864 research outputs found

    Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators

    Full text link
    We experimentally demonstrate tunable, highly-stable frequency combs with high repetition-rates using a single, charge injection based silicon PN modulator. In this work, we demonstrate combs in the C-band with over 8 lines in a 20-dB bandwidth. We demonstrate continuous tuning of the center frequency in the C-band and tuning of the repetition-rate from 7.5GHz to 12.5GHz. We also demonstrate through simulations the potential for bandwidth scaling using an optimized silicon PIN modulator. We find that, the time varying free carrier absorption due to carrier injection, an undesirable effect in data modulators, assists here in enhancing flatness in the generated combs.Comment: 10 pages, 7 figure

    Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms

    Get PDF
    We demonstrate a scheme, based on a cascade of lithium niobate intensity and phase modulators driven by specially tailored radio frequency waveforms to generate an optical frequency comb with very high spectral flatness. In this work we demonstrate a 10 GHz comb with ~40 lines with spectral power variation below 1-dB and ~60 lines in total. The number of lines that can be generated is limited by the power handling capability of the phase modulator, and this can be scaled without compromising the spectral flatness. Furthermore, the spectral phase of the generated combs in our scheme is almost purely quadratic which, as we will demonstrate, allows for very high quality pulse compression using only single mode fiber.Comment: 12 pages, 3 figures, replaced the older version with the published versio

    Coherent terabit communications with microresonator Kerr frequency combs

    Full text link
    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions enables low phase-noise Kerr combs with singlet spectral lines. Here we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In a first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment shows feedback-stabilization of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of up to 300 km. The results demonstrate that Kerr combs can meet the highly demanding requirements of multi-terabit/s coherent communications and thus offer a solution towards chip-scale terabit/s transceivers

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    High performance photonic microwave filters based on a 50GHz optical soliton crystal Kerr micro-comb

    Full text link
    We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.Comment: 19 pages, 12 figures, 107 reference

    Broadband optical frequency comb generation with flexible frequency spacing and center wavelength

    Get PDF
    corecore