30 research outputs found

    A Fair Downlink Scheduling Algorithm for 3GPP LTE Networks

    Full text link

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    A Quality of Service framework for upstream traffic in LTE across an XG-PON backhaul

    Get PDF
    Passive Optical Networks (PON) are promising as a transport network technology due to the high network capacity, long reach and strong QoS support in the latest PON standards. Long Term Evolution (LTE) is a popular wireless technology for its large data rates in the last mile. The natural integration of LTE and XG-PON, which is one of the latest standards of PON, presents several challenges for XG-PON to satisfy the backhaul QoS requirements of aggregated upstream LTE applications. This thesis proves that a dedicated XG-PON-based backhaul is capable of ensuring the QoS treatment required by different upstream application types in LTE, by means of standard-compliant Dynamic Bandwidth Allocation (DBA) mechanisms. First the design and evaluation of a standard-compliant, robust and fast XG-PON simulation module developed for the state-of-the-art ns-3 network simulator is presented in the thesis. This XG-PON simulation module forms a trustworthy and large-scale simulation platform for the evaluations in the rest of the thesis, and has been released for use by the scientific community. The design and implementation details of the XGIANT DBA, which provides standard complaint QoS treatment in an isolated XG-PON network, are then presented in the thesis along with comparative evaluations with the recently-published EBU DBA. The evaluations explored the ability of both XGIANT and EBU in terms of queuing-delay and throughput assurances for different classes of simplified (deterministic) traffic models, for a range of upstream loading in XG-PON. The evaluation of XGIANT and EBU DBAs are then presented for the context of a dedicated XG-PON backhaul in LTE with regard to the influence of standard-compliant and QoS-aware DBAs on the performance of large-scale, UDP-based applications. These evaluations disqualify both XGIANT and EBU DBAs in providing prioritised queuing delay performances for three upstream application types (conversational voice, peer-to-peer video and best-effort Internet) in LTE; the evaluations also indicate the need to have more dynamic and efficient QoS policies, along with an improved fairness policy in a DBA used in the dedicated XG-PON backhaul to ensure the QoS requirements of the upstream LTE applications in the backhaul. Finally, the design and implementation details of two standard-compliant DBAs, namely Deficit XGIANT (XGIANT-D) and Proportional XGIANT (XGIANT-P), which provide the required QoS treatment in the dedicated XG-PON backhaul for all three application types in the LTE upstream are presented in the thesis. Evaluations of the XGIANT-D and XGIANT-P DBAs presented in the thesis prove the ability of the fine-tuned QoS and fairness policies in the DBAs in ensuring prioritised and fair queuing-delay and throughput efficiency for UDP- and TCP-based applications, generated and aggregated based on realistic conditions in the LTE upstream

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Spectral-energy efficiency trade-off for next-generation wireless communication systems

    Get PDF
    The data traffic in cellular networks has had and will experience a rapid exponential rise. Therefore, it is essential to innovate a new cellular architecture with advanced wireless technologies that can offer more capacity and enhanced spectral efficiency to manage the exponential data traffic growth. Managing such mass data traffic, however, brings up another challenge of increasing energy consumption. This is because it contributes into a growing fraction of the carbon dioxide (CO2) emission which is a global concern today due to its negative impact on the environment. This has resulted in creating a new paradigm shift towards both spectral and energy efficient orientated design for the next-generation wireless access networks. Acquiring both improved energy efficiency and spectral efficiency has, nonetheless, shown to be a difficult goal to achieve as it seems improving one is at the detriment to the other. Therefore, the trade-off between the spectral and energy efficiency is of paramount importance to assess the energy consumption in a wireless communication system required to attain a specific spectral efficiency. This thesis looks into this problem. It studies the spectral-energy efficiency tradeoff for some of the emerging wireless communication technologies which are seen as potential candidates for the fifth generation (5G) mobile cellular system. The focus is on the orthogonal frequency division multiple access (OFDMA), mobile femtocell (MFemtocell), cognitive radio (CR), and the spatial modulation (SM). Firstly, the energy-efficient resource allocation scheme for multi-user OFDMA (MU-OFDMA) system is studied. The spectral-energy efficiency trade-off is analysed under the constraint of maintaining the fairness among users. The energy-efficient optimisation problem has been formulated as integer fractional programming. We then apply an iterative method to simplify the problem to an integer linear programming (ILP) problem. Secondly, the spectral and energy efficiency for a cellular system with MFemtocell deployment is investigated using different resource partitioning schemes. Femtocells are low range, low power base stations (BSs) that improve the coverage inside a home or office building. MFemtocell adopts the femtocell solution to be deployed in public transport and emergency vehicles. Closed-form expressions for the relationships between the spectral and energy efficiency are derived for a single-user (SU) MFemtocell network. We also study the spectral efficiency for MU-MFemtocells with two opportunistic scheduling schemes. Thirdly, the spectral-energy efficiency trade-off for CR networks is analysed at both SU and MU CR systems against varying signal-to-noise ratio (SNR) values. CR is an innovative radio device that aims to utilise the spectrum more efficiently by opportunistically exploiting underutilised licensed spectrum. For the SU system, we study the required energy to achieve a specific spectral efficiency for a CR channel under two different types of power constraints in different fading environments. In this scenario, interference constraint at the primary receiver (PR) is also considered to protect the PR from harmful interference. At the system level, we study the spectral and energy efficiency for a CR network that shares the spectrum with an indoor network. Adopting the extreme-value theory, we are able to derive the average spectral efficiency of the CR network. Finally, we propose two innovative schemes to enhance the capability of (SM). SM is a recently developed technique that is employed for a low complexity multipleinput multiple-output (MIMO) transmission. The first scheme can be applied for SU MIMO (SU-MIMO) to offer more degrees of freedom than SM. Whereas the second scheme introduces a transmission structure by which the SM is adopted into a downlink MU-MIMO system. Unlike SM, both proposed schemes do not involve any restriction into the number of transmit antennas when transmitting signals. The spectral-energy efficiency trade-off for the MU-SM in the massive MIMO system is studied. In this context, we develop an iterative energy-efficient water-filling algorithm to optimises the transmit power and achieve the maximum energy efficiency for a given spectral efficiency. In summary, the research presented in this thesis reveals mathematical tools to analysis the spectral and energy efficiency for wireless communications technologies. It also offers insight to solve optimisation problems that belong to a class of problems with objectives of enhancing the energy efficiency
    corecore