4,860 research outputs found

    Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings I

    Get PDF
    We study the optimal approximation of the solution of an operator equation Au=f by linear and nonlinear mappings

    Optimal Approximation of Elliptic Problems by Linear and Nonlinear Mappings III: Frames

    Full text link
    We study the optimal approximation of the solution of an operator equation by certain n-term approximations with respect to specific classes of frames. We study worst case errors and the optimal order of convergence and define suitable nonlinear frame widths. The main advantage of frames compared to Riesz basis, which were studied in our earlier papers, is the fact that we can now handle arbitrary bounded Lipschitz domains--also for the upper bounds. Key words: elliptic operator equation, worst case error, frames, nonlinear approximation, best n-term approximation, manifold width, Besov spaces on Lipschitz domainsComment: J. Complexity, to appear. Final version, minor mistakes correcte

    A multidomain spectral method for solving elliptic equations

    Get PDF
    We present a new solver for coupled nonlinear elliptic partial differential equations (PDEs). The solver is based on pseudo-spectral collocation with domain decomposition and can handle one- to three-dimensional problems. It has three distinct features. First, the combined problem of solving the PDE, satisfying the boundary conditions, and matching between different subdomains is cast into one set of equations readily accessible to standard linear and nonlinear solvers. Second, touching as well as overlapping subdomains are supported; both rectangular blocks with Chebyshev basis functions as well as spherical shells with an expansion in spherical harmonics are implemented. Third, the code is very flexible: The domain decomposition as well as the distribution of collocation points in each domain can be chosen at run time, and the solver is easily adaptable to new PDEs. The code has been used to solve the equations of the initial value problem of general relativity and should be useful in many other problems. We compare the new method to finite difference codes and find it superior in both runtime and accuracy, at least for the smooth problems considered here.Comment: 31 pages, 8 figure

    The Theory of Quasiconformal Mappings in Higher Dimensions, I

    Full text link
    We present a survey of the many and various elements of the modern higher-dimensional theory of quasiconformal mappings and their wide and varied application. It is unified (and limited) by the theme of the author's interests. Thus we will discuss the basic theory as it developed in the 1960s in the early work of F.W. Gehring and Yu G. Reshetnyak and subsequently explore the connections with geometric function theory, nonlinear partial differential equations, differential and geometric topology and dynamics as they ensued over the following decades. We give few proofs as we try to outline the major results of the area and current research themes. We do not strive to present these results in maximal generality, as to achieve this considerable technical knowledge would be necessary of the reader. We have tried to give a feel of where the area is, what are the central ideas and problems and where are the major current interactions with researchers in other areas. We have also added a bit of history here and there. We have not been able to cover the many recent advances generalising the theory to mappings of finite distortion and to degenerate elliptic Beltrami systems which connects the theory closely with the calculus of variations and nonlinear elasticity, nonlinear Hodge theory and related areas, although the reader may see shadows of this aspect in parts
    • …
    corecore