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Abstract
We study properties of relational structures such as graphs that are decided by families of Boolean
circuits. Circuits that decide such properties are necessarily invariant to permutations of the
elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits
whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the
input structure. We show that the expressive power of such families is closely tied to definability
in logic. In particular, we show that the queries defined on structures by uniform families of
symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic
with counting. This shows that inexpressibility results in the latter logic lead to lower bounds
against polynomial-size families of symmetric circuits.
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1 Introduction

A property of graphs on n vertices can be seen as a Boolean function which takes as inputs the(
n
2
)
potential edges (each of which can be 0 or 1) and outputs either 0 or 1. For the function

to determine a property of the graph, rather than of a particular presentation of the graph,
it must be invariant under re-ordering the vertices of the graph. That is, permuting the(
n
2
)
inputs according to some permutation of [n] leaves the value of the function unchanged.

We call such Boolean functions invariant. Note that this does not require the function to
be invariant under all permutations of its inputs, which would mean that it was entirely
determined by the number of inputs that are set to 1.

It is a long-standing open problem in descriptive complexity to give a characterisation
of the polynomial-time properties of finite relational structures (or, indeed, just graphs) as
the classes of structures definable in some suitable logic (see, for instance, [7, Chapter 11]).
It is known that fixed-point logic FP and its extension with counting FPC are strictly less
expressive than deterministic polynomial time P [3]. It is easy to see that every polynomial-
time property of graphs is decided by a P-uniform family of circuits that are invariant in the
sense above. On the other hand, when a property of graphs is expressed in a formal logic,
it gives rise to a family of circuits that are explicitly invariant or symmetric. By this we
mean that their invariance is witnessed by the automorphisms of the circuits themselves. For
instance, any sentence of FP translates into a polynomial-size family of symmetric Boolean
circuits, while any sentence of FPC translates into a polynomial-size family of symmetric
Boolean circuits with majority gates.

Concretely, a circuit Cn consists of a directed acyclic graph whose internal gates are marked
by operations from a basis (e.g., the standard Boolean basis Bstd := {AND, OR, NOT} or
the majority basis Bmaj = Bstd ∪ {MAJ}) and input gates which are marked with pairs of
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vertices representing potential edges of an n-vertex input graph. Such a circuit is symmetric
if Cn has an automorphism π induced by each permutation σ of the n vertices, i.e., π moves
the input gates of Cn according to σ and preserves operations and wiring of the internal
gates of Cn. Clearly, any symmetric circuit is invariant.

Are symmetric circuits a weaker model of computation than invariant circuits? We
aim at characterising the properties that can be decided by uniform families of symmetric
circuits. Our main result shows that, indeed, any property that is decided by a uniform
polynomial-size family of symmetric majority circuits can be expressed in FPC.

I Theorem 1. A graph property is decided by a P-uniform family of symmetric majority
circuits if, and only if, it is defined by a fixed-point with counting sentence.

A consequence of this result is that inexpressibility results that have been proved for FPC
can be translated into lower bound results for symmetric circuits. For instance, it follows
(using [4]) that there is no polynomial-size family of symmetric majority circuits deciding
3-colourability or Hamiltonicity of graphs.

We also achieve a characterisation similar to Theorem 1 of symmetric Boolean circuits.

I Theorem 2. A graph property is decided by a P-uniform family of symmetric Boolean
circuits if, and only if, it is defined by a fixed-point sentence interpreted in G ⊕ 〈[n],≤〉, i.e.,
the structure that is the disjoint union of an n-vertex graph G with a linear order of length n.

Note that symmetric majority circuits can be transformed into symmetric Boolean circuits.
But, since FP, even interpreted over G ⊕ 〈[n],≤〉, is strictly less expressive than FPC, our
results imply that any such translation must involve a super-polynomial blow-up in size.
Similarly, our results imply with [3] that invariant Boolean circuits cannot be transformed
into symmetric circuits (even with majority gates) without a super-polynomial blow-up in
size. On the other hand, it is clear that symmetric majority circuits can still be translated
into invariant Boolean circuits with only a polynomial blow-up.

Support. The main technical tool in establishing the translation from uniform families of
symmetric circuits to sentences in fixed-point logics is a support theorem (stated informally
below) that establishes properties of the stabiliser groups of gates in symmetric circuits.

We say that a set X ⊆ [n] supports a gate g in a symmetric circuit C on an n-element
input structure if every automorphism of C that is generated by a permutation of [n] fixing
X also fixes g. It is not difficult to see that for a family of symmetric circuits obtained from
a given first-order formula φ there is a constant k such that all gates in all circuits of the
family have a support of size at most k. To be precise, the gates in such a circuit correspond
to subformulas ψ of φ along with an assignment of values from [n] to the free variables of ψ.
The set of elements of [n] appearing in such an assignment forms a support of the gate and
its size is bounded by the number of free variables ψ. Using the fact that any formula of FP
is equivalent, on structures of size n, to a first-order formula with a constant bound k on the
number of variables and similarly any formula of FPC is equivalent to a first-order formula
with majority quantifiers (see [9]) and a constant bound on the number of variables, we see
that the resulting circuits have supports of constant-bounded size. Our main technical result
is that the existence of supports of bounded size holds, in fact, for all polynomial-size families
of symmetric circuits. In its general form, we show the following theorem in Section 3 via an
involved combinatorial argument.

I Theorem 3 (Informal Support Thm). Let C be a symmetric circuit with s gates over a
graph of size n. If n is sufficiently large and s is sub-exponential in n, then every gate in C
has a support of size O

(
log s
logn

)
.
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In the typical instantiation of the Theorem 3 the circuit C contains a polynomial number
of gates s = poly(n) and hence the theorem implies that every gate has a support that is
bounded in size by a constant. The proof of the Theorem 3 mainly relies on the structural
properties of symmetric circuits and is largely independent of the semantics of such circuits;
this means it may be of independent interest for other circuit bases and in other settings.

Symmetric Circuits and FP. In Section 4 we show that each polynomial-size family C of
symmetric circuits can be translated into a formula of fixed-point logic. If the family C is
P-uniform, by the Immerman-Vardi Theorem [12, 8] there is an FP-definable interpretation
of the circuit Cn in the ordered structure 〈[n],≤〉. We show that the support of a gate
is computable in polynomial time, and hence we can also interpret the support of each
gate in 〈[n],≤〉. The circuit Cn can be evaluated on an input graph G by fixing a bijection
between [n] and the universe U of G. We associate with each gate of g of Cn the set of those
bijections that cause g to evaluate to 1 on G. This set of bijections admits a compact (i.e.,
polynomial-size) representation as the set of injective maps from the support of g to U . We
show that these compact representations can be inductively defined by formulas of FP, or
FPC if the circuit also admits majority gates.

Thus, we obtain that P-uniform families of symmetric Boolean circuits can be translated
into formulas of FP interpreted in G combined with a disjoint linear order 〈[|G|],≤〉, while
families containing majority gates can be simulated by sentences of FPC. The reverse
containment follows using classical techniques. As a consequence we obtain the equivalences
of Theorems 1 & 2, and a number of more general results as this sequence of arguments
naturally extends to: (i) inputs given as an arbitrary relational structure, (ii) outputs
defining arbitrary relational queries, and (iii) non-uniform circuits, provided the logic is
allowed additional advice on the disjoint linear order.

Related Work. The term “symmetric circuit” is used by Denenberg et al. in [6] to mean what
we call invariant circuits. They give a characterisation of first-order definability in terms of a
restricted invariance condition, namely circuits that are invariant and whose relativisation to
subsets of the universe remains invariant. Our definition of symmetric circuits follows that
in [10] where Otto describes it as the “natural and straightforward combinatorial condition
to guarantee generic or isomorphism-invariant performance.” He combines it with a size
restriction on the orbits of gates along with a strong uniformity condition, which he calls
“coherence”, to give an exact characterisation of definability in infinitary logic. A key element
is the proof that if the orbits of gates in such a circuit are polynomially bounded in size
then they have supports of bounded size. We remove the assumption of coherence from
this argument and show that constant-size supports exist in any polynomial-size symmetric
circuit. This requires a generalisation of what Otto calls a “base” to supporting partitions.
See Section 5 for more discussion of connections with prior work.

Due to space limitations, full proofs are omitted and may be found in [1].

2 Preliminaries

Let [n] denote the set of positive integers {1, . . . , n}. Let SymS denote the group of all
permutations of the set S. When S = [n], we write Symn for Sym[n].

2.1 Vocabularies, Structures, and Logics
A relational vocabulary (always denoted by τ) is a finite sequence of relation symbols
(Rr1

1 , . . . , R
rk
k ) where for each i ∈ [k] the relation symbol Ri has an associated arity ri ∈ N.

STACS’14
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A τ -structure A is a tuple 〈A,RA1 , . . . , RAk 〉 consisting of (i) a non-empty set A called the
universe of A, and (ii) relations RAi ⊆ Ari for i ∈ [k]. Members of the universe A are called
elements of A. A multi-sorted structure is one whose universe is given as a disjoint union of
several distinct sorts. Define the size of a structure |A| to be the cardinality of its universe.
All structures considered in this paper are finite, i.e., their universes have finite cardinality.
Let fin[τ ] denote the set of all finite τ -structures.

First-Order and Fixed-Point Logics. Let FO(τ) denote first-order logic with respect to the
vocabulary τ . The logic FO(τ) is the set of formulas whose atoms are formed using the
relation symbols in τ , an equality symbol =, an infinite sequence of variables (x, y, z . . .), and
that are closed under the Boolean connectives (∧ and ∨), negation (¬), and universal and
existential quantification (∀ and ∃). Let fixed-point logic FP(τ) denote the extension of FO(τ)
to include an inflationary fixed-point operator ifp. Assume standard syntax and semantics
for FO and FP (see the textbook [7] for more background). For a formula φ write φ(x) to
indicate that x is the tuple of the free variables of φ. For a logic L, a formula φ(x) ∈ L(τ)
with k free variables, A ∈ fin[τ ], and tuple a ∈ Ak write A |=L φ[a] to express that the tuple
a makes the formula φ true in the structure A with respect to the logic L. We usually drop
the subscript L and write A |= φ[a] when no confusion would arise.

Logics with Disjoint Advice. Let τarb be a relational vocabulary without a binary relation
symbol ≤. Let Υ : N→ fin[τarb ] {≤2}] be an advice function, where for n ∈ N, Υ(n) has
universe [n] naturally ordered by ≤. Let (FP + Υ)(τ) denote the set of formulas of FP(τ ′)
where τ ′ := τ ] τarb ] {≤2} and τ is a vocabulary disjoint from τarb ] {≤2}. For a structure
A ∈ fin[τ ] define the semantics of φ ∈ (FP + Υ)(τ) to be A |=(FP+Υ) φ iff AΥ |=FP φ,

where AΥ := A ⊕ Υ(|A|) is the multi-sorted τ ′-structure formed by taking the disjoint
union of A with a structure coding a linear order of corresponding cardinality endowed with
interpretations of the relations in τarb. The universe of the multi-sorted structure AΥ is
written as A] [|A|]; refer to A as the point sort of AΥ and to [|A|] as the number sort of AΥ.

We are primarily interested in the special case when τarb is empty and hence Υ(|A|) =
〈[|A|],≤〉 is simply a linear order. Denote formulas of this logic by (FP +≤)(τ) and extended
structures by A≤ to emphasise the disjoint linear order. Let FPC(τ) denote the extension
of (FP +≤)(τ) with a counting operator #x where x is a point or number variable. For a
structure A ∈ fin[τ ] and a formula φ(x) ∈ FPC(τ), #xφ(x) is a term denoting the element
in the number sort corresponding to |{a ∈ A | A |= φ[a]}|. See [7, Section 8.4.2] for more
details. Finally, we consider the extension of fixed-point logic with both advice functions
and counting quantifiers (FPC + Υ)(τ).

2.2 Symmetric and Uniform Circuits

A Boolean basis (always denoted by B) is a finite set of Boolean functions from {0, 1}∗ to
{0, 1}. We consider only bases containing symmetric functions, i.e., for all f ∈ B, f(x) = f(y)
for all n ∈ N and x, y ∈ {0, 1}n with the same number of ones. The standard Boolean basis
Bstd consists of unbounded fan-in AND, OR, and unary NOT operators. The majority basis
Bmaj extends the standard basis with an operator MAJ which is one iff the number of ones
in the input is at least the number of zeroes.

I Definition 4 (Circuits on Structures). A Boolean (B, τ)-circuit C with universe U computing
a q-ary query Q is a structure 〈G,W,Ω,Σ,Λ〉.

G is a set called the gates of C. The size of C is |C| := |G|.
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W ⊆ G×G is a binary relation called the wires of the circuit. We require that (G,W )
forms a directed acyclic graph. Call the gates with no incoming wires input gates, and all
other gates internal gates. Gates h with (h, g) ∈W are called the children of g.
Ω is an injective function from Uq to G. The gates in the image of Ω are called the output
gates. When q = 0, Ω is a constant function mapping to a single output gate.
Σ is a function from G to B ] τ ] {0, 1} which maps input gates into τ ] {0, 1} with
|Σ−1(0)|, |Σ−1(1)| ≤ 1 and internal gates into B. Call the input gates marked with a
relation from τ relational gates and the input gates marked with 0 or 1 constant gates.
Λ is a sequence of injective functions (ΛR)R∈τ where for each R ∈ τ , ΛR maps each
relational gate g with R = Σ(g) to ΛR(g) ∈ Ur where r is the arity of R. Where no
ambiguity arises, we write Λ(g) for ΛR(g).

Let C be a Boolean (B, τ)-circuit with universe U , A ∈ fin[τ ] with |A| = |U |, and
γ : A→ U be a bijection. Let γA denote the τ -structure over the universe U obtained by
relabelling the universe of A according to γ. Recursively evaluate C on γA by determining a
value C[γA](g) for each gate g: (i) a constant gate evaluates to the bit given by Σ(g), (ii) a
relational gate evaluates to 1 iff γA |= Σ(g)(ΛΣ(g)(g)), and (iii) an internal gate evaluates to
the result of applying the Boolean operation Σ(g) to the values for g’s children. C defines
the q-ary query Q ⊆ Aq where a ∈ Q iff C[γA](Ω(γa)) = 1.

I Definition 5 (Invariant Circuit). Let C be a (B, τ)-circuit with universe U computing a
q-ary query. The circuit C is invariant if for every A ∈ fin[τ ] with |A| = |U |, a ∈ Aq, and
bijections γ1, γ2 from A to U , C[γ1A](Ω(γ1a)) = C[γ2A](Ω(γ2a)).

Invariance indicates that C computes a property of τ -structures which is invariant to
presentations of the structure. Moreover, for an invariant circuit C only the size of U matters
and we often write C = Cn, for emphasis, when the universe is size n. A family C = (Cn)n∈N
of invariant (B, τ)-circuits naturally computes a q-ary query on τ -structures. When q = 0
the family computes a Boolean property of structures. We now discuss an algebraic property
of circuits called symmetry that implies invariance.

Symmetric Circuits. Permuting a circuit’s universe may induce automorphisms of the circuit.

I Definition 6 (Induced Automorphism). Let C = 〈G,W,Ω,Σ,Λ〉 be a (B, τ)-circuit with
universe U computing a q-ary query. Let σ ∈ SymU . If there is a bijection π from G to G
such that

for all gates g, h ∈ G, W (g, h) iff W (π(g), π(h)),
for all output tuples x ∈ Uq, πΩ(x) = Ω(σ(x)),
for all gates g ∈ G, Σ(g) = Σ(π(g)), and
for each relational gate g ∈ G, σΛ(g) = Λ(π(g)),

we say σ induces the automorphism π of C.

The principle goal of this paper is to understand the computational power of circuit
classes with the following type of algebraic symmetry.

I Definition 7 (Symmetric). A circuit C with universe U is called symmetric if for every
permutation σ ∈ SymU , σ induces an automorphism of C.

It is not difficult to see that, for a symmetric circuit C, there is a homomorphism h :
SymU → Aut(C) (where Aut(C) denotes the automorphism group of C) such that h(σ) is
an automorphism induced by σ.

To avoid certain trivialities we restrict ourselves to circuits which are rigid.

STACS’14
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I Definition 8 (Rigid). Let C = 〈G,W,Ω,Σ,Λ〉 be a (B, τ)-circuit with universe U . Call
C rigid if there do not exist distinct gates g, g′ ∈ G with Σ(g) = Σ(g′), Λ(g) = Λ(g′),
Ω−1(g) = Ω−1(g′), and for every g′′ ∈ G, W (g′′, g) iff W (g′′, g′).

For a rigid symmetric circuit C it is easy to show that the group of automorphisms
of C is exactly SymU acting faithfully. We shall therefore abuse notation and use these
interchangeably. In particular, we shall write σg to denote the image of a gate g in C under
the action of the automorphism induced by a permutation σ in SymU .

An examination of the definitions suffices to show that symmetry implies invariance. In
symmetric circuits it is useful to consider those permutations which induce automorphisms
that fix gates. Let P be a partition of a set U . Let the pointwise stabiliser of P be StabU (P) :=
{σ ∈ SymU | ∀P ∈ P, σP = P}, and similarly define the setwise stabiliser StabU{P} :=
{σ ∈ SymU | ∀P ∈ P, σP ∈ P}. For a gate g in a rigid symmetric circuit C with universe
U , let the stabiliser of g be StabU (g) := {σ ∈ SymU | σg = g}, and let the orbit of g under
the automorphism group Aut(C) of C be Orb(g) := {σg | σ ∈ SymU}. In each case, when
U = [n], we write Stabn instead of Stab[n].

Uniform Circuits. One natural class of circuits are those with polynomial-size descriptions
that can be generated by a deterministic polynomial-time machine.

I Definition 9 (P and P/poly-Uniform). A (B, τ)-circuit family C = (Cn)n∈N computing a
q-ary query is P/poly-uniform if there exists an integer t ≥ q and function Υ : N→ {0, 1}∗
which takes an integer n to a binary string Υ(n) such that |Υ(n)| = poly(n), and Υ(n)
describes1 the circuit Cn whose gates are indexed by t-tuples of [n], inputs are labelled
by t-tuples of [n], and outputs are labelled by q-tuples of [n]. Moreover, if there exists a
deterministic Turing machine M that for each integer n computes Υ(n) from 1n in time
poly(n) call C P-uniform.

Note that such uniform families implicitly have polynomial size.
Over ordered structures neither P-uniform nor P/poly-uniform circuits need compute

invariant queries as their computation may implicitly depend on the order associated with
[n]. To obtain invariance for such circuits we assert symmetry. The next section proves a
natural property of symmetric circuits that ultimately implies that symmetric P-uniform
circuits coincide with FP definitions on the standard and majority bases.

3 Symmetry and Support

In this section we analyse the algebraic properties of symmetric circuits.

I Definition 10 (Support). Let C be a rigid symmetric circuit with universe U and let g be
a gate in C. A set X ⊆ U supports g if StabU (X) ⊆ StabU (g).

We now show how to associate supports of constant size in a canonical way to all gates
in any rigid symmetric circuit of polynomial size. Indeed, our result is more general as it
associates moderately growing supports to gates in circuits of sub-exponential size. We first
introducing the more general notion of a supporting partition for a permutation group, which
can be canonically associated with any permutation group G, and obtain bounds on the size
of such a partition based on the index of G in the symmetric group. These results are then

1 Formally one must define a particular way of encoding circuits via binary strings. However, since the
details of the representation are largely irrelevant for our purposes we omit them.
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used to bound the size of supports of stabiliser groups of gates in rigid symmetric circuits as
a function of circuit size. This proves our main technical result—the Support Theorem.

A supporting partition generalises the notion of a support of a gate by replacing the set
with a partition and the stabiliser group of the gate with an arbitrary permutation group.

I Definition 11 (Supporting Partition). Let G ⊆ SymU be a group and P a partition of U .
We say that P is a supporting partition of G if StabU (P) ⊆ G.

For intuition consider two extremes. When G has supporting partition P = {U}, it
indicates G = SymU . Saying that G has supporting partition P = {{u1}, {u2}, . . . , {u|U |}}
indicates only that G contains the identity permutation, which is always true.

A natural partial order on partitions is the coarseness relation, i.e., P ′ is as coarse as P,
denoted P ′ ⊇ P, if every part in P is contained in some part of P ′. A proof is similar to
that of (*) on page 379 of [10] implies the following lemma.

I Lemma 12. Each permutation group G ⊆ SymU has a unique coarsest supporting partition.

We write SP(G) for the unique coarsest partition supporting G. By analysing how
supporting partitions are affected by the conjugacy action of SymU it is easy to show that
any group G is sandwiched between the pointwise and setwise stabilisers of SP(G).

I Lemma 13. For any group G ⊆ SymU , we have StabU (SP(G)) ⊆ G ⊆ StabU{SP(G)}.

Note that these bounds need not be tight. For example, if G is the alternating group on U (or,
indeed, any transitive, primitive subgroup of SymU ), then SP(G) is the partition of U into
singletons. In this case, StabU (SP(G)) is the trivial group while StabU{SP(G)} = SymU .

We now use the bounds given by Lemma 13, in conjunction with bounds on G to obtain
size bounds on SP(G). Recall that the index of G in SymU , denoted [SymU : G] is the
number of cosets of G in SymU or, equivalently, |SymU |

|G| . The next lemma, proved via a
involved combinatorial argument, says that if P is a partition of [n] where the index of
Stabn{P} in Symn is sufficiently small then (i) the number of parts in P is either very small
or very big, and (ii) if the number of parts in P is small, then it must have a large part.

I Lemma 14. Let ε and n be such that 0 ≤ ε < 1 and logn ≥ 8
ε2 . Let P be a partition of

[n], s := [Symn : Stabn{P}] and n ≤ s ≤ 2n1−ε .
1. Let k := |P|, then min{k, n− k} ≤ 8

ε
log s
logn .

2. If |P| ≤ n
2 , then P contains a part with at least n− 33

ε ·
log s
logn elements.

We leverage the above combinatorial lemmas to show that in symmetric circuits of
polynomial size, each gate has a small supporting partition, and hence has a small support.
Let g be a gate in a rigid symmetric circuit C over universe U , we abuse notation and write
SP(g) for SP(StabU (g)). Note that, if P is any part in SP(g), then U \ P is a support of g
in the sense of Definition 10. We write ‖SP(g)‖ to denote the smallest value of |U \ P | over
all parts P in SP(g). Also, let SP(C) denote the maximum of ‖SP(g)‖ over all gates g in C.

By the orbit-stabiliser theorem, |Orb(g)| = [SymU : StabU (g)]. By Lemma 13, we have
that StabU (g) ⊆ StabU{SP(g)} and thus, if s is an upper bound on |Orb(g)|, s ≥ [SymU :
StabU (g)] ≥ [SymU : StabU{SP(g)}]. Then, by Part 2 of Lemma 14, g has a support of small
size provided that (i) s is sub-exponential, and (ii) SP(g) has fewer than n/2 parts. Thus,
to prove our main technical theorem, which formalises Theorem 3 from the introduction, it
suffices to show that if s is sufficiently sub-exponential, (ii) holds.

STACS’14
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I Theorem 15 (Support Theorem). For any ε and n with 2
3 ≤ ε ≤ 1 and n > 2

56
ε2 , if C is

a rigid symmetric circuit over universe U with |U | = n and s := maxg∈C |Orb(g)| ≤ 2n1−ε ,
then, SP(C) ≤ 33

ε
log s
logn .

Proof. Suppose 1 ≤ s < n. C cannot have relational inputs, because each relational gate
must have an orbit of size at least n, so each gate of C computes a constant Boolean function.
The support of every gate g in C must be {U}, and hence 0 = ‖SP(g)‖ = SP(C). Therefore
assume s ≥ n.

To conclude the theorem from Part 2 of Lemma 14 it suffices to argue that for all
gates g, |SP(g)| ≤ n

2 . Suppose g is a constant gate, then, because g is the only gate with
its label, it is fixed under all permutations and hence |SP(g)| = |{U}| = 1 < n

2 . If g is
a relational gate, then it is fixed by any permutation that fixes all elements appearing
in Λ(g) and moved by all others. Thus, SP(g) must contain singleton parts for each
element of U in Λ(g) and a part containing everything else. Thus, if |SP(g)| > n

2 , SP(g)
contains at least n

2 singleton parts, there is a contradiction using the bounds on s, n, and ε,
s ≥ |Orb(g)| ≥ ‖SP(g)‖! ·

(
n

‖SP(g)‖
)
≥
⌊
n
2
⌋
! ≥ 2bn4 c > 2n1−ε

.

It remains to consider internal gates. For the sake of contradiction let g be a topologically
first internal gate such that SP(g) has more than n

2 parts. Part 1 of Lemma 14 implies, along
with the assumptions on s, n, and ε, that n− |SP(g)| ≤ k′ :=

⌈
8
ε

log s
logn

⌉
≤ 1

4n
1−ε < n

2 .

Let H denote the children of g. Because g is a topologically first gate with |SP(g)| > n
2 ,

for all h ∈ H, SP(h) has at most n
2 parts. As before, we argue a contradiction with the

upper bound on s. This is done by demonstrating that there is a set of gate-automorphism
pairs S = {(h, σ) | h ∈ H,σ ∈ SymU} that are: (i) useful – the automorphism moves the
gate out of the set of g’s children, i.e., σh 6∈ H, and (ii) independent – each child and its
image under the automorphism are fixed points of the other automorphisms in the set, i.e.,
for all (h, σ), (h′, σ′) ∈ S, σ′h = h and σ′σh = σh. Note that sets which are useful and
independent contain tuples whose gate and automorphism parts are all distinct. The set S
describes elements in the orbit of H with respect to SymU .

I Claim 16. Let S be useful and independent, then |Orb(H)| ≥ 2|S|.

Proof. Let R be any subset of S. Derive an automorphism from R: σR :=
∏

(h,σ)∈R σ (since
automorphisms need not commute, fix an arbitrary ordering of S).

Let R and Q be distinct subsets of S where without loss of generality |R| ≥ |Q|. Pick any
(h, σ) ∈ R\Q 6= ∅. Because S is independent σRh = σh and σQσh = σh. Since S is useful,
σh 6∈ H. Thus σh ∈ σRH, but σh 6∈ σQH. Hence σRH 6= σQH. Therefore each subset of S
can be identified with a distinct element in Orb(H) and hence |Orb(H)| ≥ 2|S|. J

Thus to reach a contradiction it suffices to construct a sufficiently large set S of gate-
automorphism pairs. To this end, divide U into b |U |k′+2c disjoint sets Si of size k

′ + 2 and
ignore the elements left over. Observe that for each i there is a permutation σi which fixes
U\Si but σi moves g, because otherwise the supporting partition of g could be smaller
(n− (k′ + 2) + 1). Since g is moved by each σi and C is rigid, there must be an associated
child hi ∈ H with σihi 6∈ H. Thus let (hi, σi) be the gate-automorphism pair for Si, these
pairs are useful. Let Qi be the union of all but the largest part of SP(hi). Observe that for
any σ which fixes Qi pointwise σ also fixes both hi and σihi, by the definition of support.

Define a directed graph K on the sets Si as follows. Include an edge from Si to Sj , with
i 6= j, if Qi∩Sj 6= ∅. An edge in K indicates a potential lack of independence between (hi, σi)
and (hj , σj), and on the other hand if there are no edges between Si and Sj , the associated
pairs are independent. Thus it remains to argue that K has a large independent set. This is
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possible because the out-degree of Si in K is bounded by |Qi| = ‖SP(hi)‖ ≤ 33
ε

log s
logn as the

sets Si are disjoint and Part 2 of Lemma 14 can be applied to hi. Thus the average total
degree (in-degree + out-degree) of K is at most 9k′. Greedily select a maximal independent
set in K by repeatedly selecting the Si with the lowest total degree and eliminating it and
its neighbours. This action does not effect the bound on the average total degree of K and
hence determines an independent set I in K of size at least

b |U |k′+2c
9k′ + 1 ≥

n− (k′ + 2)
(9k′ + 1)(k′ + 2) ≥

n
2 − 1

9k′2 + 10k′ + 2 ≥
7
16n

9k′2 + 10k′ + 2 ≥
n

(7k′)2

where the first inequality follows by expanding the floored expression, the second follows
because k′ < n

2 , the third follows from the lower bound on n, and the last follows because
k′ ≥ 1 as it is the ceiling of a positive non-zero quantity by definition.

Take S := {(hi, σi) | Si ∈ I}. By the argument above S is useful and independent. By
Claim 16, conclude that s ≥ |Orb(g)| ≥ |Orb(H)| ≥ 2|S| ≥ 2

n
(7k′)2 . For ε ≥ 2

3 , s ≤ 2n1−ε , and
ε

56 logn > 1 the following is a contradiction log s ≥ n · ( 56
ε

log s
logn )−2 > n · (n1−ε)−2 = n2ε−1 ≥

n1−ε. Thus |SP(g)| ≤ n
2 for all g ∈ C and the proof is complete by Part 2 of Lemma 14. J

Observe that when s is polynomial in n the support of a rigid symmetric circuit family is
asymptotically constant. This is the case for polynomial-size families.

I Corollary 17. Let C be a polynomial-size rigid symmetric circuit family, then SP(C) = O(1).

4 Translating Symmetric Circuits to Formulas

In this section, we deploy the Support Theorem to show that P-uniform families of symmetric
circuits can be translated into formulas of fixed-point logic. We can show that there is a
polynomial-time algorithm that takes a symmetric circuit and outputs an equivalent rigid
symmetric circuit together with the supporting partitions of each gate.

I Lemma 18. Let C be a symmetric (B, τ)-circuit with universe U . There is a deterministic
algorithm which runs in time poly(|C|) and outputs a rigid symmetric (B, τ)-circuit C ′
computing the same query as C along with coarsest supporting partitions for every gate of C ′.

Let C = (Cn)n∈N be a family of P-uniform symmetric (B, τ)-circuits computing a q-ary
query. Let A ∈ fin[τ ] be an input structure with universe U of size n. By Lemma 18 and the
Immerman-Vardi theorem, we have an FP interpretation defining a rigid symmetric circuit
equivalent to Cn over the number sort of A≤, i.e., a tuple of formulas of FP(≤) that define
the circuit when interpreted in 〈[n],≤〉. Moreover, the interpretation provides the coarsest
supporting partitions of the gates in Cn. Note that Cn is defined over the universe [n].

By Theorem 15, there is a constant bound k so that for each gate g in Cn the union of
all but the largest part of the coarsest partition supporting g, SP(g), has at most k elements.
Moreover, this union is a support of g in the sense of Definition 10. We call it the canonical
support of g and denote it by sp(g). To describe the evaluation of the circuit Cn with a
formula of fixed-point logic, we show that the evaluation of a gate g in Cn with respect to
the structure A depends only on how its universe U is mapped to the canonical support of g.

For any set X ⊆ [n], let UX denote the set of injective functions from X to U . For
X,Y ⊆ [n] and α ∈ UX , β ∈ UY , we say α and β are consistent, denoted α ∼ β, if for all
z ∈ X ∩ Y, α(z) = β(z), and for all x ∈ X\Y and y ∈ Y \X, α(x) 6= β(y). Recall that any
bijection γ : U → [n] determines an evaluation of the circuit Cn on the input structure
A which assigns to each gate g the Boolean value Cn[γA](g). Let g be a gate and let
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Γ(g) := {γ | Cn[γA](g) = 1}. The following claim establishes that the membership of γ in
Γ(g) (moreover, the number of 1s input to g) depends only on what γ maps to sp(g).

I Claim 19. Let g be a gate in Cn with children H. Let α ∈ U sp(g), then for all γ1, γ2 : U →
[n] with γ−1

1 ∼ α and γ−1
2 ∼ α,

1. γ1 ∈ Γ(g) iff γ2 ∈ Γ(g).
2. |{h ∈ H | γ1 ∈ Γ(h)}| =

∑
h∈H

|Ah∩EVh|
|Ah| , where for h ∈ H, Ah := {β ∈ U sp(h) | α ∼ β}.

We associate with each gate g a set of injective functions EVg ⊆ U sp(g) defined by
EVg := {α ∈ U sp(g) | ∃γ ∈ Γ(g) ∧ α ∼ γ−1} and note that, by Claim 19, this completely
determines Γ(g). Since [n] is linearly ordered, X ⊆ [n] inherits this order and we write ~X for
the ordered |X|-tuple consisting of the elements of X in the inherited order. For α ∈ UX
write ~α ∈ U ~X for the tuple α( ~X). This allows us to encode injective functions as tuples over
U e.g., ~EVg := {~α | α ∈ EVg}. Using Claim 19 we can construct ~EVg inductively over Cn.

Let g be a constant input gate, then sp(g) is empty. If Σ(g) = 0, then Γ(g) = ∅ and
~EVg = ∅. Otherwise Σ(g) = 1, then Γ(g) is all bijections and ~EVg = {〈〉}, i.e., the set
containing the empty tuple.
Let g be a relational gate with Σ(g) = R ∈ τ , then sp(g) is the set of elements in the
tuple ΛR(g). By definition we have ~EVg = {~α ∈ U ~sp(g) | α(ΛR(g)) ∈ RA}.
Let Σ(g) = AND and consider ~α ∈ U ~sp(g). By Claim 19, ~α ∈ ~EVg iff ~Ah = ~EVh for every
child h of g, i.e., for every child h and every β ∈ U sp(h) with α ∼ β, we have ~β ∈ ~EVh.
Let Σ(g) = OR and consider ~α ∈ U ~sp(g). By Claim 19, ~α ∈ ~EVg iff there is a child h of
g where ~Ah ∩ ~EVh is non-empty, i.e., for some child h of g and some β ∈ U sp(h) with
α ∼ β, we have ~β ∈ ~EVh.
Let Σ(g) = NOT and consider ~α ∈ U ~sp(g). g has exactly one child h. Claim 19 implies
that ~α ∈ ~EVg iff ~Ah 6= ~EVh, i.e., for some β ∈ U sp(h) with α ∼ β, we have ~β 6∈ ~EVh.
Let Σ(g) = MAJ and consider ~α ∈ U ~sp(g). Let H be the set of children of g and let
Ah := {β ∈ U sp(h) | β ∼ α}. Then Claim 19 implies that ~α ∈ ~EVg if, and only if,

∑
h∈H

| ~Ah ∩ ~EVh|
| ~Ah|

≥ |H|2 . (1)

From ~EV we can recover the query Q computed by Cn on the input structure A because
the support of an output gate g is exactly the set of elements in the marking of g by ΛΩ. In
particular: Q = {a ∈ Uq | ∃g ∈ G, ~α ∈ ~EVg such that ΛΩ(α−1(a)) = g}.

It is then straightforward (if laborious) to turn the inductive construction of ~EVg given
above to a fixed-point formula defining the relation V ⊆ [n]t × Uk by V (g, a) if, and only if,
ã ∈ ~EVg in the structure A≤, where ã is the restriction of the tuple a to |sp(g)| elements.
Here t is the arity of the FP-interpretation of the circuit Cn in the structure A≤. From this
we get a formula defining the query Q given by the circuit family C.

The only use of counting operators in the construction of the formula is in translating the
inductive step corresponding to majority gates. Thus, the formula we obtain is one of FP +≤
if B is the standard basis and of FPC if B is the majority basis. Moreover, if the family
C = (Cn)n∈N is not P-uniform, but given by an advice function Υ, we get an equivalent
formula of FP + Υ (for the standard basis) or FPC + Υ (for the majority basis).

On the other hand, formulas of FP + ≤ can be translated into P-uniform families of
symmetric Boolean circuits by standard methods and similar translations hold for FPC and
FP + Υ. Putting this all together gives us our main theorem.
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I Theorem 20 (Main). The following pairs of classes define the same queries on struc-
tures:
1. Symmetric P-uniform Boolean circuits and FP +≤.
2. Symmetric P-uniform majority circuits and FPC.
3. Symmetric P/poly-uniform Boolean circuits and FP + Υ.
4. Symmetric P/poly-uniform majority circuits and FPC + Υ.

One consequence is that properties of graphs which we know not to be definable in
FPC are also not decidable by P-uniform families of symmetric circuits. The results of
Cai-Fürer-Immerman [3] give graph properties that are polynomial-time decidable, but not
definable in FPC. Furthermore, there are a number of natural NP-complete graph problems
known not to be definable in FPC, including Hamiltonicity and 3-colourability (see [4]).
Indeed, all these proofs actually show that these properties are not even definable in the
infinitary logic with a bounded number of variables and counting (Cω∞ω—see [9]). Since it
is not difficult to show that formulas of FPC + Υ can be translated into Cω∞ω, we have the
following.

I Corollary 21. Hamiltonicity and 3-colourability of graphs are not decidable by families of
P/poly-uniform symmetric majority circuits.

5 Coherent and Locally Polynomial Circuits

Otto [10] studies families of rigid symmetric Boolean circuits deciding properties of structures
where the families satisfy two uniformity properties. Informally, a circuit family C := (Cn)n∈N
is coherent if Cn appears as a subcircuit consisting of exactly the gates fixed by Sym[m]\[n]
of all but finitely many of the circuits Cm at input length m > n. Second, C is locally
polynomial of degree k if the size of the orbit of every wire in Cn is at most nk. The main
result [10, Theorem 6] is that coherent locally-polynomial of degree k families of symmetric
(Bstd, τ)-circuits computing Boolean properties of fin[τ ] correspond to infinitary FO with k
variables. In Otto’s definition, individual circuits in the family may themselves be infinite, as
the only size restriction is on the orbits of wires. The theorem also shows that if the circuit
families are constant depth they correspond to the fragment of FO with k variables.

In all notions of uniformity we consider the circuits are of polynomial size. The Support
Theorem can be used to establish a direct connection between polynomial-size symmetric
circuit families and the locally-polynomial coherent symmetric families.

I Proposition 22 (Informal). Let C := (Cn)n∈N be a family of rigid symmetric Boolean
circuits.
1. If C is locally-polynomial and coherent, then C is polynomial size.
2. If C is polynomial size, then C is locally polynomial.

Since there are properties definable in an infinitary logic with finitely many variables that
are not decidable by polynomial-size circuits, it follows from the above proposition that the
use of infinite circuits is essential in Otto’s result.

Proposition 22 implies that all uniform circuit families we consider are locally polynomial.
However, they are not necessarily coherent. Indeed there are Boolean circuit families uniformly
definable in FO + ≤ that are not coherent. To see this observe that such circuit families
may include gates that are completely indexed by the number sort and hence are fixed
under all automorphisms induced by permutations of the point sort. Moreover the number
of such gates may increase as a function of input length. However, under the definition of
coherence, the number of gates in each circuit of a coherent family that are not moved by
any automorphism must be identical. Thus there are uniform circuits that are not coherent.
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6 Future Directions

One of the original motivations for studying symmetric majority circuits was the hope
that they had the power of choiceless polynomial time with counting (CPTC) [2], and
that, perhaps, techniques from circuit complexity could improve our understanding of the
relationship between CPTC and the invariant queries definable in polynomial time. However,
because FPC ( CPTC [5], our results indicate that symmetry is too much of a restriction
on P-uniform circuit families to recover CPTC.

A natural way to weaken the concept of symmetry is to require that induced automorph-
isms exist only for a certain subgroup of the symmetric group. This interpolates between
our notion of symmetric circuits and circuits on linearly-ordered structures, with the latter
case occurring when the subgroup is the identity.

The Support Theorem is a fairly general statement about the structure of symmetric
circuits and is largely agnostic to the particular semantics of the basis. To that end the
Support Theorem may find application to circuits over bases not consider here. The Support
Theorem can be applied to arithmetic circuits computing invariant properties of matrices
over a field; e.g., the Permanent polynomial is invariant and one standard way to compute
it is as a symmetric arithmetic circuit, i.e., Ryser’s formula [11]. Finally, the form of the
Support Theorem can, perhaps, be improved as the particular upper bound required on the
orbit size does not appear to be fundamental to the conclusion it reaches.
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