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Abstract: Deep Learning tools are widely used for medical image segmentation. The results produced by these 

techniques depend to a great extent on the data sets used to train the used network. Nowadays many cloud 

service providers offer the required resources to train networks and deploy deep learning networks. This 

makes the idea of segmentation as a cloud-based service attractive. In this paper we study the possibility of 

training, a generalized configurable, Keras U-Net to test the feasibility of training with images acquired, with 

specific instruments, to perform predictions on data from other instruments. We use, as our application 

example, the segmentation of Optic Disc and Cup which can be applied to glaucoma detection. We use two 

publicly available data sets (RIM-One V3 and DRISHTI) to train either independently or combining their 

data. 

1 INTRODUCTION 

1.1 Cloud based Segmentation 

Segmentation is the process of automatic detection of 

limits within an image. In medical images we find a 

high variability both in the data sources and capture 

technologies used (X-ray, CT, MRI, PET, SPECT, 

endoscopy, etc.). Human anatomy also shows very 

significant variations. 

Deep Learning methods are being increasingly 

used to process medical images (Litjens et al., 2017). 

The effectiveness of these systems is conditioned by 

the number and variety of the training images. If we 

want to implement cloud-based services, they will 

have to be trained with new data set samples 

periodically. These images will most probably come 

from different sources and, thus, we need to answer 

some significant questions: Should we train the 

networks specifically for images acquired with each 

of the available instruments? Is it possible to train a 

network with data from one instrument and make 

predictions for other different instruments? What 

happens if we train with combined data?  It would be 

very difficult to implement a reliable image 

segmentation service without knowing the answer to 

these questions. 

Several segmentation researchers (Sevastopolsky, 

2017) (Al-Bander et al., 2018) have used several 

different data sets for their works, however, they 

always train and test with each of these data sets 

independently. In this paper we propose to compare 

this traditional method with a new approach where we 

preprocess and mix the data from several datasets and 

use it to create independent data sets for training and 

validation. 

In this work we will use a generalized U-Net 

architecture as our training network, and study, as our 

example problem, the detection of the optical disc and 

cup in fundus images. However, the same techniques 

can be applied almost directly to the segmentation of 

2D images in industrial applications, automatic 

driving, detection of people, etc. 

1.2 Convolution / Deconvolution 
Networks 

We will use a generalized U-Net (Ronneberger, 

Fischer, & Brox, 2015) as our example network as it 

is one of the most commonly used fully convolutional 

network (FCN) families for the segmentation of 

biomedical images.  

The basic architecture of our network is shown in 

Fig. 1. The network consists of descending layers 

formed by two convolution layers with RELU 
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activation and dropout. The result of each layer is 

sub-sampled using a 2x2 max pool layer and used as 

input to the next layer. The 6th layer corresponds to 

the lowest level of the network and has a structure like 

the other descending layers. From this layer the data 

is oversampled by transposed convolution, merged 

with the output data of the corresponding downwards 

layer and applied to a block similar to those used in 

the descending layers. The last layer of the network is 

a convolution layer with a width equal to the number 

of classes to be segmented, which is just one in our 

case. 

 

Figure 1: Proposed generalized U-Net Architecture. 

We choose this specific architecture for our test 

as it has a moderate number of training parameters 

(near 1M), which allows us to train it using free GPU 

resources in the cloud and, when training with a 

single data set, produces results that are very similar 

to those obtained by other researchers. 

1.3 Optical Disc and Cup 

Glaucoma is a set of diseases that cause damage to the 

optic nerve in the back of the eye and can cause loss 

of vision. Glaucoma is one of the main causes of 

blindness and is estimated that it will affect around 80 

million people worldwide by 2020.  

Only when the disease progresses, with a 

significant loss of peripheral vision, the symptoms 

that may lead to total blindness begin to be noticed. 

Early detection is, thus, essential. 

Many risk factors are associated with glaucoma 

but intraocular hypertension (IH) is the most widely 

accepted. 

 

Figure 2: Neuroretinal border and Cup. 

IH can cause irreversible damage to the optic 

nerve or optic disc (OD). The OD is the beginning of 

the optic nerve and is the point where the axons of 

retinal ganglion cells come together. It is also the 

entry point for the major blood vessels that supply the 

retina and it corresponds to a small blind spot in the 

retina. The optic disc can be visualized by various 

techniques such as color fundus photography. The 

OD is divided into two regions as shown in Fig. 3: a 

peripheral zone called the neuroretinal border and a 

white central region called the optic cup (OC).  

Glaucoma produces pathological cupping of the 

optic disc. As glaucoma advances, the cup enlarges 

until it occupies most of the disc area. The ratio of the 

diameter of OC to OD is known as CDR and is a well-

established indicator for the diagnosis of glaucoma 

[9]. Therefore, the correct determination of this 

diameters is key to the correct calculation of the CDR. 

Human segmentation of OD and OC is a slow and 

error prone process. Thus, automated segmentation is 

attractive as, in many cases, it can be more objective 

and faster than humans. 

Several approaches have been proposed for 

fundus image OD/OC segmentation. The existing 

methods for automated OD and OC segmentation in 

background images can be classified into three main 

categories (Thakur & Juneja, 2018): templates based 

on form matching and traditional machine learning 

based on random forests, support vector machines, K-

means, etc. (e.g. (Kim, Cho, & Oh, 2017)), active 

contours and deformable models (e.g. (Mary et al., 

2015)), and more recently, deep learning-based 

methods (e.g. (Zilly, Buhmann, & Mahapatra, 

2017),(Al-Bander et al., 2018)).   



The aim of this paper is to study the influence of 

the dataset selection on the results. We will use a 

segmentation approach based on (Sevastopolsky, 

2017) but with significant modifications to make it 

flexible and suitable for cloud-based implementation. 

2 MATERIALS AND METHODS 

For this work we used the Google Collaboratory 

iPython development environment. The environment 

has very good support for Keras for implementing 

and training networks on GPUs in Google cloud. Our 

network is based on (Sevastopolsky, 2017) but with 

very significant modifications:  

- We use a different dual image generator and use 

it for both training and testing.  

 

Figure 3: Disc images from RIM and DRISHTI datasets. 

- We use a parameterizable recursive U-net model 

which allows us to easily change many parameters 

necessary to compare different implementations of U-

Net. 

- We use 120 image batches for both training and 

testing and train for 15 epochs using 150 training 

steps and 30 testing steps per epoch. We use an Adam 

optimizer algorithm in most cases with a 0.00075 

learning rate. These values have proven suitable for 

training in U-Net architectures and provide good 

results with reasonable training times. 

- We have tested several generalized U-Net 

configurations and finally decided to use the 

lightweight configuration shown in Fig.1 

Regarding the datasets we use publicly available 

RIM-ONE v3 and DRISHTI datasets. RIM ONE-v3 

(Fumero, Alayón, Sanchez, Sigut, & Gonzalez-

Hernandez, 2011), from the MIAG group of the 

University of La Laguna (Spain), consists of 159 

fundus images which have been labelled by expert 

ophthalmologists for both disc and cup. DRISHTI-

GS (Sivaswamy, Krishnadas, Joshi, Jain, & Tabish, 

2014), from Aravind Eye hospital, Madurai, India 

consists of 101 fundus images also labelled for disc 

and cup.  

The code we use for both OD and OC 

segmentation is the same and the only difference is 

the loading and pre-processing of images and masks.

Figure 4: Multi-dataset-based training approach. For single dataset fusion step is not needed. 



As already mentioned, our final objective is to 

perform disc and cup detection as a service in the 

cloud and, for this purpose, it is necessary that we are 

independent, as much as possible, from the specific 

characteristics of the captured image. As an example, 

in Fig. 3 we can see that images coming from the three 

different datasets have very different characteristics. 

Our approaches for disc and cup segmentation are 

very similar. Fig. 5 shows the methodology used for 

cup segmentation when using a mixed dataset for 

training and validation (Zoph et al., 2019). When we 

train with either RIM-ONE or DRISHTI we use the 

same approach without the fusion step. 

Originally, we start by clipping and resizing the 

original images in the datasets. When we segment the 

disc, we remove a 10% border in all the edges of the 

image to reduce black borders in the images. When 

we segment the cup, we select the area that contains 

the disc plus an additional 10% from the original 

images. After clipping we resize the images to 

128x128 pixels and perform a clip limited contrast 

equalization. 

After the equalization we do data set splitting. For 

each dataset we use 75% of the images for training 

and 25% for validation. It is essential to split the 

datasets before performing any data augmentation to 

ensure that the training and validation sets are 

completely independent from each other. After 

splitting we perform, for each used dataset, static data 

augmentation by creating images with modified 

brightness and different adaptive contrast parameters. 

When we train with a mixed dataset after the static 

data augmentation, we do the fusion of the data from 

the different datasets. This process is done 

independently for the training and validation dataset. 

In the fusion process we perform data replication and 

shuffling so that we provide longer vectors as input 

for our dynamic image generators. The image 

generators do data augmentation by performing 

random rotations, shifting, zooming and flipping on 

the extended fused dataset images. 

As one of the main glaucoma indicators is the 

CDR, i.e. the relation between the OD and the OC 

diameters we introduce a new parameter RRP -Radii 

Ratio parameter- which is the relation between the 

radius of the predicted segmented disc and the radius 

of the correct disc.  We estimate the radii as the square 

root of the segmented area divided by pi. 

Apart from the mean Dice coefficient over the 

validation data set we use an additional quality 

parameter that is the percentage of the images where 

the estimated radius error is less than 10%. 

 

 

3 RESULTS 

In Table I we show the Dice coefficients for the Disc 

and Cup segmentation for three different training 

scenarios: 

- We train using 75% of the DRISHTI dataset and we 

validate with the remaining DRISHTI and with the 

RIM ONE validation data set. 

- We train using 75% of RIM ONE the dataset and we 

validate with the remaining RIM ONE and with the 

DRISHTI validation data set. 

- We train with 75% of a combined data set and 

validate with the rest of the combined data set. 

We can see in the table that when training with 

DRISHTI we get very reasonable results when testing 

with images from the same dataset with a Dice 

coefficient above 0.98 for both OD and OC 

segmentation. However, if we validate this network 

with the RIM ONE data set result fall below 0.50. 

A very similar situation happens if we train with 

the RIM ONE data sets. If we validate with the RIM 

ONE test data, we get Dice coefficients that are above 

0.96 but this value falls below 0.66 when we test with 

DRISHTI data. 

If we train with a combined data set, we get results 

that are more stable when testing with both datasets. 

For OD segmentation we get a 0.96 Dice value for 

DRISHTI and a 0.87 for RIM ONE. In the case of OC 

segmentation these values fall to 0.94 and 0.82. 

Table 1: Dice coefficient for OC and OD. 

Author 
Disc 

DRI 

Disc 

RIM 

Cup 

DRI 

Cup 

RIM 

(Zilly et al., 2017) 0.97 - 0.87 - 

(Zilly et al., 2017) 0.95 0.90 0.83 0.69 

(Sevastopolsky, 

2017) 
- 0.94 - 0.82 

(Shankaranarayan

a, Ram, Mitra, & 

Sivaprakasam, 

2017) 

- 0.98 - 0.94 

Drishti Trained 0.98 0.50 0.98 0.42 

RIM Trained 0.66 0.97 0.61 0.96 

Multi-dataset 0.96 0.87 0.94 0.82 

In table I we have also included results from other 

papers that have studied the OD/OC segmentation 

problem using Deep Learning based approaches and 

training with, at least, one of the datasets that we use. 



In all these cases the researchers have trained and 

tested independently with the different datasets.  

Even though our network is very light when we 

train with a single dataset, we get similar results to 

those obtained by other researchers. For DRISHTI 

dataset training we obtained a Dice coefficient of 0.98 

for both OD and OC segmentation. This compares 

favourably with 0.97 and 0.87 (Zilly et al., 2017). 

When training with RIM ONE we obtain 0.97 for OD 

and 0.96 for OC. This also compares well with 0.98 

and 0.94 (Shankaranarayana et al., 2017). 

The most important result from table I comes 

from the data that is not available in other studies, i.e., 

when we train with a dataset and use the network with 

data captured with another source, we get poor 

prediction result.  

Table I also shows that when we train with a 

combined dataset the network performs well doing 

predictions from both datasets. 

In Table II we show the percentage of the 

predictions that estimate the radius with an error 

below 10%. This data is clinically very relevant as the 

ratio between the cup and disc radii, i.e., the CDR, is 

directly related to glaucoma. 

When we train with a specific dataset, almost all 

the radii for the testing data from the same dataset are 

predicted with less than 10% error. However, the radii 

prediction for the other dataset are much worse and, 

in some case, we never get errors below 10%. As can 

be seem in the table this situation improves very 

significatively when we train with a mixed dataset. 

Table 2: Images with less than 10% radius error. 

      
Disc 

DRI 

Disc 

RIM 
Cup DRI 

Cup 

RIM 

Drishti 

Trained 
100 38 100 0 

RIM 

ONE 

Trained 

62 100 0 95 

Multi-

dataset 
100 82 100 54 

4 CONCLUSIONS AND FUTURE 

WORK 

We have been able to show that by using data from 

different data sets, doing adequate image pre-

processing and performing very significant data 

augmentation, both statically and dynamically, we 

have been able to perform cup and disc segmentation 

getting results with a performance that is equivalent 

to that obtained by other authors using a single dataset 

for evaluation and testing. This is, at least, a first 

approach at the possibility of running this type of 

segmentations as a service on the cloud. 

We have also introduced a new clinically 

significant parameter (Radii Ratio parameter- RRP) 

that is very useful to estimate the accuracy of the 

CDR. 

We have shown that a very deep lightweight U-

Net derivative can perform as well as other heavier 

less deeper alternatives for OD/OC segmentation. 

This work has shown the advantages of using a 

dataset that combines data from different sources 

using aggressive data augmentation. Much work is 

necessary to improve the commercial viability of this 

type of service. In this work we have trained with a 

mixed dataset but, in real life, we would have to start 

training with the available data and do retraining as 

more and more image data from different sources 

becomes available. It would be necessary to 

adequately study the behaviour of this type of trained 

network with existing and new datasets. 
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