161,653 research outputs found

    Dynamic analysis and energy management strategies of micro gas turbine systems integrated with mechanical, electrochemical and thermal energy storage devices

    Get PDF
    The growing concern related to the rise of greenhouse gases in the atmosphere has led to an increase of share of renewable energy sources. Due to their unpredictability and intermittency, new flexible and efficient power systems need to be developed to compensate for this fluctuating power production. In this context, micro gas turbines have high potential for small-scale combined heat and power (CHP) applications considering their fuel flexibility, quick load changes, low maintenance, low vibrations, and high overall efficiency. Furthermore, the combination of micro gas turbines with energy storage systems can further increase the overall system flexibility and the response to rapid load changes. This thesis aims to analyse the integration of micro gas turbines with the following energy storage systems: compressed air energy storage (CAES), chemical energy storage (using hydrogen and ammonia), battery storage, and thermal energy storage. In particular, micro gas turbines integrated with CAES systems and alternative fuels operate in different working conditions compared to their standard conditions. Applications requiring increased mass flow rate at the expander, such as CAES and the use of fuels with low LHV, such as ammonia, can potentially reduce the compressor surge margin. Conversely, sudden composition changes of high LHV fuels, such as hydrogen, can cause temperature peaks, detrimental for the turbine and recuperator life. A validated model of a T100 micro gas turbine is used to analyse transitions between different conditions, identify operational limits and test the control system. Starting from the dynamic constraints defined in the related chapters, in the final part, an optimisation tool for energy management is developed to couple the micro gas turbine with energy storage systems, maximizing the plant profitability and satisfying the local electrical and thermal demands. For the modelling of the CAES system and alternative fuels, the operating constraints obtained from the initial analyses are implemented in the optimisation tool. In addition, a battery and thermal energy storage system are also considered. In the first part, a comprehensive analysis of the T100 combined with a second-generation CAES system showed enhanced efficiency, reduced fuel consumption, reduced thermal power output and increased maximum electrical power output due to the reduction of the rotational speed. The study identified optimal air injection constraints, demonstrating a +3.23% efficiency increase at 80 kW net power with a maximum mass flow rate of 50 g/s. The dynamic analysis exposed potential instabilities issues during air step injections, mitigated by using ramps at a rate of +0.5 (g/s)/s for safe and rapid dynamic mode operation. The second part explored the effects of varying H2-NG and NH3-NG blends on the T100 mGT. Steady-state results showed increased power output with hydrogen or ammonia, notably +6.1 kW for 100% H2 and up to +11.3 kW for 100% NH3. Transient power steps simulations showed surge margin reductions, especially at lower power levels with high concentrations of ammonia, highlighting the need for controlled transitions. Controlled ramps were effective in preventing extreme temperature peaks during fuel composition changes. The final chapter focused on developing an energy scheduler for different plant setups, evaluating four configurations. For a typical day of the month of April of the Savona Campus, the integration of the CAES lead to relative savings of +8.1% and power-to-H2 of +5.3% when surplus electricity was not sold to the grid. Conversely, with the ability to sell excess electricity, CAES and battery energy storage (BES) systems exhibit modest savings of +1.2% and +2.4%, respectively, while the power-to-H2 system failed to provide economic advantages

    Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST) Plant

    Get PDF
    This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST) system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC) based on a steam turbine (ST). In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.This work has been carried out in the Intelligent Systems and Energy research group of the University of the Basque Country (UPV/EHU) and has been supported by the UFI11/28 research grant of the UPV/EHU and by the IT677-13 research grant of the Basque Government (Spain) and by DPI2012-37363-CO2-01 research grant of the Spanish Ministry of Economy and Competitiveness

    Control of a Solar Energy Systems

    Get PDF
    8th IFAC Symposium on Advanced Control of Chemical ProcessesThe International Federation of Automatic Control Singapore, July 10-13This work deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems. While in other power generating processes, the main source of energy can be manipulated, in solar energy systems, the main source of power which is solar radiation cannot be manipulated and furthermore it changes in a seasonal and on a daily base acting as a disturbance when considering it from a control point of view. Solar plants have all the characteristics needed for using industrial electronics and advanced control strategies able to cope with changing dynamics, nonlinearities and uncertainties.Ministerio de Ciencia e Innovación PI2008-05818Ministerio de Ciencia e Innovación DPI2010-21589-C05-01/04Junta de Andalucía P07-TEP-0272

    Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context

    Full text link
    Battery management systems may rely on mathematical models to provide higher performance than standard charging protocols. Electrochemical models allow us to capture the phenomena occurring inside a lithium-ion cell and therefore, could be the best model choice. However, to be of practical value, they require reliable model parameters. Uncertainty quantification and optimal experimental design concepts are essential tools for identifying systems and estimating parameters precisely. Approximation errors in uncertainty quantification result in sub-optimal experimental designs and consequently, less-informative data, and higher parameter unreliability. In this work, we propose a highly efficient design of experiment method based on global parameter sensitivities. This novel concept is applied to the single-particle model with electrolyte and thermal dynamics (SPMeT), a well-known electrochemical model for lithium-ion cells. The proposed method avoids the simplifying assumption of output-parameter linearization (i.e., local parameter sensitivities) used in conventional Fisher information matrix-based experimental design strategies. Thus, the optimized current input profile results in experimental data of higher information content and in turn, in more precise parameter estimates.Comment: Accepted for 21st IFAC World Congres

    Predictive functional control for the temperature control of a chemical batch reactor

    Get PDF
    A predictive functional control (PFC) technique is applied to the temperature control of a pilot-plant batch reactor equipped with a mono-fluid heating/cooling system. A cascade control structure has been implemented according to the process sub-units reactor and heating/cooling system. Hereby differences in the sub-units dynamics are taken into consideration. PFC technique is described and its main differences with a standard model predictive control (MPC) technique are discussed. To evaluate its robustness, PFC has been applied to the temperature control of an exothermic chemical reaction. Experimental results show that PFC enables a precise tracking of the set-point temperature and that the PFC performances are mainly determined by its internal dynamic process model. Finally, results show the performance of the cascade control structure to handle different dynamics of the heating/cooling system

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used
    corecore