300 research outputs found

    Hamiltonian submanifolds of regular polytopes

    Full text link
    We investigate polyhedral 2k2k-manifolds as subcomplexes of the boundary complex of a regular polytope. We call such a subcomplex {\it kk-Hamiltonian} if it contains the full kk-skeleton of the polytope. Since the case of the cube is well known and since the case of a simplex was also previously studied (these are so-called {\it super-neighborly triangulations}) we focus on the case of the cross polytope and the sporadic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-manifolds in the dd-dimensional cross polytope. These are the "regular cases" satisfying equality in Sparla's inequality. In particular, we present a new example with 16 vertices which is highly symmetric with an automorphism group of order 128. Topologically it is homeomorphic to a connected sum of 7 copies of S2ƗS2S^2 \times S^2. By this example all regular cases of nn vertices with n<20n < 20 or, equivalently, all cases of regular dd-polytopes with dā‰¤9d\leq 9 are now decided.Comment: 26 pages, 4 figure

    On Symmetric Circuits and Fixed-Point Logics

    Get PDF
    We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.Comment: 22 pages. Full version of a paper to appear in STACS 201

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ıā‰œāˆ’1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    Semidefinite programming and eigenvalue bounds for the graph partition problem

    Full text link
    The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the sum of weights of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle and independent set constraints for graphs with symmetry. We present an eigenvalue bound for the graph partition problem of a strongly regular graph, extending a similar result for the equipartition problem. We also derive a linear programming bound of the graph partition problem for certain Johnson and Kneser graphs. Using what we call the Laplacian algebra of a graph, we derive an eigenvalue bound for the graph partition problem that is the first known closed form bound that is applicable to any graph, thereby extending a well-known result in spectral graph theory. Finally, we strengthen a known semidefinite programming relaxation of a specific quadratic assignment problem and the above-mentioned matrix-lifting semidefinite programming relaxation by adding two constraints that correspond to assigning two vertices of the graph to different parts of the partition. This strengthening performs well on highly symmetric graphs when other relaxations provide weak or trivial bounds

    Subspace-Invariant AC0^0 Formulas

    Full text link
    We consider the action of a linear subspace UU of {0,1}n\{0,1\}^n on the set of AC0^0 formulas with inputs labeled by literals in the set {X1,Xā€¾1,ā€¦,Xn,Xā€¾n}\{X_1,\overline X_1,\dots,X_n,\overline X_n\}, where an element uāˆˆUu \in U acts on formulas by transposing the iith pair of literals for all iāˆˆ[n]i \in [n] such that ui=1u_i=1. A formula is {\em UU-invariant} if it is fixed by this action. For example, there is a well-known recursive construction of depth d+1d+1 formulas of size O(nā‹…2dn1/d)O(n{\cdot}2^{dn^{1/d}}) computing the nn-variable PARITY function; these formulas are easily seen to be PP-invariant where PP is the subspace of even-weight elements of {0,1}n\{0,1\}^n. In this paper we establish a nearly matching 2d(n1/dāˆ’1)2^{d(n^{1/d}-1)} lower bound on the PP-invariant depth d+1d+1 formula size of PARITY. Quantitatively this improves the best known Ī©(2184d(n1/dāˆ’1))\Omega(2^{\frac{1}{84}d(n^{1/d}-1)}) lower bound for {\em unrestricted} depth d+1d+1 formulas, while avoiding the use of the switching lemma. More generally, for any linear subspaces UāŠ‚VU \subset V, we show that if a Boolean function is UU-invariant and non-constant over VV, then its UU-invariant depth d+1d+1 formula size is at least 2d(m1/dāˆ’1)2^{d(m^{1/d}-1)} where mm is the minimum Hamming weight of a vector in UāŠ„āˆ–VāŠ„U^\bot \setminus V^\bot

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem

    Get PDF
    We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB ā€” a quadratic assignment problem library. Journal on Global Optimization, 10: 291ā€“403, 1997]. AMS classification: 90C22, 20Cxx, 70-08.quadratic assignment problem;semidefinite programming;group sym- metry
    • ā€¦
    corecore