3,646 research outputs found

    Fourteenth Biennial Status Report: MĂ€rz 2017 - February 2019

    No full text

    GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization

    Full text link
    Recent research has demonstrated the capability of behavior signals captured by smartphones and wearables for longitudinal behavior modeling. However, there is a lack of a comprehensive public dataset that serves as an open testbed for fair comparison among algorithms. Moreover, prior studies mainly evaluate algorithms using data from a single population within a short period, without measuring the cross-dataset generalizability of these algorithms. We present the first multi-year passive sensing datasets, containing over 700 user-years and 497 unique users' data collected from mobile and wearable sensors, together with a wide range of well-being metrics. Our datasets can support multiple cross-dataset evaluations of behavior modeling algorithms' generalizability across different users and years. As a starting point, we provide the benchmark results of 18 algorithms on the task of depression detection. Our results indicate that both prior depression detection algorithms and domain generalization techniques show potential but need further research to achieve adequate cross-dataset generalizability. We envision our multi-year datasets can support the ML community in developing generalizable longitudinal behavior modeling algorithms.Comment: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Trac

    Design with Perfect Sense: the Adoption of Smart Sensor Technologies (SST) in Architectural Practice

    Get PDF
    Recent development in the Internet of Things (IoT) has enabled real-time data-driven decision making in diverse industries. For example, over the last few years, the introduction of smart sensor technologies such as Watson IoT has led to various data-driven solutions in space planning, real-estate management, and energy conservation. Despite the recent development, these technologies are not widely used in architectural practice. In the wake of this trend, this research aims at understanding how architects and design professionals can be supported to further utilize smart sensor technologies in their practice. Based on the Technology-Organization-Environment framework and a series of interviews, the major influencing factors on user adoption were identified. This study contributes to both theory and practice by identifying six contributing factors, namely perceived risk and value, commitment to learn and collaborate, as well as knowledge and trust

    Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain

    Get PDF
    Active and passive mobile sensing has garnered much attention in recent years. In this paper, we focus on chronic pain measurement and management as a case application to exemplify the state of the art. We present a consolidated discussion on the leveraging of various sensing modalities along with modular server-side and on-device architectures required for this task. Modalities included are: activity monitoring from accelerometry and location sensing, audio analysis of speech, image processing for facial expressions as well as modern methods for effective patient self-reporting. We review examples that deliver actionable information to clinicians and patients while addressing privacy, usability, and computational constraints. We also discuss open challenges in the higher level inferencing of patient state and effective feedback with potential directions to address them. The methods and challenges presented here are also generalizable and relevant to a broad range of other applications in mobile sensing

    Machine Learning for Stress Monitoring from Wearable Devices: A Systematic Literature Review

    Get PDF
    Introduction. The stress response has both subjective, psychological and objectively measurable, biological components. Both of them can be expressed differently from person to person, complicating the development of a generic stress measurement model. This is further compounded by the lack of large, labeled datasets that can be utilized to build machine learning models for accurately detecting periods and levels of stress. The aim of this review is to provide an overview of the current state of stress detection and monitoring using wearable devices, and where applicable, machine learning techniques utilized. Methods. This study reviewed published works contributing and/or using datasets designed for detecting stress and their associated machine learning methods, with a systematic review and meta-analysis of those that utilized wearable sensor data as stress biomarkers. The electronic databases of Google Scholar, Crossref, DOAJ and PubMed were searched for relevant articles and a total of 24 articles were identified and included in the final analysis. The reviewed works were synthesized into three categories of publicly available stress datasets, machine learning, and future research directions. Results. A wide variety of study-specific test and measurement protocols were noted in the literature. A number of public datasets were identified that are labeled for stress detection. In addition, we discuss that previous works show shortcomings in areas such as their labeling protocols, lack of statistical power, validity of stress biomarkers, and generalization ability. Conclusion. Generalization of existing machine learning models still require further study, and research in this area will continue to provide improvements as newer and more substantial datasets become available for study.Comment: 50 pages, 8 figure
    • 

    corecore