

Q Q Q Q

i k 1 i k i kL   + = +    (4.8) 

 ( )
' '

, , ,

Q Q Q

i k 1 i k i k 11    + +=  + −   (4.9) 

where eq. (4.6) calculates the target Q value of house i at time t, eq. (4.7) is the loss function 

that minimizes the mean square error (MSE) between the target Q value and the behavior Q 

value, eq. (4.8) updates the weights in the critic behavior network, eq. (4.9) updates the 

weights in the critic target network, γ is the discounting factor, and ηQ is the learning rate for 

the critic behavior network. 

The equations for updating the actor networks are given by: 



 

Xiao Kou (August 2020)  106 

 ( ) ( ), , , , ,max , Q

i i i j i j t i j t i

j
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' '
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where eq. (4.10) is the loss function that maximizes the expected total reward under the 

policy π(s|θ
π 

i ), eq. (4.11) updates the weights in the actor behavior network, eq. (4.12) 

updates the weights in the actor target network, and ηπ is the learning rate for the actor 

behavior network. 

The details of the DDPG algorithm are provided in Algorithm 1. Within each episode, 

the actor behavior network first generates the probability distribution of the potential actions 

according to the current system state, and outputs the HVAC control action based on the 

logic in eq. (4.13). Then the replay buffer stores the transition (si,t, ai,t, ri,t, si,t+1) and randomly 

draw a mini-batch for training. After that, the current system state, the next system state, and 

the immediate reward are imported to the critic networks to evaluate the Q values. Finally, 

the weights in the actor networks are updated by the gradient descent method based on eq. 

(4.8)-(4.9), and the weights in the critic network are also updated by the gradient descent 

method based on eq. (4.11)-(4.12).  

 

 

( )( )

( )( )
, ,

,

,

,

,,

   if  or  and 

   if  or  and 

.

 0.5<

in inin in

i ii t i t

i t in inin in
i i

i t t

i t ti t i t

0 T T T T 0

a
1

s 0 5

sT 1T T T





   


= 
  





 (4.13) 

 

 

 

 



 

Xiao Kou (August 2020)  107 

 Algorithm 1: DDPG-based HVAC control strategy for residential demand response 
1. Randomly initialize the actor behavior network πi(s|θπ) and critic behavior network Qi(s,a|θQ) 

for each house. 

2. Initialize the actor target network πi’ and critic target network Qi’ for each house with weights 

θi
π→θi

π’ and θi
Q→θi

Q’ 

3. for episode = 1 to NE, do 

4.         for house = 1 to NN, do 

5.                 Initialize system state si(T
out 

t=0, T
in 

i,t=0, t=0, 
,

NN nr

i t 0i
P = ) 

6.                 for t = 1 to NT, do 

7.                         Action behavior network selects HVAC control action ai,t with πi(s|θπ) 

8.                         Execute action, receive immediate reward ri,t and the next system state si,t+1 

9.                         Store the transition (si,t, ai,t, ri,t, si,t+1) in the replay buffer. 

10.                       Collect a minibatch of transitions from the replay buffer 

11.                       Update the critic behavior network by minimizing the MSE in eq. (4.7)-(4.8). 

12.                    Update the actor behavior network by maximizing the expected total reward in  

eq. (4.10)-(4.11). 

13.                     Update the critic target network and the actor target network based on eq. (4.9) 

                            and eq. (4.12), respectively. 

14.                end for 

15.        end for 

16. end for 

 

By continuously interacting with the environment through offline training, the DDPG 

algorithm can learn what control actions to take under certain circumstances. Once the neural 

networks are well trained, the DDPG-based algorithm is used for online implementations. 

5.4 Simulation study 

In this section, the proposed DDPG-based HVAC control strategy is evaluated in a one-

utility one hundred-house test system. The results from the proposed reinforcement learning 

based approach are compared with the conventional thermostatic and distributed ADMM 

based controls to demonstrate the performance.  
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5.4.1 Parameter settings 

As shown in Figure 5.4, outdoor temperature data of 29 days in summer (the green lines) 

is used to train the neural networks in the DDPG, and the outdoor temperature data of another 

day (the purple line) is used for testing. 

The non-responsive load profile is given in Figure 5.5 [97]. Random samples from 

normal distributions of solar power outputs and non-responsive loads are considered for each 

house to provide variation [98]. 

 

 

 
Figure 5.4 Outdoor temperature profiles for training and testing. 

 

 
Figure 5.5 Non-responsive load profile. 
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Table 5.1 DDPG parameter settings. 

 Actor network Critic network 

Size of input [1,4] [1,5] 

No. of hidden layers 2 2 

Size of each hidden layer [4, 20], [20, 20] [5, 20], [20, 20] 

Activation function ReLU tanh 

Size of output [20, 1] [20, 1] 

Learning rate 0.01 0.01 

Discount factor n/a 1 

Size of mini-batch 96 

 

 

The HVAC power rating is set to 3.5 kW. The indoor temperature setpoint of each house 

is set as a random number between 21℃ and 23℃ to provide variation. The minimum 

temperature is one degree Celsius below the indoor temperature setpoint and the maximum 

temperature is one degree Celsius above the indoor temperature setpoint in each house. 

The DDPG parameter settings are provided in Table 5.1. There are two hidden layers in 

both the actor networks and the critic networks. Within each hidden layer, there are 20 

neurals. ReLU is selected as the activation function for the actor network, and tanh is selected 

as the activation function for the critic network. The learning rate is set to 0.01 and the decay 

factor in the critic network is set to 1. Finally, the number of episodes is set to 600. 

5.4.2 Results and discussions 

Three test cases are designed to compare the performance of different HVAC control 

strategies. In Case 1, the conventional thermostatic HVAC control strategy is applied, (i.e. 

the HVAC would not change their operating status unless the indoor temperature falls out 

of the pre-specified boundaries). In Case 2, the ADMM approach presented in Chapter 3 is 
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used to manage the operating schedule of HVACs. Finally, Case 3 implements the proposed 

DDPG-based HVAC control strategy for residential DR. 

Figure 5.6 compares the resulting load profiles in different cases. In Case 1, the peak 

load at the utility level is 280.39 kW, which exceeds the system contracted load limit of 255 

kW. The peak load in Case 1 appears at 6:15 pm. In Case 2, the peak load at the utility level 

is 254.77 kW, which satisfies the utility-level requirement. The peak load in Case 2 appears 

at 5:15 pm. In Case 3, the peak load is 256.52 kW, which is slightly above the contracted 

load limit but still considerably improves the system performance if compared to Case 1. 

The peak load in Case 3 appears at 7:45 pm. 

Table 5.2 compares the average cost of residential customers in different cases. The 

customers using the ADMM-based control strategy are expected to have greater cost savings 

and less discomfort than the other two cases, and the load violation charge in Case 2 is $0. 

 

 
Figure 5.6 Load profiles in different cases. 

 



 

Xiao Kou (August 2020)  111 

Table 5.2 Comparison of the average cost in different cases. 

 Conventional 

(Case 1) 

ADMM 

(Case 2) 

DDPG 

(Case 3) 

Average electricity cost ($) 3.55 3.27 3.57 

Average discomfort cost ($) 2.78 2.57 3.72 

Load violation (kW) 25.39 0 1.52 

Average load violation cost ($) 2.54 0 0.15 

Average total cost ($) 8.87 5.84 7.44 

 

The average electricity cost and average discomfort cost in the DDPG-based approach 

are the highest among the three approaches. However, since the load violation in Case 3 is 

much smaller than that in Case 1, the overall performance of the DDPG-based HVAC control 

is still better than the conventional thermostatic control approach. Therefore, both the 

ADMM and DDPG based HVAC control strategies can reduce the peak load at the utility, 

but the costs in the DDPG based approach are higher than that in the ADMM based approach. 

Figure 5.7 compares the indoor temperature of house 1 in the three different cases. The 

indoor temperature setpoint is 22℃. The minimum indoor temperature bound is set to 21℃ 

and the maximum indoor temperature bound is set to 23℃. From the graph, it is observed 

that the indoor temperature in Case 2 has the least deviation from the setpoint and is always 

within the preferred bound, while the indoor temperature in the other two cases may violate 

the temperature constraints during some time intervals. 
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Figure 5.7 Indoor temperature in different test cases. 

 

Table 5.3 Computational time and input data requirements of each approach. 

 Conventional 

(Case 1) 

ADMM 

(Case 2) 

DDPG 

(Case 3) 

Building model No Yes No 

Temperature forecast No Yes No 

Training data No No Yes 

Computational time 0 sec 129.20 sec 2.76 sec 

 

 

Table 5.3 shows the computational time and input data requirements of each approach. 

From the table, it is concluded that the conventional thermostatic HVAC control strategy 

has the lowest requirements on input data, and it can instantaneously output the control 

actions. However, there is no coordination among the responsive devices in this control 

mode, and therefore it cannot conduct the residential DR. 

By contrast, the ADMM approach can significantly reduce the peak load at the utility 

level and reduces customers’ electricity bills, but this method requires accurate building 

models and the day-ahead outdoor temperature forecasts. The computational time of 
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ADMM-based HVAC control is also the longest of the three approaches (more than 60 times 

longer than the reinforcement learning based approach), which restricts its potential for 

online control applications. 

Finally, even though the load profile of the DDPG-based method may slightly exceed 

the contracted load limit, it can still considerably reduce the peak load at the utility level. 

The most significant advantage of the DDPG- over the ADMM-based HVAC control 

strategy is that it significantly reduces the requirements on input data. Furthermore, once the 

neural networks are well trained, it only takes 2.76 sec for the agent in each house to 

determine the control actions for HVAC. Therefore, the DDPG-based HVAC control 

strategy is applicable to online HVAC controls or the cases where accurate building models 

or weather forecast information is not available. 

5.5 Chapter Summary 

In this chapter, a DDPG-based HVAC control strategy is presented for residential DR 

programs. The proposed approach does not require detailed building models or the day-

ahead outdoor temperature forecasting. Rather, it uses the current outdoor temperature, 

current indoor temperature, current time, and non-responsive load information as the inputs 

to generate the HVAC control actions. A simulation study on a one hundred-house system 

demonstrates that the DDPG-based control strategy has high computational efficiency and 

the ability to reduce the peak load at the utility level after the neural networks are well trained. 

Therefore, the proposed approach is applicable to online residential DR programs or 

applications where accurate building models or weather forecast information is not available. 
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Chapter 6 Conclusions and Future Works 

Power system congestion and uncertainty management with residential DR is a 

promising research topic owning to the increasing penetration of renewable energy and the 

development of transactive energy. In this dissertation, Chapter 1 briefly introduces network 

congestion evaluation and management approaches. 

Chapter 2 proposes an interval optimization model to evaluate the ATC in power systems. 

The inputs of the model are the lower and upper boundaries of uncertain wind power, rather 

than a detailed PDF. Both the duality theory and artificial binary variables are introduced to 

convert the NP-hard pessimistic model to a single-level maximization problem for efficient 

calculation. Case studies demonstrate that increasing the number of time intervals or system 

size does not significantly affect the computational time, hence validating the feasibility of 

the proposed algorithm in practical applications. This chapter also studies the impacts of 

forecasting error and weighting factors on optimization results. 

Chapter 3 presents a distributed and scalable residential DR management model. The 

proposed approach has a hierarchical network structure, which is composed of utility, LAs, 

and residential customers. The ADMM is applied as the solution algorithm to decompose 

the centralized model into a utility-level sub-problem and a set of house-level sub-problems. 

Case studies demonstrate that the proposed approach not only reduces the peak load at the 

utility level, but also reduces the electricity bills for customers without significantly affecting 

their discomfort level. Since the optimization model can be decomposed and solved in a 

distributed manner, the proposed approach is applicable to distribution networks with large 

numbers of houses. Finally, the information exchange among the utility, LAs, and customers 
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is limited to power consumption, the dual variable of the power balance equation, and power 

mismatch, such that the customers do not have to release the ON/OFF status of their devices 

to the public. 

Chapter 4 further investigates the impacts of uncertainty on residential DR programs. A 

new algorithm combining scenario-based SP and ADMM is proposed to solve the residential 

DR problem. The proposed model considers both the day-ahead and real-time electricity 

markets. Similar to Chapter 3, the centralized social welfare maximization model is 

decomposed to utility-level and house-level sub-problems to reduce computational burden. 

The results demonstrate that the proposed approach of a SP-based model can improve system 

performance and prevent constraint violations as compared to the conventional thermostatic 

and deterministic control approaches when considering weather and customers’ behavior 

uncertainties. 

Chapter 5 proposes a DDPG for residential DR programs. The benefit of this RL based 

control scheme is that it does not require the thermodynamic models of buildings or day-

ahead weather forecast information. Once the neural networks within each house are well 

trained, control actions can be calculated within a short period of time according to the 

current system states. Therefore, this approach can be applied to real-time controls or cases 

where accurate building model or weather forecast information is not available.  

Future works will focus on further including EWHs and ESSs into the RL-based HVAC 

control strategy for residential DR programs and continue to study the impacts of parameter 

settings on the DDPG algorithm to improve the system performance. 
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Appendix 
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A. Converting max-min to max with strong duality theory  

The feasibility of converting the original max-min problem to a maximization problem 

can be proved based on the definition of the strong duality theory. According to ref. [132], 

p* denotes the optimal value for the optimization problem in (A.1)-(A.3) with 

𝑓0(𝑥), … , 𝑓𝑚(𝑥) convex, and d* denote the optimal value for its dual problem. If d* = p*, 

then the strong duality holds.  

 ( )0min f x  (A.1) 

 ( )is.t. f x 0, i 1,...,m =  (A.2) 

 Ax b=  (A.3) 

In Chapter 2, since both the objective function and the constraints in the primary model 

are linear, the strong duality theory applies and d* is equal to p*. Therefore, the proposed 

transformation will not change the optimal objective function value. The corresponding dual 

problem for the problem in eq. (2.15)-(2.18) can be expressed as: 

 
, , ,
max  [ , ] +

L U

T T T L T U

i i i i i i ib b d L U
   

   − − −  (A.4) 

 i

T T L U

i i i iA E c   + − + = −  (A.5) 

 0;  0;  0L U

i i i      (A.6) 
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B. Using the RC model to calculate the indoor temperature dynamics 

In the literature, there are two main types of modeling approaches for residential 

buildings: model-based and data-driven. In Chapter 3 and Chapter 4, a simplified RC model 

was used to capture indoor temperature dynamics. For more information on the detailed RC 

model, refer to [79]. The RC model is constituted with an electrical analog pattern with 

resistance (R) and capacitance (C), which are obtained from historical data by using linear 

regressions. It has a “visible” model structure and therefore can be used for optimal control 

of HVAC systems. The input parameter for the HVAC model is the day-ahead forecasted 

outdoor temperature. The HVAC model is represented by:  

 ,

, 1 ,( ) /

in

i thouse out in house hvac hvac

i t i t i i t i

dT
C T T R b p

dt
−= − −   (B.1) 

where eq. (B.1) is a first-order differential equation to represent the indoor temperature 

dynamics of house i, 
house

iC  is the thermal capacitance of house i, ,

in

i tT  is the indoor 

temperature of house i at time t, ,

out

i tT  is the outdoor temperature at time t, ,

hvac

i tb  is the on/off 

status of the HVAC in house i at time t, and 
hvac

ip  is the power rating of the HVAC in house 

i. 

The discrete-time version of eq. (3) for calculating the indoor temperature of house i at 

each time step t is represented by: 

 , , 1 , , 1 ,[( ) / ] /in in out in house hvac hvac house

i t i t i t i t i i t i iT T T T R B P t C− −= + − −    (B.2) 
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