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Abstract

We study the optimal approximation of the solution of an operator equation A(u) = f by linear
mappings of rank n and compare this with the best n-term approximation with respect to an optimal
Riesz basis. We consider worst case errors, where f is an element of the unit ball of a Hilbert space.
We apply our results to boundary value problems for elliptic PDEs that are given by an isomorphism
A : Hs

0 (�) → H−s (�), where s > 0 and � is an arbitrary bounded Lipschitz domain in Rd . We prove
that approximation by linear mappings is as good as the best n-term approximation with respect to an
optimal Riesz basis. We discuss why nonlinear approximation still is important for the approximation
of elliptic problems.
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1. Introduction

We study the optimal approximation of the solution of an operator equation

A(u) = f, (1)

where A is a linear operator

A : H → G (2)

from a Hilbert space H to another Hilbert space G. We always assume that A is boundedly
invertible, hence (1) has a unique solution for any f ∈ G. We have in mind, for example, the
more specific situation of an elliptic operator equation, which is given as follows. Assume
that � ⊂ Rd is a bounded Lipschitz domain and assume that

A : Hs
0 (�) → H−s(�) (3)

is an isomorphism, where s > 0. A standard case (for second order elliptic boundary value
problems for PDEs) is s = 1, but also other values of s are of interest. For this situation we
take H = Hs

0 (�) and G = H−s(�). Since A is boundedly invertible, the inverse mapping
S : G → H is well defined. This mapping is sometimes called the solution operator—in
particular, if we want to compute the solution u = S(f ) from the given right-hand side
A(u) = f .

Let F be a specified normed (or quasi-normed) subspace of G. We use linear and nonlinear
mappings Sn for approximating the solution u = A−1(f ) for f ∈ F . Let us consider the
worst case error

e(Sn, F, H) = sup
‖f ‖F �1

‖A−1(f ) − Sn(f )‖H .

For a given basis B = {hi | i ∈ N} of H we consider the class Nn(B) of all (linear or
nonlinear) mappings of the form

Sn(f ) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f. We also allow the basis B to be
chosen in a nearly arbitrary way. Then the nonlinear widths enon

n,C(S, F, H) are given by

enon
n,C(S, F, H) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F, H).

Here BC denotes a set of Riesz bases for H, where C indicates the stability of the basis,
see Section 2.1 for details. These numbers are the main topic of our analysis. We compare
nonlinear approximations with linear approximations. Here we consider the class Ln of all
continuous linear mappings Sn : F → H ,

Sn(f ) =
n∑

i=1

Li(f ) · h̃i
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with arbitrary h̃i ∈ H . The worst case error of optimal linear mappings is given by

elin
n (S, F, H) = inf

Sn∈Ln

e(Sn, F, H).

The third class of approximation methods that we study in this paper is the class of continu-
ous mappings Cn, given by arbitrary continuous mappings Nn : F → Rn and �n : Rn → H .
Again we define the worst case error of optimal continuous mappings by

econt
n (S, F, H) = inf

Sn∈Cn

e(Sn, F, H),

where Sn = �n◦Nn. These numbers, or slightly different numbers, were studied by different
authors, cf. [7,8,10,24]. Sometimes the econt

n are called manifold widths of S, see [8].

Remark 1. (i) A purpose of this paper is to compare the numbers enon
n,C(S, F, H) with the

numbers elin
n (S, F, H), where S : F → H is the restriction of A−1 : G → H to F ⊂ G. In

this sense we compare optimal linear approximation of S (i.e., by linear mappings of rank
n) with the best n-term approximation with respect to an optimal Riesz basis.

(ii) To avoid possible misunderstandings, it is important to clarify the following point. In
the realm of approximation theory, very often the term “linear approximation” is used for
an approximation scheme that comes from a sequence of linear spaces that are uniformly
refined, see, e.g., [6] for a detailed discussion. However, in our definition of elin

n (S, F, H)

we allow arbitrary linear Sn, not only those that are based on uniformly refined subspaces.
In this paper, the latter will be denoted by uniform approximation scheme.

For reader’s convenience, we finish this section by briefly summarizing the main results
of this paper.

Theorem 1. Assume that F ⊂ G is quasi-normed. Then

enon
n,C(S, F, H) � 1

2C
bm(S, F, H)

holds for all m�4 C2 n, where bn(S, F, H) denotes the nth Bernstein width of the operator
S, see Section 2.2 for details.

Theorem 2 and Corollary 1. Assume that F ⊂ G is a Hilbert space and

b2n(S, F, H) � bn(S, F, H).

Then

elin
n (S, F, H) = econt

n (S, F, H) � enon
n,C(S, F, H).

In this sense, approximation by linear mappings is as good as approximation by nonlinear
mappings. In this paper, ‘a � b’ always means that both quantities can be uniformly
bounded by a constant multiple of each other. Likewise, ‘ <∼ ’ indicates inequality up to
constant factors.
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Theorem 4. Assume that S : H−s(�) → Hs
0 (�) is an isomorphism, with no further

assumptions. Then we have for all C�1

elin
n (S, H−s+t , H s) � enon

n,C(S, H−s+t , H s) � n−t/d .

In this sense, approximation by linear mappings is as good as approximation by nonlinear
mappings.

Theorem 5. If we allow only function evaluations instead of general linear information,
then the order of convergence drops down from n−t/d to n(s−t)/d , where t > s + d/2.

• In Theorems 6 and 7 we study the Poisson equation and the best n-term wavelet approx-
imation. Theorem 6 shows that best n-term wavelet approximation might be suboptimal
in general. Theorem 7, however, shows that for a polygonal domain in R2 best n-term
wavelet approximation is almost optimal.

Some of these results (Corollary 1, Theorem 4) might be surprising since there is a
widespread believe that nonlinear approximation is better than approximation by linear
operators. Therefore we want to make the following remarks concerning our setting:

• We allow arbitrary linear operators Sn with rank n, not only those that are based on a
uniform refinement.

• We consider the worst case error with respect to the unit ball of a Hilbert space.
• Our results are concerned with approximations, not with their numerical realization. For

instance, the construction of an optimal linear method might require the precomputation
of a suitable basis (depending on A), which is usually a prohibitive task. See also Remark
10, where we discuss in more detail why nonlinear approximation is very important for
the approximation of elliptic problems.

• In another paper (in progress) we continue this work under the assumption that F is a
general Besov space. Then it turns out that for some parameters nonlinear approximation
is essentially better than linear approximation.

2. Basic concepts of optimality

2.1. Classes of admissible mappings

2.1.1. Nonlinear mappings Sn

We will study certain approximations of S based on Riesz bases, cf., e.g., Meyer
[26, p. 21].

Definition 1. Let H be a Hilbert space. Then a sequence h1, h2, . . . of elements of H is
called a Riesz basis for H if there exist positive constants A and B such that, for every
sequence of scalars �1, �2, . . . with �i 	= 0 for only finitely many i, we have

A

(∑
k

|�k|2
)1/2

�
∥∥∥∥∥∑

k

�k hk

∥∥∥∥∥
H

�B

(∑
k

|�k|2
)1/2

(4)

and the vector space of finite sums
∑

�k hk is dense in H.
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Remark 2. The constants A, B reflect the stability of the basis. Orthonormal bases are
those with A = B = 1. Typical examples of Riesz bases are the biorthogonal wavelet bases
on Rd or on certain Lipschitz domains, cf. Cohen [1, Sections 2.6, 2.12].

In what follows

B = {hi | i ∈ N} (5)

will always denote a Riesz basis of H and A and B will be the corresponding optimal
constants in (4). We study optimal approximations Sn of S = A−1 of the form

Sn(f ) = un =
n∑

k=1

ck hik , (6)

where f = A(u). Assuming that we can choose B, we want to choose an optimal basis B.
What is the error of such an approximation Sn and in which sense can we say that B and
Sn are optimal?

It is important to note that optimality of Sn does not make sense for a single u: we simply
can take a B where h1 is a multiple of u, and hence we can write the exact solution u as
u1 = c1h1, i.e., with n = 1. To define optimality of an approximation Sn we need a suitable
subset of G. We consider the worst case error

e(Sn, F, H) := sup
‖f ‖F �1

‖A−1(f ) − Sn(f )‖H , (7)

where F is a normed (or quasi-normed) space, F ⊂ G. For a given basis B we consider the
class Nn(B) of all (linear or nonlinear) mappings of the form

Sn(f ) =
n∑

k=1

ck hik , (8)

where the ck and the ik depend in an arbitrary way on f. Optimality is expressed by the
quantity

�n(A−1f, B)H := inf
i1,...,in

inf
c1,... cn

‖A−1(f ) −
n∑

k=1

ck hik ‖H .

This reflects the best n-term approximation of A−1(f ). This subject is widely studied, see
the surveys [6,37]. Since Sn is arbitrary, one immediately obtains

inf
Sn∈Nn(B)

sup
‖f ‖F �1

‖A−1(f ) − Sn(f )‖H = sup
‖f ‖F �1

inf
Sn∈Nn(B)

‖A−1(f ) − Sn(f )‖H

= sup
‖f ‖F �1

�n(A−1f, B)H .

We allow the basis B to be chosen in a nearly arbitrary way. It is natural to assume some
common stability of the bases under consideration. For a real number C�1 we define

BC :=
{
B : B/A�C

}
. (9)
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We define the nonlinear widths enon
n,C(S, F, H) as

enon
n,C(S, F, H) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F, H). (10)

These numbers are the main topic of our analysis. They could be called the errors of the best
n-term approximation (with respect to the collection BC of Riesz basis of H), for brevity
we call them nonlinear widths. In this paper we investigate the numbers enon

n,C(S, F, H) only
when H is a Hilbert space. More general concepts are introduced and investigated in [37].

Remark 3. It should be clear that the class Nn(B) contains many mappings that are difficult
to compute. In particular, the number n just reflects the dimension of a nonlinear manifold
and has nothing to do with computational cost. Since we are interested in lower bounds,
our results are strengthened by considering such a large class of approximations.

Remark 4. It is obvious from the definition (10) that S∗
n ∈ Nn(B) can be optimal for a

given basis B in the sense that

e(S∗
n, F, H) ≈ inf

Sn∈Nn(B)
e(Sn, F, H),

although the number enon
n,C(S, F, H) is much smaller, since the given B is far from being

optimal. See also Remark 10.

2.1.2. Linear mappings Sn

Here we consider the class Ln of all continuous linear mappings Sn : F → H ,

Sn(f ) =
n∑

i=1

Li(f ) · h̃i (11)

with arbitrary h̃i ∈ H . For each Sn we define e(Sn, F, H) by (7) and hence we can define
the worst case error of optimal linear mappings by

elin
n (S, F, H) = inf

Sn∈Ln

e(Sn, F, H). (12)

The numbers elin
n (S, F, H) (or slightly different numbers) are usually called approximation

numbers or linear widths of S : F → H , cf. [24,33,34,38].
If F is a space of functions on a set � such that function evaluation f �→ f (x) is

continuous, then one can define the linear sampling numbers

glin
n (S, F, H) = inf

Sn∈Lstd
n

e(Sn, F, H), (13)

where Lstd
n ⊂ Ln contains only those Sn that are of the form

Sn(f ) =
n∑

i=1

f (xi) · h̃i (14)

with xi ∈ �. For the numbers glin
n we only allow standard information, i.e., function

values of the right-hand side. The inequality glin
n (S, F, H)�elin

n (S, F, H) is trivial. One
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also might allow nonlinear Sn = �n ◦ Nn with (linear) standard information Nn(f ) =
(f (x1), . . . , f (xn)) and arbitrary �n : Rn → H . This leads to the sampling numbers
gn(S, F, H).

2.1.3. Continuous mappings Sn

Linear mappings Sn are of the form Sn = �n ◦ Nn, where both Nn : F → Rn and
�n : Rn → H are linear and continuous. If we drop the linearity condition, then we
obtain the class of all continuous mappings Cn, given by arbitrary continuous mappings
Nn : F → Rn and �n : Rn → H . Again we define the worst case error of optimal
continuous mappings by

econt
n (S, F, H) = inf

Sn∈Cn

e(Sn, F, H). (15)

These numbers, or variants of same, were studied by different authors, cf. [7,8,10,24].
Sometimes these numbers are called manifold widths of S, see [8]. The inequalities

enon
n,C(S, F, H)�elin

n (S, F, H) (16)

and

econt
n (S, F, H)�elin

n (S, F, H) (17)

are, of course, trivial.

2.2. Relations to Bernstein widths

The following quantities are useful for the understanding of econt
n and enon

n :

Definition 2. The number bn(S, F, H), called the nth Bernstein width of the operator
S : F → H , is the radius of the largest (n + 1)-dimensional ball that is contained in
S({‖f ‖F �1}).

Remark 5. In the literature there are used different definitions of Bernstein widths. E.g. in
Pietsch [32] the following version is given. Let Xn denote subspaces of F of dimension n.
Then

b̃n(S, F, H) := sup
Xn⊂F

inf
x∈Xn,x 	=0

‖Sx‖H

‖x‖F

.

As long as S is an injective mapping we obviously have bn(S, F, H) = b̃n+1(S, F, H).

As it is well-known, Bernstein widths are useful for the proof of lower bounds, see
[7,10,34]. The next lemma is certainly known. Since we could not find a reference, we
include it with a proof.

Lemma 1. Let n ∈ N and assume that F ⊂ G is quasi-normed. Then the inequality

bn(S, F, H)�econt
n (S, F, H) (18)

holds for all n.
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Proof. We assume thatS({‖f ‖F �1}) contains an (n+1)-dimensional ballB ⊂ H of radius
r. We may assume that the center is in the origin. Let Nn : F → Rn be continuous. Since
S−1(B) is an (n + 1)-dimensional bounded and symmetric neighborhood of 0, it follows
from the Borsuk Antipodality Theorem, see [5, par. 4], that there exists an f ∈ �S−1(B)

with Nn(f ) = Nn(−f ) and hence

Sn(f ) = �n(Nn(f )) = �n(Nn(−f )) = Sn(−f )

for any mapping �n : Rn → G. Observe that ‖f ‖F = 1. Since ‖S(f )−S(−f )‖ = 2r and
Sn(f ) = Sn(−f ), we find that the maximal error of Sn on {±f } is at least r. This proves

bn(S, F, H)�econt
n (S, F, H). �

We will see that the bn can also be used to prove lower bounds for the enon
n,C . As usual,

c0 denotes the Banach space of all sequences x = (xj )
∞
j=1 of real numbers such that

limj→∞ xj = 0 and equipped with the norm of �∞.
Lemma 2 below has a long history since it is central in the theory of s-numbers. See [33,

Lemma 2.9.6], where also its use for proving a result as Lemma 3 is exhibited.

Lemma 2. Let V denote an n-dimensional subspace of c0. Then there exists an element
x ∈ V such that ‖x‖∞ = 1 and at least n coordinates of x = (x1, x2, . . .) have absolute
value 1.

Lemma 3. Let Vn be an n-dimensional subspace of the Hilbert space H. Let B be a Riesz
basis with Riesz constants 0 < A�B < ∞. Then there is a nontrivial element x ∈ Vn such
that x = ∑∞

j=1 xj hj and

A
√

n ‖(xj )j‖∞ �‖x‖H .

Proof. Associated with any x ∈ H there is a sequence (xj )j of coefficients with respect to
B that belongs to c0. In the same way, we associate with Vn ⊂ H a subspace Xn ⊂ c0, also
of dimension n. As a consequence of Lemma 2, we find an element (xj )j ∈ Xn such that

0 < |xj1 | = · · · = |xjn | = ‖(xj )j‖∞ < ∞.

This implies

‖x‖H �A

(
n∑

l=1

|xjl
|2
)1/2

= A
√

n ‖(xj )j‖∞. �

Theorem 1. Assume that F ⊂ G is quasi-normed. Then

enon
n,C(S, F, H) � 1

2C
bm(S, F, H) (19)

holds for all m�4 C2 n.
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Proof. Let B be a Riesz basis with Riesz constants A and B and let m > n. Assume that
S({‖f ‖�1}) contains an m-dimensional ball with radius ε. Using Lemma 3, there exists
an x ∈ S({‖f ‖�1}) such that x = ∑

i xi hi , ‖x‖ = ε and |xi |�A−1 m−1/2ε for all i.
Let x1, . . . xn be the n largest components (with respect to the absolute value) of x. Now,
consider y = ∑

i yi hi such that at most n coefficients are nonvanishing. Then

‖x − y‖H �A‖(xi − yi)i‖2

and the optimal choice of y (with respect to the right-hand side) is given by y0, where
y0

1 = x1, . . . , y0
n = xn. Now we continue our estimate

A‖(xi − yi)i‖2 � A (‖(xi)i‖2 − ‖(yi)i‖2)

� A

(
ε

B
− 1

A
ε

√
n

m

)
= ε

(
A

B
−
√

n

m

)
. (20)

The right-hand side is at least ε A/(2B) if m�4B2n/A2. �

Remark 6. Probably the constant 1/(2C) is not optimal. But it is obvious from (20) that
for m tending to infinity the constant is approaching A/B.

2.3. The case of a Hilbert space

Now let us assume, in addition to the assumptions of the previous subsections, that F ⊂ G

is a Hilbert space. The following result is well known, see [32] and Remark 5.

Theorem 2. Assume that F is a Hilbert space. Then

elin
n (S, F, H) = econt

n (S, F, H) = bn(S, F, H). (21)

In many applications one studies problems with “finite smoothness” and then, as a rule,
one has the estimate

b2n(S, F, H) � bn(S, F, H). (22)

Formula (22) especially holds for the operator equations that we study in Section 3. Then
we conclude that approximation by optimal linear mappings yields the same order of con-
vergence as the best n-term approximation.

Corollary 1. Assume that S : F → H with Hilbert spaces F and H, with (22) holding.
Then

elin
n (S, F, H) = econt

n (S, F, H) � enon
n,C(S, F, H). (23)

3. Elliptic problems

In this section, we study the more special case where � ⊂ Rd is a bounded Lipschitz
domain and A = S−1 : Hs

0 (�) → H−s(�) is an isomorphism, where s > 0. The first step
is to recall the definition of the smoothness spaces that are needed for our analysis.
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3.1. Function spaces

If m is a natural number, we let Hm(�) denote the set of all functions u ∈ L2(�) such
that the (distributional) derivatives D�u of order |�|�m also belong to L2(�). This set,
equipped with the norm

‖ u ‖Hm(�) :=
∑

|�|�m

‖ D�u ‖L2(�),

becomes a Hilbert space. For a positive noninteger s, we define Hs(�) as specific Besov
spaces. If h ∈ Rd , we let �h denote the set of all x ∈ � such that the line segment [x, x +h]
is contained in �. The modulus of smoothness �r (u, t)Lp(�) of a function u ∈ Lp(�),
where 0 < p�∞, is defined by

�r (u, t)Lp(�) := sup
|h|� t

‖�r
h(u, ·)‖Lp(�rh), t > 0,

with �r
h the rth difference with step h. For s > 0 and 0 < q, p�∞, the Besov space

Bs
q(Lp(�)) is defined as the space of all functions u ∈ Lp(�) for which

|u|Bs
q(Lp(�)) :=

{ (∫∞
0 [t−s�r (u, t)Lp(�)]qdt/t

)1/q

, 0 < q < ∞,

supt �0 t−s�r (u, t)Lp(�), q = ∞ ,
(24)

is finite with r ∈ N, s < r �s + 1, see, e.g., [40] for details. It turns out that (24) is a
(quasi-)semi-norm for Bs

q(Lp(�)). If we add ‖u‖Lp(�) to (24), we obtain a (quasi-)norm
for Bs

q(Lp(�)). Then, for positive noninteger s, we define

Hs(�) := Bs
2(L2(�)).

It is known that this definition coincides up to equivalent norms with other definitions based,
e.g., on complex or real interpolation, cf. Dispa [9], Lions and Magenes [23, Volume 1] and
Triebel [41].

For all s > 0 we let Hs
0 (�) denote the closure of the test functions D(�) in Hs(�).

Finally, we put

H−s(�) := (Hs
0 (�))′ , s > 0 s 	= 1

2 + k,

where k ∈ N0. Alternatively (and this is done e.g. in [19] and will play a role in Subsection
3.5) one could use the following approach: define for s > 0

H̃ s(�) :=
{
u ∈ L2(�) : there exists g ∈ Hs(Rd) with g|� = u and supp g ⊂ �

}
equipped with the induced norm. Then, for all s > 0, s 	= 1

2 + k, k ∈ N

Hs
0 (�) = H̃ s(�),

in the sense of equivalent norms, cf. Grisvard [14, Corollary 1.4.4.5]. If 0 < s = 1
2 + k,

k ∈ N, then we put

H−s(�) :=
(
H̃ s(�)

)′
. (25)
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Observe, that by the previous remark this could be used as definition for all values of s > 0
(up to equivalent norms).
Since we have Hilbert spaces, linear mappings are (almost) optimal approximations, i.e.,
Corollary 1 holds. We want to say more about the structure of an optimal linear Sn for the
approximation of S = A−1. For this, the notion of a “regular problem” is useful.

3.2. Regular problems

The notion of regularity is very important for the theory and the numerical treatment of
operator equations, see [16]. We use the following definition and assume that t > 0.

Definition 3. Let s > 0. An isomorphism A : Hs
0 (�) → H−s(�) is Hs+t -regular if also

A : Hs
0 (�) ∩ Hs+t (�) → H−s+t (�) (26)

is an isomorphism.

A classical example is the Poisson equation in a C∞-domain: this yields an operator that
is H 1+t -regular for every t > 0. We refer, e.g., to [16] for further information and examples.
It is known that in this situation we obtain the optimal rate

elin
n (S, H−s+t (�), H s(�)) � n−t/d (27)

of linear methods. This is a classical result, at least for t, s ∈ N and for special domains.
We refer to the books [11,31,43] that contain hundreds of references.

We prove that the rate (27) is true for arbitrary s, t > 0, and for arbitrary bounded
(nonempty, of course) Lipschitz domains. The optimal rate can be obtained by using
Galerkin spaces that do not depend on the particular operator A. With nonlinear approxi-
mations we cannot obtain a better rate of convergence.

Theorem 3. Assume that the problem is Hs+t -regular. Then for all C�1, we have

elin
n (S, H−s+t (�), H s(�)) � enon

n,C(S, H−s+t (�), H s(�)) � n−t/d (28)

and the optimal order can be obtained by subspaces of Hs that do not depend on the
operator S = A−1.

Proof. Consider first the identity (embedding) I : Hs+t (�) → Hs(�). It is known that

elin
n (I, Hs+t (�), H s(�)) � n−t/d .

This is a classical result (going back to Kolmogorov (1936), see [22]) for s, t ∈ N, see also
[34]. For the general case (s, t > 0 and arbitrary bounded Lipschitz domains) see [12,41].
We obtain the same order for I : Hs+t (�) ∩ Hs

0 (�) → Hs(�).
We assume (26), and hence S : H−s+t (�) → Hs+t (�) ∩ Hs

0 (�) is an isomorphism.
Hence we obtain the same order of the elin

n for I and for I ◦ S|H−s+t (�). Together with
Corollary 1 this proves (28).
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Assume that the linear mapping

n∑
i=1

gi Li(f )

is good for the mapping I : Hs+t (�) ∩ Hs
0 (�) → Hs(�), i.e., we consider a sequence of

such approximations with the optimal rate n−t/d . Then the linear mappings

n∑
i=1

gi Li(Sf )

achieve the optimal rate n−t/d for the mapping S : H−s+t (�) → Hs+t (�) ⊂ Hs(�). �

Remark 7. The same gi are good for all Hs+t (�)-regular problems on H−s+t (�); only
the linear functionals, given by Li ◦ S|H−s+k , depend on the operator A. For the numerical
realization we can use the Galerkin method with the space Vn generated by g1, . . . , gn.
It is known that for Vn one can take spaces that are based on uniform refinement, e.g.,
constructed by uniform grids or uniform finite elements schemes. Indeed, if we consider a
sequence Vn of uniformly refined spaces with dimension n, then, under natural conditions,
the following characterization holds:

u ∈ Ht+s(�) ⇐⇒
∞∑

n=1

[nt/dEn(u)]2 1

n
< ∞, where En(u) := inf

g∈Vn

‖u − g‖Hs ,

(29)

see, e.g, [3,30] and the references therein.

Remark 8. Observe that the assumptions of Theorem 3 are rather restrictive. Formally, we
assumed that � is an arbitrary bounded Lipschitz domain and that A is Hs+t -regular. In
practice, however, problems tend to be regular only if � has a smooth boundary.

3.3. Nonregular problems

The next result shows that linear approximations also give the optimal rate n−t/d in the
nonregular case. An important difference, however, is the fact that now the Galerkin space
must depend on the operator A. Related results can be found in the literature, see [21,25,42].
Again we allow arbitrary s and t > 0 and arbitrary bounded Lipschitz domains. We also
prove that nonlinear approximation methods do not yield a better rate of convergence.

Theorem 4. Assume that S : H−s(�) → Hs
0 (�) is an isomorphism, with no further

assumptions. Here � ⊂ Rd is a bounded Lipschitz domain. Then we have for all C�1

elin
n (S, H−s+t (�), H s(�)) � enon

n,C(S, H−s+t (�), H s(�)) � n−t/d . (30)
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Proof. Consider first the identity (or embedding) I : H−s+t (�) → H−s(�). It is known
that

elin
n (I, H−s+t (�), H−s(�)) � n−t/d .

Again this is a classical result, for the general case (with s, t > 0 and � an arbitrary bounded
Lipschitz domain), see [41].

We assume that S : H−s(�) → Hs
0 (�) is an isomorphism, so that elin

n have the same
order for I and for S ◦ I . Together with Theorem 1 and Corollary 1, this proves (30).

Assume that the linear mapping

n∑
i=1

gi Li(f )

is good for the mapping I : H−s+t → H−s , i.e., we consider a sequence of such approxi-
mations with the optimal rate n−t/d . Then the linear mappings

n∑
i=1

S(gi) Li(f ) (31)

achieve the optimal rate n−t/d for the mapping S : H−s+t (�) → Hs(�). �

Remark 9. It is well-known that uniform methods can be quite bad for problems that are
not regular. Indeed, the general characterization (29) implies that the approximation order
of uniform methods is determined by the Sobolev regularity of the solution u. Therefore, if
the problem is nonregular, i.e., if the solution u lacks Sobolev smoothness, then the order
of convergence of uniform methods drops down.

Remark 10. For nonregular problems, we use linear combinations of S(gi). The gi do
not depend on S, but of course the S(gi) do depend on S. This has important practical
consequences: if we want to realize good approximations of the form (31) then we need
to know the S(gi). Observe also that in this case we need good knowledge about the
approximation of the embedding I : H−s+t (�) → H−s(�). For s > 0, this embedding is
not often studied in numerical analysis.

Hence, we see an important difference between regular and arbitrary operator equations:
Yes, the order of optimal linear approximations is the same in both cases and also nonlinear
(best n-term) approximations cannot be better. But to construct good linear methods in
the general case we have to know or to precompute the S(gi), which is usually almost
impossible in practice or at least much too expensive.

This leads us to the following problem: Can we find a B ∈ BC (here we think about a
wavelet basis, but we do not want to exclude other cases) that depends only on t, s, and �
such that

inf
Sn∈Nn(B)

e(Sn, H
−s+t (�), H s(�)) � n−t/d (32)

for many different operator equations, given by an isomorphism S = A−1 : H−s(�) →
Hs

0 (�)?
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We certainly cannot expect that a single basis B is optimal for all reasonable operator
equations, but the results in Section 3.5 indicate that wavelet methods seem to have some
potential in this direction. In any case it is important to distinguish between “an approxi-
mation Sn is optimal with respect to the given basis B” and “Sn is optimal with respect to
the optimal basis B”. See also [27,29].

3.4. Function values

Now we study the numbers gn(S, H t−s(�), H s(�)) = glin
n (S, H t−s(�), H s(�)) under

similar conditions as we had in Theorem 4. In particular we do not assume that the problem
is regular. However we have to assume t > s+d/2 so that function values will continuously
depend on f ∈ Ht−s(�).

Consider first the embedding I : Ht(�) → L2(�), where � is a bounded Lipschitz
domain � ⊂ Rd . We want to use function values of f ∈ Ht(�) and hence have to assume
that t > d/2. It is known that

elin
n (I, H t (�), L2(�)) � glin

n (I, H t (�), L2(�)) � n−t/d , (33)

see [28]. This means that arbitrary linear functionals do not yield a better order of con-
vergence than function values. Observe that we always have gn = glin

n , since we consider
mappings between Hilbert spaces and hence the linear spline algorithm is always optimal,
see [39, 4.5.7].

It is interesting that for s > 0 arbitrary linear information is superior to function evalua-
tion. In the theorem that follows, we make no smoothness or regularity assumptions.

Theorem 5. Assume that S : H−s(�) → Hs
0 (�) is an isomorphism, where � ⊂ Rd is a

bounded Lipschitz domain. Then

gn(S, H−s+t (�), H s(�)) = glin
n (S, H−s+t (�), H s(�)) � n(s−t)/d , (34)

for t > s + d/2.

Proof. As in the proof of Theorem 4, it is enough to prove that

gn(I, H
−s+t (�), H−s(�)) � n(s−t)/d . (35)

To prove the upper and the lower bound for (35), we use several auxiliary problems and
start with the upper bound. It is known from [28] that

gn(I, H
−s+t (�), L2(�)) � n(s−t)/d .

provided that t − s > d/2. From this we obtain the upper bound

gn(I, H
−s+t (�), H−s(�))�c · n(s−t)/d

by embedding.
For the lower bound we use the bound

gn(I, H
−s+t (�), L1(�)) � n(s−t)/d , (36)
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again from [28]. The lower bound in (36) is proved by the technique of bump functions:
Given x1, . . . , xn ∈ �, one can construct a function f ∈ H−s+t (�) with norm one such
that f (x1) = · · · = f (xn) = 0 and

‖f ‖L1 �c · n(s−t)/d , (37)

where c > 0 does not depend on the xi or on n. The same technique can be used to prove
lower bounds for integration problems. We consider an integration problem

Int(f ) =
∫

�
f � dx, (38)

where ��0 is a smooth (and nonzero) function on � with compact support. Then this
technique gives: Given x1, . . . , xn ∈ �, one can construct a function f ∈ H−s+t (�) with
norm one such that f (x1) = · · · = f (xn) = 0 and

Int(f )�c · n(s−t)/d , (39)

where c > 0 does not depend on the xi or on n. Since we assumed that � is smooth with
compact support, we have

‖f ‖H−s �c · |Int(f )|
and hence we may replace in (39) Intf by ‖f ‖H−s , hence

gn(I, H
−s+t (�), H−s(�))�c · n(s−t)/d . �

3.5. The Poisson equation

Finally, we discuss our results for the specific case of the Poisson equation

−�u = f in �

u = 0 on �� (40)

on a bounded Lipschitz domain � contained in Rd , d �2. Here, as always in this paper, we
understand Lipschitz domain in the sense of Steins notion of domains with minimal smooth
boundary, cf. Stein [36, VI.3].

It is well-known that (40) fits into our setting with s = 1. Indeed, if we consider the weak
formulation of this problem, it can be checked that (40) induces a boundedly invertible
operator A = � : H 1

0 (�) −→ H−1(�), see again [16, Chapter 7.2] for details.
In this section, we shall especially focus on wavelet bases � = {�� : � ∈ J }. The indices

� ∈ J typically encode several types of information, namely the scale (often denoted |�|),
the spatial location and also the type of the wavelet. Recall that in a classical setting, a
tensor product construction yields 2d − 1 types of wavelets [26]. For instance, on the real
line � can be identified with (j, k), where j = |�| denotes the dyadic refinement level and
2−j k signifies the location of the wavelet. We will not discuss at this point any technical
description of the basis �. Instead we assume that the domain � under consideration enables
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us to construct a wavelet basis � with the following properties:

• the wavelets are local in the sense that

diam(supp ��) � 2−|�|, � ∈ J ;
• the wavelets satisfy the cancellation property

|〈v, ��〉| <∼ 2−|�|m̃‖v‖Hm̃(supp ��)
,

where m̃ denotes some suitable parameter, and
• the wavelet basis induces characterizations of Besov spaces of the form

‖f ‖Bs
q(Lp(�)) �

⎛⎜⎝ ∞∑
|�|=j0

2j (s+d( 1
2 − 1

p
))q

⎛⎝ ∑
�∈J ,|�|=j

|〈f, �̃�〉|p
⎞⎠q/p

⎞⎟⎠
1/q

, (41)

where s > d
(

1
p

− 1
)

+ and �̃ = {�̃� : � ∈ J } denotes the dual basis

〈��, �̃�〉 = ��,�, �, � ∈ J .

For the applications we have in mind, especially the case p = q, p�2, 1/p�s/d + 1/2
is important, see, e.g., Theorem 6 for details.

By exploiting the norm equivalence (41) and using the fact that Bs
2(L2(�)) = Hs(�),

a simple rescaling immediately yields a Riesz basis for Hs . We shall also assume that the
Dirichlet boundary conditions can be included, so that a characterization of the form (41)
also holds for Hs

0 (�). We refer to [1] for a detailed discussion. In this setting, the following
theorem holds.

Theorem 6. Let S denote the solution operator for the problem (40). Then, for sufficiently
large C, best n-term wavelet approximation Sn yields

enon
n,C(S, H t−1(�), H 1(�)) � e(Sn, H

t−1(�), H 1(�))

� c

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n− t
d
+ε if 0 < t �1/2,

n− (t+1)
3d

+ε if 1
2 < t � d+2

2(d−1)
,

n
− 1

2(d−1)
+ε if d+2

2(d−1)
< t,

where ε > 0 is arbitrary and c does not depend on n ∈ N.

Proof. Step 1: All what we need from the wavelet basis is the following estimate for the
best n-term approximation in the H 1-norm:

‖ u − Sn(f ) ‖H 1 �c |u|B�
	∗(L	∗(�)) n−(�−1)/d ,

1

	∗ = (� − 1)

d
+ 1

2
, (42)

see, e.g., [3] for details. We therefore have to estimate the Besov norm B�
	∗(L	∗(�)).
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Step 2: Besov regularity of u.
First of all, we estimate the Besov norm of u in the specific scale

Bs
	(L	(�)) where

1

	
= s

d
+ 1

2
. (43)

Regularity estimates in the scale (43) have already been performed in [4]. We write the
solution u to (40) as

u = ũ + v,

where ũ solves −�ũ = f̃ on a smooth domain �̃ ⊃ �. Here f̃ = E(f ) where E denotes
some suitable extension operator with respect to �. Furthermore, v is the solution to the
additional homogeneous Dirichlet problem

�v = 0 in �

v = g = −Tr(ũ) on ��. (44)

Substep 2.1: Regularity of ũ. Let t > 0. Let E be a bounded linear extension operator
from Bt−1

2 (L2(�)) → Bt−1
2 (L2(R

d)), cf. [35]. Then, by classical elliptic regularity on
smooth domains, cf. e.g. [19, Theorem 0.3], it follows from Ef ∈ Bt−1

2 (L2(�̃)) that ũ ∈
Bt+1

2 (L2(�̃)) and

‖ ũ ‖
Bt+1

2 (L2(�̃))
�c1 ‖E‖ ‖f ‖

Bt−1
2 (L2(�))

.

Known embeddings of Besov spaces yield

‖ ũ ‖
Bt+1−ε

q (Lq(�̃))
�c2 ‖ ũ ‖

Bt+1
2 (Lq(�̃))

�c3 ‖ ũ ‖
Bt+1

2 (L2(�̃))
�c4‖f ‖

Bt−1
2 (L2(�))

,

(45)

where 0 < q �2 and ε > 0 are arbitrary.
Substep 2.2: The regularity of v. An important theorem of Jerison and Kenig, see [17,18]

and also [19, Theorem 5.1] (for d �3), reads as

‖ v ‖B


2 (L2(�)) �c5 ‖ g ‖

B

−1/2
2 (L2(��))

if 1/2 < 
 < 3/2. (46)

Trace problems for Lipschitz boundaries are investigated in [20]. We refer to this monograph
and to [19] also for the exact meaning of Tr and B



2 (L2(��)), respectively. Theorem 2 on

page 209 in [20] and (46) yield

‖ v ‖B


2 (L2(�)) �c5 ‖ Tr ‖ ‖ ũ ‖

B


2 (L2(�̃))

�c6 ‖ ũ ‖
Bt+1

2 (L2(�̃))
�c7‖f ‖

Bt−1
2 (L2(�))

,

if 1/2 < 
 < 3/2 and 
� t + 1. Consequently v ∈ Bϑ
2 (L2(�)) with ϑ < min(3/2, t + 1).

A harmonic function in a bounded Lipschitz domain has a higher Besov regularity than
Sobolev regularity. More precisely,

v ∈ Bs
	(L	(�)), 0 < s <

ϑd

d − 1
,

1

	
= s

d
+ 1

2
,
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and

‖ v ‖Bs
	 (L	(�)) �c8 ‖ v ‖Bϑ

2 (L2(�)),

see [4]. Combining this with (45) we arrive at

u ∈ Bs
	(L	(�)), 0 < s < min

(
ϑd

d − 1
, t + 1

)
,

1

	
= s

d
+ 1

2
, (47)

together with the estimate

‖u‖Bs
	 (L	(�)) �‖ũ‖Bs

	 (L	(�)) + ‖v‖Bs
	 (L	(�)) �c9‖f ‖

Bt−1
2 (L2(�))

.

Substep 2.3: An interpolation argument. Another theorem of Jerison and Kenig, see [19,
Theorem 0.5], yields

u∈Bs
2(L2(�)), s<min(3/2, t+1), where ‖u‖Bs

2(L2(�))�c10‖f ‖
Bt−1

2 (L2(�))
.

(48)

Thanks to the real interpolation formula(
Bs0

p0
(Lp0(�)), Bs1

p1
(Lp1(�))

)
�,p

= Bs
p(Lp(�)) (equivalent quasi-norms),

0 < � < 1, s = (1 − �) s0 + � s1,
1

p
= 1 − �

p0
+ �

p1
,

valid for all s0, s1 ∈ R and all 0 < p0, p1 < ∞, cf. [41], we can combine these two
different assertions (47), (48) about the regularity of u. Let e.g. 1/2� t �(d + 2)/(2d − 2).
Then we use the interpolation formula with

s0 = 3/2 − ε, s1 = t + 1 and � = 1/3,

and find that u ∈ Bs
	∗(L	∗(�)), s = 1 + (t + 1)/3 − ε′, 1/	∗ = (s − 1)/d + 1/2, where

‖u‖Bs
	∗ (L	∗(�)) �c11‖f ‖

Bt−1
2 (L2(�))

,

and ε′ can be made as small as we want. In summary, we have

sup
‖f ‖

B
t−1
2 (L2(�))

�1
‖u − Sn(f )‖H 1 �c12 n−( t+1

3d
+ε).

The other two cases can be treated in an analoguous way. We omit details. �

Theorem 6 shows that best n-term wavelet approximation might be suboptimal in general.
However, for more specific domains, i.e., for polygonal domains, much more can be said.
Let � denote a simply connected polygonal domain contained in R2, the segments of ��
are denoted by �l , �l open, l = 1, . . . , N numbered in positive orientation. Furthermore,
�l denotes the endpoint of �l and �l denotes the measure of the interior angle at �l . Then
the following theorem holds:
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Theorem 7. Let S denote the solution operator for the problem (40) in a polygonal domain
in R2. Let k be a nonnegative integer such that

k 	= m�

�l

for all m ∈ N, l = 1, . . . , N .

Then, for sufficiently large C, best n-term wavelet approximation Sn yields

enon
n,C(S, Hk−1(�), H 1(�))�e(Sn, H

k−1(�), H 1(�))�c n−k/2+ε, (49)

where ε > 0 is arbitrary and c does not depend on n.

Proof. The proof is based on the fact that u can be decomposed into a regular part uR and a
singular part uS , u = uR +uS, where uR ∈ Bk+1

2 (L2(�)) and uS only depends on the shape
of the domain and can be computed explicitly. This result was established by Grisvard, see
[13] or [14, Chapters 4, 5], and [15, Section 2.7] for details. We introduce polar coordinates
(rl, �l ) in the vicinity of each vertex �l and introduce the functions

Sl,m(rl, �l ) = l (rl)r
�l,m

l sin(m��l/�l ),

when �l,m := m�/�l is not an integer and

Sl,m(rl, �l ) = l (rl)r
�l,m

l [log rl sin(m��l/�l ) + �l cos(m��l/�l )]
otherwise, m ∈ N, l = 1, . . . N . Here l denotes a suitable C∞ truncation function. Then
for f ∈ Hk−1(�) one has

uS =
N∑

l=1

∑
0<�l,m<k

cl,m Sl,m, (50)

provided that no �l,m is equal to k. This means that the finite number of singularity functions
that is needed depends on the scale of spaces we are interested in, i.e., on the smoothness
parameter k. According to (42), we have to estimate the Besov regularity of both, uS and
uR , in the specific scale

B�
	∗(L	∗(�))

1

	∗ = (� − 1)

d
+ 1

2
.

Since uR ∈ Bk+1
2 (L2(�)), classical embeddings of Besov spaces imply that

uR ∈ Bk+1−ε′
	∗ (L	∗(�)),

1

	∗ = (k − ε′)
d

+ 1

2
for arbitrary small ε′ > 0. (51)

Moreover, it has been shown in [2] that the functions Sl,m defined above satisfy

Sl,m(rl, �l ) ∈ B�
	∗(L	∗(�)),

1

	∗ = (� − 1)

d
+ 1

2
for all � > 0. (52)

By combining (51) and (52) we see that

u ∈ Bk+1−ε′
	∗ (L	∗(�)),

1

	∗ = (k − ε′)
d

+ 1

2
for arbitrary small ε′ > 0.
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To derive an estimate uniformly with respect to the unit ball in Hk−1(�) we argue as follows.
We put

N := span
{
Sl,m(rl, �l ) : 0 < �m,l < k, l = 1, . . . , N

}
.

Let �l be the trace operator with respect to the segment �l . Grisvard has shown that � maps

H :=
{
u ∈ Hk+1(�) : �lu = 0, l = 1, . . . , N

}
+ N

onto Hk−1(�), cf. [14, Theorem 5.1.3.5]. This mapping is also injective, see
[14, Lemma 4.4.3.1, Remark 5.1.3.6]. We equip the space H with the norm

‖ u ‖H := ‖ uR + uS ‖H = ‖ uR ‖Hk+1(�) +
N∑

l=1

∑
0<�l,m<k

|cl,m|,

see (50). Then it becomes a Banach space. Furthermore, � is continuous. Banach’s con-
tinuous inverse theorem implies that the solution operator is continuous considered as a
mapping from Hk−1(�) onto H. Observe

‖ uR + uS ‖
Bk+1−ε′

	∗ (L	∗(�))
�c

⎛⎝‖ uR ‖
Bk+1

2 (L2(�))
+

N∑
l=1

∑
0<�l,m<k

|cl,m|
⎞⎠

with some constant c independent of u. �

Acknowledgments

We thank Stefan Heinrich, Aicke Hinrichs, Hans Triebel, Art Werschulz and two referees
for their valuable remarks and comments.

References

[1] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier Science, Amsterdam, 2003.
[2] S. Dahlke, Besov regularity for elliptic boundary value problems in polygonal domains, Appl. Math. Lett.

12 (6) (1999) 31–38.
[3] S. Dahlke, W. Dahmen, R. DeVore, Nonlinear approximation and adaptive techniques for solving elliptic

operator equations, in: W. Dahmen, A. Kurdila, P. Oswald (Eds.), Multiscale Wavelet Methods for Partial
Differential Equations, Academic Press, San Diego, 1997, pp. 237–283.

[4] S. Dahlke, R. DeVore, Besov regularity for elliptic boundary value problems, Commun. Partial Differential
Equations 22 (1&2) (1997) 1–16.

[5] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[6] R.A. DeVore, Nonlinear approximation, Acta Numerica 7 (1998) 51–150.
[7] R.A. DeVore, R. Howard, C. Micchelli, Optimal nonlinear approximation, Manuscripta Math. 63 (1989)

469–478.
[8] R.A. DeVore, G. Kyriazis, D. Leviatan, V.M. Tikhomirov, Wavelet compression and nonlinear n-widths, Adv.

Comput. Math. 1 (1993) 197–214.
[9] S. Dispa, Intrinsic characterizations of Besov spaces on Lipschitz domains, Math. Nachr. 260 (2002) 21–33.

[10] D. Dung, V.Q. Thanh, On nonlinear n-widths, Proc. of Amer. Math. Soc. 124 (1996) 2757–2765.
[11] E.G. D’yakonov, Optimization in Solving Elliptic Problems, CRC Press, Boca Raton, FL, 1996.



S. Dahlke et al. / Journal of Complexity 22 (2006) 29–49 49

[12] D.E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge University
Press, 1996.

[13] P. Grisvard, Behavior of solutions of elliptic boundary value problems in a polygonal or polyhedral domain,
in: B. Hubbard (Ed.), Symposium on Numerical Solutions of Partial Differential Equations, vol. III, Academic
Press, New York, 1975, pp. 207–274.

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[15] P. Grisvard, Singularites in Boundary Value Problems, Research Notes in Applied Mathematics, vol. 22,

Springer, Berlin, 1992.
[16] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer, Berlin, 1992.
[17] D. Jerison, C.E. Kenig, The Neumann problem in Lipschitz domains, Bull. Amer. Math. Soc. 4 (1981)

203–207.
[18] D. Jerison, C.E. Kenig, Boundary value problems on Lipschitz domains, in: Studies in PDE, MAA Stud.

Math. 23 (1982) 1–68.
[19] D. Jerison, C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130

(1995) 161–219.
[20] A. Jonsson, H. Wallin, Function spaces on subsets of Rd , Math. Reports, Harwood Acad. Publ., 1984.
[21] R.B. Kellogg, M. Stynes, n-widths and singularly perturbed boundary value problems, SIAM J. Numer. Anal.

36 (1999) 1604–1620.
[22] A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. Math.

37 (1936) 107–110.
[23] J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. I, Springer,

Berlin, 1972.
[24] P. Mathé, s-Numbers in information-based complexity, J. Complexity 6 (1990) 41–66.
[25] J.M. Melenk, On n-widths for elliptic problems, J. Math. Anal. Appl. 247 (2000) 272–289.
[26] Y. Meyer, Wavelets and Operators, Cambridge University Press, 1992.
[27] P.-A. Nitsche, Best N term approximation spaces for sparse grids, Research Report No. 2003-11, Seminar

für Angewandte Mathematik, ETH Zürich, 2003.
[28] E. Novak, H. Triebel, Function spaces in Lipschitz domains and optimal rates of convergence for sampling,

preprint, 2004.
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