293 research outputs found

    Pathological Evidence Exploration in Deep Retinal Image Diagnosis

    Full text link
    Though deep learning has shown successful performance in classifying the label and severity stage of certain disease, most of them give few evidence on how to make prediction. Here, we propose to exploit the interpretability of deep learning application in medical diagnosis. Inspired by Koch's Postulates, a well-known strategy in medical research to identify the property of pathogen, we define a pathological descriptor that can be extracted from the activated neurons of a diabetic retinopathy detector. To visualize the symptom and feature encoded in this descriptor, we propose a GAN based method to synthesize pathological retinal image given the descriptor and a binary vessel segmentation. Besides, with this descriptor, we can arbitrarily manipulate the position and quantity of lesions. As verified by a panel of 5 licensed ophthalmologists, our synthesized images carry the symptoms that are directly related to diabetic retinopathy diagnosis. The panel survey also shows that our generated images is both qualitatively and quantitatively superior to existing methods.Comment: to appear in AAAI (2019). The first two authors contributed equally to the paper. Corresponding Author: Feng L

    Multi-dataset Training for Medical Image Segmentation as a Service

    Get PDF
    Deep Learning tools are widely used for medical image segmentation. The results produced by these techniques depend to a great extent on the data sets used to train the used network. Nowadays many cloud service providers offer the required resources to train networks and deploy deep learning networks. This makes the idea of segmentation as a cloud-based service attractive. In this paper we study the possibility of training, a generalized configurable, Keras U-Net to test the feasibility of training with images acquired, with specific instruments, to perform predictions on data from other instruments. We use, as our application example, the segmentation of Optic Disc and Cup which can be applied to glaucoma detection. We use two publicly available data sets (RIM-One V3 and DRISHTI) to train either independently or combining their data.Ministerio de Economía y Competitividad TEC2016-77785-

    Unsupervised Domain Adaptive Fundus Image Segmentation with Few Labeled Source Data

    Full text link
    Deep learning-based segmentation methods have been widely employed for automatic glaucoma diagnosis and prognosis. In practice, fundus images obtained by different fundus cameras vary significantly in terms of illumination and intensity. Although recent unsupervised domain adaptation (UDA) methods enhance the models' generalization ability on the unlabeled target fundus datasets, they always require sufficient labeled data from the source domain, bringing auxiliary data acquisition and annotation costs. To further facilitate the data efficiency of the cross-domain segmentation methods on the fundus images, we explore UDA optic disc and cup segmentation problems using few labeled source data in this work. We first design a Searching-based Multi-style Invariant Mechanism to diversify the source data style as well as increase the data amount. Next, a prototype consistency mechanism on the foreground objects is proposed to facilitate the feature alignment for each kind of tissue under different image styles. Moreover, a cross-style self-supervised learning stage is further designed to improve the segmentation performance on the target images. Our method has outperformed several state-of-the-art UDA segmentation methods under the UDA fundus segmentation with few labeled source data.Comment: Accepted by The 33rd British Machine Vision Conference (BMVC) 202

    TPU Cloud-Based Generalized U-Net for Eye Fundus Image Segmentation

    Get PDF
    Medical images from different clinics are acquired with different instruments and settings. To perform segmentation on these images as a cloud-based service we need to train with multiple datasets to increase the segmentation independency from the source. We also require an ef cient and fast segmentation network. In this work these two problems, which are essential for many practical medical imaging applications, are studied. As a segmentation network, U-Net has been selected. U-Net is a class of deep neural networks which have been shown to be effective for medical image segmentation. Many different U-Net implementations have been proposed.With the recent development of tensor processing units (TPU), the execution times of these algorithms can be drastically reduced. This makes them attractive for cloud services. In this paper, we study, using Google's publicly available colab environment, a generalized fully con gurable Keras U-Net implementation which uses Google TPU processors for training and prediction. As our application problem, we use the segmentation of Optic Disc and Cup, which can be applied to glaucoma detection. To obtain networks with a good performance, independently of the image acquisition source, we combine multiple publicly available datasets (RIM-One V3, DRISHTI and DRIONS). As a result of this study, we have developed a set of functions that allow the implementation of generalized U-Nets adapted to TPU execution and are suitable for cloud-based service implementation.Ministerio de Economía y Competitividad TEC2016-77785-
    corecore