42 research outputs found

    Solutions for vehicular communications: a review

    Get PDF
    Vehicular networks experience a number of unique challenges due to the high mobility of vehicles and highly dynamic network topology, short contact durations, disruption intermittent connectivity, significant loss rates, node density, and frequent network fragmentation. All these issues have a profound impact on routing strategies in these networks. This paper gives an insight about available solutions on related literature for vehicular communications. It overviews and compares the most relevant approaches for data communication in these networks, discussing their influence on routing strategies. It intends to stimulate research and contribute to further advances in this rapidly evolving area where many key open issues that still remain to be addressed are identified.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    Modeling and Measuring Performance of Data Dissemination in Opportunistic Networks

    Get PDF
    In this thesis we focus on understanding, measuring and describing the performance of Opportunistic Networks (ONs) and their applications. An “opportunistic network” is a term introduced to describe a sparse, wireless, ad hoc network with highly mobile nodes. The opportunistic networking paradigm deviates from the traditional end-to-end connectivity concept: Forwarding is based on intermittent connectivity between mobile nodes (typically, users with wireless devices); complete routes between sources and destinations rarely exist. Due to this unique property of spontaneous link establishment, the challenges that exist in ONs are specific. The unstructured nature of these networks makes it difficult to give any performance guarantees on data dissemination. For this reason, in Part I of this thesis we explore the dynamics that affect the performance of opportunistic networks. We choose a number of meaningful scenarios where our models and algorithms can be validated using large and credible data sets. We show that a drift and jump model that takes a spatial approach succeeds in capturing the impact of infrastructure and mobile-to-mobile exchanges on an opportunistic content update system. We describe the effects of these dynamics by using the age distribution of a dynamic piece of data (i.e., information updates) as the performance measure. The model also succeeds in capturing a strong bias in user mobility and reveals the existence of regions, whose statistics play a critical role in the performance perceived in the network. We exploit these findings to design an application for greedy infrastructure placement, which relies on the model approximation for a large number of nodes. Another great challenge of opportunistic networking lies in the fact that the bandwidth available on wireless links, coupled with ad hoc networking, failed to rival the capacity of backbones and to establish opportunistic networks as an alternative to infrastructure-based networks. For this reason, we never study ONs in an isolated context. Instead, we consider the applications that leverage interconnection between opportunistic networks and legacy networks and we study the benefits this synergy brings to both. Following this approach, we use a large operator-provided data set to show that opportunistic networks (based on Wi-Fi) are capable of offloading a significant amount of traffic from 3G networks. At the same time, the offloading algorithms we propose reduce the amount of energy consumed by mobiles, while requiring Wi-Fi coverage that is several times smaller than in the case of real-time offloading. Again we confirm and reuse the fact that user mobility is biased towards certain regions of the network. In Part II of this thesis, we treat another issue that is essential for the acceptance and evolution of opportunistic networks and their applications. Namely, we address the absence of experimental results that would support the findings of simulation based studies. Although the techniques such as contact-based simulations should intuitively be able to capture the performance of opportunistic applications, this intuition has little evidence in practice. For this reason, we design and deploy an experiment with real users who use an opportunistic Twitter application, in a way that allows them to maintain communication with legacy networks (i.e., cellular networks, the Internet). The experiment gives us a unique insight into certain performance aspects that are typically hidden or misinterpreted when the usual evaluation techniques (such as simulation) are used. We show that, due to the commonly ignored factors (such as the limited transmission bandwidth), contact-based simulations significantly overestimate delivery ratio and obtain delays that are several times lower than those experimentally acquired. In addition to this, our results unanimously show that the common practice of assuming infinite cache sizes in simulation studies, leads to a misinterpretation of the effects of a backbone on an opportunistic network. Such simulations typically overestimate the performance of the opportunistic component, while underestimating the utility of the backbone. Given the discovered deficiencies of the contact-based simulations, we consider an alternative statistical treatment of contact traces that uses the weighted contact graph. We show that this approach offers a better interpretation of the impact of a backbone on an opportunistic network and results in a closer match when it comes to modeling certain aspects of performance (namely, delivery ratio). Finally, the security requirements for the opportunistic applications that involve an interconnection with legacy networks are also highly specific. They cannot be fully addressed by the solutions proposed in the context of autonomous opportunistic (or ad hoc) networks, nor by the security frameworks used for securing the applications with continuous connectivity. Thus, in Part III of this thesis, we put together a security framework that fits the networks and applications that we target (i.e., the opportunistic networks and applications with occasional Internet connectivity). We then focus on the impact of security print on network performance and design a scheme for the protection of optimal relaying capacity in an opportunistic multihop network. We fine-tune the parameters of our scheme by using a game-theoretic approach and we demonstrate the substantial performance gains provided by the scheme

    A content dissemination framework for vehicular networking

    Get PDF
    Vehicular Networks are a peculiar class of wireless mobile networks in which vehicles are equipped with radio interfaces and are, therefore, able to communicate with fixed infrastructure (if available) or other vehicles. Content dissemination has a potential number of applications in vehicular networking, including advertising, traffic warnings, parking notifications and emergency announcements. This thesis addresses two possible dissemination strategies: i) Push-based that is aiming to proactively deliver information to a group of vehicles based on their interests and the level of matching content, and ii) Pull-based that is allowing vehicles to explicitly request custom information. Our dissemination framework is taking into consideration very specific information only available in vehicular networks: the geographical data produced by the navigation system. With its aid, a vehicle's mobility patterns become predictable. This information is exploited to efficiently deliver the content where it is needed. Furthermore, we use the navigation system to automatically filter information which might be relevant to the vehicles. Our framework has been designed and implemented in .NET C# and Microsoft MapPoint. It was tested using a small number of vehicles in the area of Cambridge, UK. Moreover, to prove the correctness of our protocols, we further evaluated it in a large-scale network simulation over a number of realistic vehicular trace-based scenarios. Finally, we built a test-case application aiming to prove that vehicles can gain from such a framework. In this application every vehicle collects and disseminates road traffic information. Vehicles that receive this information can individually evaluate the traffic conditions and take an alternative route, if needed. To evaluate this approach, we collaborated with UCLA's Network Research Lab (NRL), to build a simulator that combines network and dynamic mobility emulation simultaneously. When our dissemination framework is used, the drivers can considerably reduce their trip-times

    Mobility-based routing algorithm in delay tolerant networks

    Get PDF

    Quality-aware Tasking in Mobile Opportunistic Networks - Distributed Information Retrieval and Processing utilizing Opportunistic Heterogeneous Resources.

    Get PDF
    Advances in wireless technology have facilitated direct communication among mobile devices in recent years, enabling opportunistic networks. Opportunistic networking among mobile devices is often utilized to offload and save cellular network traffic and to maintain communication in case of impaired communication infrastructure, such as in emergency situations. With a plethora of built-in capabilities, such as built-in sensors and the ability to perform even intensive operations, mobile devices in such networks can be used to provide distributed applications for other devices upon opportunistic contact. However, ensuring quality requirements for such type of distributed applications is still challenging due to uncontrolled mobility and resource constraints of devices. Addressing this problem, in this thesis, we propose a tasking methodology, which allows for assigning tasks to capable mobile devices, considering quality requirements. To this end, we tackle two fundamental types of tasks required in a distributed application, i.e., information retrieval and distributed processing. Our first contribution is a decentralized tasking concept to obtain crowd collected data through built-in sensors of participating mobile devices. Based on the Named Data Networking paradigm, we propose a naming scheme to specify the quality requirements for crowd sensing tasks. With the proposed naming scheme, we design an adaptive self-organizing approach, in which the sensing tasks will be forwarded to the right devices, satisfying specified quality requirements for requested information. In our second contribution, we develop a tasking model for distributed processing in opportunistic networks. We design a task-oriented message template, which enhances the definition of a complex processing task, which requires multiple processing stages to accomplish a predefined goal. Our tasking concept enables distributed coordination and an autonomous decision of participating device to counter uncertainty caused by the mobility of devices in the network. Based on this proposed model, we develop computation handover strategies among mobile devices for achieving quality requirements of the distributed processing. Finally, as the third contribution and to enhance information retrieval, we integrate our proposed tasking concept for distributed processing into information retrieval. Thereby, the crowd-collected data can be processed by the devices during the forwarding process in the network. As a result, relevant information can be extracted from the crowd-collected data directly within the network without being offloaded to any remote computation entity. We show that the obtained information can be disseminated to the right information consumers, without over-utilizing the resource of participating devices in the network. Overall, we demonstrate that our contributions comprise a tasking methodology for leveraging resources of participating devices to ensure quality requirement of applications built upon an opportunistic network

    CARAVAN: A Context-AwaRe Architecture for VANET

    Get PDF
    corecore