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Abstract

The data traffic in cellular networks has had and will experience a rapid expo-

nential rise. Therefore, it is essential to innovate a new cellular architecture with

advanced wireless technologies that can offer more capacity and enhanced spectral

efficiency to manage the exponential data traffic growth. Managing such mass

data traffic, however, brings up another challenge of increasing energy consump-

tion. This is because it contributes into a growing fraction of the carbon diox-

ide (CO2) emission which is a global concern today due to its negative impact on

the environment. This has resulted in creating a new paradigm shift towards both

spectral and energy efficient orientated design for the next-generation wireless ac-

cess networks. Acquiring both improved energy efficiency and spectral efficiency

has, nonetheless, shown to be a difficult goal to achieve as it seems improving one

is at the detriment to the other. Therefore, the trade-off between the spectral and

energy efficiency is of paramount importance to assess the energy consumption in

a wireless communication system required to attain a specific spectral efficiency.

This thesis looks into this problem. It studies the spectral-energy efficiency trade-

off for some of the emerging wireless communication technologies which are seen

as potential candidates for the fifth generation (5G) mobile cellular system. The

focus is on the orthogonal frequency division multiple access (OFDMA), mobile

femtocell (MFemtocell), cognitive radio (CR), and the spatial modulation (SM).

Firstly, the energy-efficient resource allocation scheme for multi-user OFDMA

(MU-OFDMA) system is studied. The spectral-energy efficiency trade-off is

analysed under the constraint of maintaining the fairness among users. The

energy-efficient optimisation problem has been formulated as integer fractional

programming. We then apply an iterative method to simplify the problem to an

integer linear programming (ILP) problem.

Secondly, the spectral and energy efficiency for a cellular system with MFem-

tocell deployment is investigated using different resource partitioning schemes.

Femtocells are low range, low power base stations (BSs) that improve the cover-

age inside a home or office building. MFemtocell adopts the femtocell solution to
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be deployed in public transport and emergency vehicles. Closed-form expressions

for the relationships between the spectral and energy efficiency are derived for

a single-user (SU) MFemtocell network. We also study the spectral efficiency

for MU-MFemtocells with two opportunistic scheduling schemes.

Thirdly, the spectral-energy efficiency trade-off for CR networks is analysed at

both SU and MU CR systems against varying signal-to-noise ratio (SNR) values.

CR is an innovative radio device that aims to utilise the spectrum more efficiently

by opportunistically exploiting underutilised licensed spectrum. For the SU sys-

tem, we study the required energy to achieve a specific spectral efficiency for a

CR channel under two different types of power constraints in different fading en-

vironments. In this scenario, interference constraint at the primary receiver (PR)

is also considered to protect the PR from harmful interference. At the system

level, we study the spectral and energy efficiency for a CR network that shares

the spectrum with an indoor network. Adopting the extreme-value theory, we

are able to derive the average spectral efficiency of the CR network.

Finally, we propose two innovative schemes to enhance the capability of (SM). SM

is a recently developed technique that is employed for a low complexity multiple-

input multiple-output (MIMO) transmission. The first scheme can be applied for

SU MIMO (SU-MIMO) to offer more degrees of freedom than SM. Whereas the

second scheme introduces a transmission structure by which the SM is adopted

into a downlink MU-MIMO system. Unlike SM, both proposed schemes do not

involve any restriction into the number of transmit antennas when transmitting

signals. The spectral-energy efficiency trade-off for the MU-SM in the massive

MIMO system is studied. In this context, we develop an iterative energy-efficient

water-filling algorithm to optimises the transmit power and achieve the maximum

energy efficiency for a given spectral efficiency.

In summary, the research presented in this thesis reveals mathematical tools to

analysis the spectral and energy efficiency for wireless communications technolo-

gies. It also offers insight to solve optimisation problems that belong to a class

of problems with objectives of enhancing the energy efficiency.
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Chapter 1
Introduction

1.1 Problem Statement

A world without wireless communication is almost difficult to imagine. We are

becoming dependent upon its advantages of immediate transfer of information,

the flexibility it affords us to work anywhere at anytime, interpersonal use of

messaging, chat and browsing, and intercultural communication to name just a

few. The continuous evolution of wireless communication with more sophisti-

cated technologies has had a massive impact in changing how people anywhere

and everywhere on the globe can communicate with each other in all aspects of

life including business operations, individuals, and society. Not to mention that

it has an obvious welcome impact on economic growth. The world of wireless

communication has undergone some drastic changes during the past years due

to technical and political reasons. In fact, the concept of digital globalisation

has also made great impacts on the wireless communication. Today, the use of

the Internet has been extended from the wired to the wireless and more pre-

cisely the mobile cellular communication, in order to meet the public’s demands

to Internet access on the move. This has resulted in organisation of a standard

that will be practised universally. However as the advances and availability of

attractive technology continues, it becomes clear that wireless communication is

a victim of its own success. As the public increases its appetite for faster Internet
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connection and for more powerful smart phones, tablets and laptops with multi-

media capabilities, the resulting uncontrolled explosion of wireless mobile devices

has inevitably caused rapid traffic growth. Many organisations have highlighted

this fact. For example, the European mobile observatory (EMO) reported that

there is a 92% growth in mobile broadband per year since 2006 [1]. Further-

more, it has been predicated by the Wireless World Research Forum (WWRF)

that 7 trillion wireless devices will serve 7 billion people by 2017, i.e., the num-

ber of network-connected wireless devices will extend to 1000 times the world’s

population [2]. This places a hitherto unprecedented amount of pressure on the

telecom stakeholders using the current generation of wireless communication to

cope with such a tremendous traffic growth. It is therefore essential to develop

a groundbreaking wireless system that with the network is able to manage such

traffic. Globally researchers in the wireless communication technical domain have

already started to investigate and identify the potential candidate technologies

for the next-generation wireless systems, i.e., fifth generation (5G), with the ob-

jective of obtaining superior sustainability. 5G is expected to outperform the

previous generation. This includes the ability to provide a much higher network

capacity with a better coverage whiles keeping the complexity and cost of the

network at a low possible as possible.

1.2 Motivation

Managing the future traffic growth with the deployment of such advanced wire-

less technologies, however, comes at another cost in a form of high energy con-

sumption. The concept of energy-efficient communication, also known as Green

Radio [3], has triggered a recent surge in research. This is because the increase

of energy consumption in wireless communication systems has indirectly caused

a rise in the emission of carbon dioxide (CO2), which is considered as a major

threat for the environment currently. Moreover, it has been reported by cellular

operators that the energy consumption of base stations (BSs) contributes to over
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70% of their electricity bill which accounts for approximately 18% of the total

operational expenditure (OPEX) [3, 4]. Therefore, reducing energy consumption

is indeed essential to minimising the carbon footprint, and reduce the OPEX

for the cellular networks. In fact, energy-efficient communication was not one of

the initial requirements even in the fourth generation (4G) wireless systems, but

was highlighted as an emerging need at a later stage. The previous generation

of the wireless communication systems have been evaluated in terms of spectral

efficiency, i.e., an indication of how much traffic a limited frequency spectrum can

carry. Even so, it neglects to offer any insight on how efficient the energy con-

sumption is, i.e., the energy required to handle the traffic. It is now of paramount

importance to adapt to the current climate and create a new paradigm shift to-

wards joint spectral and energy efficient oriented design for the next-generation

wireless access networks. However, there is a fundamental trade-off between the

spectral and energy efficiency which refers to the idea that a communication

system chooses the amount of spectral efficiency to achieve by enhancing the en-

ergy consumption. Jointly attaining both enhanced energy efficiency and spectral

efficiency is unfortunately a challenging problem to solve. Often, achieving en-

hancement of one of them means sacrificing the other. Investigating this trade-off

for the potential technology candidates of the 5G wireless systems, is of primary

significance so one can design a system that achieves the target spectral efficiency

with the lowest possible energy consumption cost. Those 5G technology candi-

dates include orthogonal frequency division multiple access (OFDMA), mobile

femtocell (MFemtocell), cognitive radio (CR), and the spatial modulation (SM).

OFDMA technique is still considered very promising radio access technology be-

cause of its flexibility to allocate the radio resources among the users. CR and

Femtocell can play key roles to enhance the spectrum utilisation. Femtocell is

an indoor solution while CR can be used for both indoor and outdoor scenarios.

Adopting the femtocell technology inside vehicles allows the users can enjoy the

high data rate services in the high speed train with reduced signalling overhead.

Combining SM with massive MIMO systems is expected to be another potential

candidates in 5G wireless cellular networks to increase the spectral and energy
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efficiency.

1.3 Contributions

The key contributions of the thesis are summarised as follows:

� Designing an energy-efficient resource allocation algorithm

We study the problem of allocating the sub-channel and bit loading among

the users with an objective of minimising the energy per transmitted bit for

a given spectral efficiency in an OFDMA system. The energy-efficient opti-

misation problem is formulated first as an integer fractional programming,

a problem which is difficult to solve. To relax the complexity of the optimi-

sation problem, we use a parametric approach and based on that propose

an iterative algorithm that optimally allocates the radio resources among

the users. Using the proposed algorithm, the trade-off between spectral

and energy efficiency is analysed under the constraints of maintaining the

fairness among users and total transmit power.

� Analysing the spectral and energy efficiency for cellular systems

with MFemtocell deployment

We investigate the spectral and energy efficiency for the MFemtocell-assisted

network with two resource partitioning schemes, i.e., orthogonal and non-

orthogonal schemes. Closed form expressions for the relationships between

the energy efficiency and the spectral efficiency are derived in low and high

signal-to-noise ratio (SNR) regimes for a single-user (SU) MFemtocell sys-

tem with these two resource partitioning schemes. We also present a spec-

tral efficiency analysis of multi-user (MU) MFemtocells with OFDMA-based

spectrum reuse and opportunistic scheduling schemes.

� Analysing the spectral-energy efficiency trade-off for CR network

We compare the spectral-energy efficiency trade-off for an SU CR network

in the low and high SNR regimes when transmitting a signal under average
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power constraint and transmitting a signal under peak power constraint,

whilst keeping the interference on the primary receiver (PR) below an ac-

ceptable level for both. We also propose a cellular architecture which is

based on the CR network. Here, we derive the achievable spectral efficiency

for the proposed network using extreme value theory. A general analyti-

cal framework to evaluate the energy-spectral efficiency trade-off of the CR

based cellular network is established for all SNR values using peak-power

interference constraint.

� Analysing the spectral-energy efficiency trade-off for enhanced

SM systems

We propose two transmission schemes that overcome the limitations of

the SM. The first scheme, pre-coded SM, outperforms other single user

MIMO (SU-MIMO) schemes. In this scheme, the transmitter pre-codes

the transmit signals by a random vector. The receiver adopts matrix pro-

jection method in order to decode the information. The second scheme

enables the SM scheme to be adopted in MU-MIMO systems. We apply

block diagonalisation (BD) linear precoding technique to mitigate the inter-

antenna interference. The spectral and energy efficiency for the MU-SM in

the presence of massive MIMO system is then studied.

1.4 Publications

The work presented in this thesis has led to the following publications:

Journals

1. C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Ag-

goune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and

key technologies for 5G wireless communication networks,” IEEE Commun.

Mag., vol. 52, no. 2, pp. 122-130, Feb. 2014.
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2. F. Haider, C.-X. Wang, H. Haas, E. Hepsaydir, X. Ge, and D. Yuan,

“Spectral and energy efficiency analysis for cognitive radio networks,” IEEE

Trans. Wireless Commun., vol. 14, no. 6, pp. 2969–2980, Feb. 2015.

3. F. Haider, C.-X. Wang, B. Ai, H. Haas, and E. Hepsaydir, “Spectral-

energy efficiency trade-off of cellular systems with mobile femtocell deploy-

ment,” IEEE Trans. Veh. Technol., accepted for publication.

4. F. Haider, C.-X. Wang, H. Haas, E. Hepsaydir, M. Shu, C. Wang, and

C. Jiang, “Spectral-energy efficiency trade-off for multi-user spatial mod-

ulation in massive MIMO networks,” IEEE Trans. Wireless Commun.,

submitted for publication.

Conferences

1. F. Haider, C.-X. Wang, H. Haas, D. Yuan, H. Wang, X. Gao, X.-H. You,

and E. Hepsaydir, “Spectral efficiency analysis of mobile femtocell based

cellular systems,” in Proc. IEEE ICCT’11, Jinan, China, Sept. 2011.–Best

Paper Award

2. F. Haider, C.-X. Wang, X. Hong, H. Haas, D. Yuan, and E. Hepsaydir,

“Spectral-energy efficiency trade-off in cognitive radio networks with peak

interference power constraints,” invited paper, in Proc. IEEE ICCT’11,

Jinan, China, Sept. 2011.–Best Paper Award

3. F. Haider, C.-X. Wang, H. Haas, E. Hepsaydir, and X. Ge, “Energy-

efficient subcarrier-and-bit allocation in multi-user OFDMA systems,” in

Proc. IEEE VTC’12-Spring, Yokohama, Japan, May 2012.

1.5 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 gives some essential background information for the research work

6



Chapter 1: Introduction

presented in this thesis. It begins by discussing the importance of wireless com-

munication and how the cellular system evolved especially in reaction to the

phenomenon of mobile data traffic growth. Next, it goes on to explore the vision

of 5G mobile cellular systems and the potential candidate technologies that can

deliver this goal. It then enters into the discussion of green communication and

why it is necessary. This discussion includes an overview about energy efficiency

metrics and the fundamental trade-off between spectral and energy efficiency are

both given. This is followed by laying out the mathematical framework based

on the fractional programing that suits the energy efficiency optimisation prob-

lems and how it can solve these kind of problems. At the end, a modern power

consumption model (PCM) is introduced.

Chapter 3 studies the energy efficient resource allocation scheme for an MU-

OFDMA system. It first gives a review on a family of radio resource alloca-

tion (RRA) techniques applicable to OFDMA systems. Next, the system model

is presented whereby the employed network setup and transmission protocol are

explained. Then, we confine our attention to energy-efficiency resource alloca-

tion of which the optimisation problem of subcarrier allocation and bit loading,

subject to some constraints, is formulated. Following that, the proposed energy

efficiency algorithm, together with its mathematical formulation, which takes

into consideration the required spectral efficiency, the number of users, and the

minimum user rate, are then presented.

Chapter 4 analyses the spectral and energy efficiency for a cellular system with

MFemtocell deployment. It begins by introducing the concepts of the MFem-

tocell, highlighting its benefits and the challenges faced. It then outlines the

possible resource partitioning schemes that can be deployed by the MFemtocell.

Following that, the relationship between energy efficiency and spectral efficiency

is analysed within the SU-MFemtocell with two different resource partitioning

schemes. Finally, it investigates the spectral efficiency of an MU MFemtocell

network with MU and opportunistic scheduling schemes.

Chapter 5 investigates the spectral and energy efficiency for CR networks. The
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concepts of the CR is first introduced. Next, the analysis on spectral-energy

efficiency trade-off for an SUCR fading channel in low and high SNR regimes is

given. This is followed by introducing the proposed cellular architecture of which

a CR network shares a spectrum that belongs to the indoor primary network each

with multiple users. Here, it explores mathematical preliminaries in extreme value

theory which is used to model the achievable spectral efficiency of CR network in

the proposed system. This is followed by presenting a mathematical framework

that can be used to study the spectral-energy system for the proposed system.

Chapter 6 analyses the spectral and energy efficiency for single and MU-SM

modulation systems in massive MIMO networks. It begins with essential back-

ground information on SM, underlining its pros and cons. Following that, the

proposed pre-coded SM, together with its performance evaluation, are then pre-

sented. Then the discussion takes us to the MU-SM whereby the employed system

model along with the transmission protocol are given. Through this discussion,

the formulation for the optimisation problem and proposed energy-efficient water-

filling algorithm are described. Analysis on the achievable spectral and energy

efficiency are then presented.

Finally, Chapter 7 concludes the thesis and suggests some future research topics.
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2.1 Information Communication Technology

Information and communication technology (ICT) is the comprehensive inte-

gration of information technology (IT) with telecommunications serving as an

umbrella to broadcast media, all variations of audio and video processing and

transmission, television, cellular phones, computer and network hardware and

software, satellite systems, network based control and monitoring functions, and

so on. It is anticipated to intrinsically improve the quality of human life for most

of the world. The ramifications of ICT in the world arena has already been recog-

nised by local and international governments. For the first time in the history of

civilisation, individuals and communities are able to immediately and affordably

communicate and interact through data streaming and advanced communication.

This transformation to the globalisation of communication far outweighs any po-

tential gains of the matching technological advances to ICT. The use of ICT and

digital technology is fast becoming a priority for governmental bodies, business

establishments, life style choices of individual, industries, education institutions,

and the environment. The innovative ICT has had and will have a significant

positive impact upon the economy in the world [5]. In addition to that, ICT

has provided society with a vast array of new telecommunication capabilities in

the last few decades. Increasing capacity of ICT has further been empowered by

9



Chapter 2: Background

the growth of a global network of connected computers or the Internet. Today,

the Internet has grown into the foundation of our information society. E-mails,

web shopping and video broadcasting have become indispensable components of

our everyday life. The present and future importance of this economically and

developmentally is so critically significant that governments have actually set up

specialised departments and organisations solely for the promotion of ICT, to

ensure that even previously technologically disadvantaged communities, partic-

ularly in developing nations, will experience equal opportunity to information

access, technological growth and communication services in order to be able to

fully engage with the digital globalisation phenomenon. It would not then be

an exaggeration to claim that ICT should be ranked alongside the discovery of

Penicillin, and the industrial revolution when we consider it’s place in human

history.

2.1.1 Importance of Wireless Communication

The wireless communication system is a, perhaps the, critical element in the

global ICT strategy, underpinning many other industries. It is one of the fastest

growing and most dynamic sectors in the world. The impact of wireless commu-

nication cannot be minimised. It’s advantages have been felt in all spheres of life

including personal, commerce, healthcare, news and media reporting and access,

education, government and has provided instant connection indiscriminately be-

tween populations throughout the world. Historically it’s position is unrivalled,

remote communities and populations now have the ability to engage instantly

with each other, propelling forward intercultural evolution at an unparallelled

rate. Indeed, wireless communication has even facilitated civil revolution and its

future effects can only be imagined. As technology develops, wireless commu-

nication in general and particularly the cellular communication has a welcome

impact on the economic growth. Many reports are optimistic that usage of wire-

less communication is steadily on the increase, a trend that will impact positively

upon the economic growth and development of those countries. For instance,
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the EMO reported, that the mobile communication sector has its own total rev-

enue of AC174 billion in 2010, thereby bypassing the aerospace and pharmaceutical

sectors [1]. In addition to that, a report from the GSMA association has shown

that cellular communication contributes to a growth rate of 3.4 % gross domestic

product (GDP) per capita in a period from 2008 until 2011 [6]. The report also

highlighted that a doubling of mobile data use, leads to a growth in the GDP per

capita growth rate of 0.5 % points each year.

2.1.2 The Evolution of Cellular Systems

Unlike the fixed communication networks, wireless mobile networks can be built

quickly. As a result of that, the wireless mobile communication has evolved dra-

matically over the last three decades. The phenomenal success of wireless mobile

communications is mirrored by a rapid pace of technology innovation. From the

early analogue mobile first generation (1G), deployed in Norway in 1981, followed

by the second generation (2G) mobile communication system which debuted in

1991 to the third generation 3G system first launched in 2001, the wireless mo-

bile network has transformed from a pure telephony system to a network that

can transport rich multimedia contents. A notable milestone in the cellular rev-

olution occurred when high-speed downlink packet access (HSDPA) enhanced

3G protocol was rolled out to address the increasing public demands of access-

ing the Internet on the move. The HSDPA has evolved to HSPA+ later on.

HSDPA can support downlink speeds of up to 21Mbps. HSPA+ offers further

speed increases, providing speeds of up to 42Mbps. The next step was the intro-

duction of long-term evolution (LTE) proposed by third generation partnership

project (3GPP) to meet the increasing demands for higher mobile broadband

data rates and quality of service (QoS). LTE adopts OFDMA as the technique

for resource sharing among multiple users [7]. LTE is able to offer peak rates up

to 160Mbps within 20MHz channel bandwidth. Unlike the previous generation,

LTE was designed from the beginning with the goal of developing the radio ac-

cess technology (RAT) under the assumption that all the services can be based
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on Internet protocol (IP). Advanced technologies like MIMO and link adaptation

have been selected for the LTE system in order to boost up the performance. In

addition to that, LTE has emerged with an evolution of the non-radio aspects of

the overall system. The work on specifying the core network (CN) in LTE is com-

monly known as evolved packet system (EPS). Afterwards, international mobile

telecommunications-Advanced (IMT-A) has specified the requirements of the 4G

wireless systems. These were that a wireless system which should have the ability

to support data rates of up to 1 Gbps and 100 Mbps in low mobility and high

mobility environments, respectively, and also specified the use of IP for all ser-

vices [9]. The LTE was applied as the baseline for further enhancements in order

to meet IMT requirements. Hence, 3GPP proposed the LTE Advanced (LTE-

Advanced) system as a candidate to be a practical 4G system [10]. Both LTE

and LTE-Advanced share the same CN, however, LTE-Advanced extended the

radio capabilities of LTE by introducing new features such as carrier aggregation,

high orders MIMO, smart beamforming. etc.. Fig. 2.1 illustrates how the mobile

broadband speed has evolved with different cellular generations.

Figure 2.1: Evolution of Mobile Cellular Networks [8].
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2.1.3 Mobile Data Traffic Growth

During the evolution of cellular systems, the number of wireless devices were in

continuous growth, which was driven by the innovation of ”smartness” of mo-

bile devices. Each year several new devices in different shapes, with advanced

features, and enhanced capabilities and intelligence, are being brought into the

market. Smartphones together with large screens and different software appli-

cations, from browsers to video and audio streaming applications are projected

to rise dramatically within the next few years. Cisco has reported that an esti-

mated of 7 billion plus number of wireless devices were accessing the network in

2013, 77% more than in 2012 [11]. Furthermore, the introduction of Internet of

Things (IoT) raised the challenges not simply in terms of network capacity, but

also on the number of devices connected to the network. From Fig. 2.2 we can

see the increase in number of connected wireless devices in each year until 2018.

Cisco expects that the number of mobile devices will increase by more than 56%

in 2018. It is noticeable that there will be a significant increase in the number of

smart devices, i.e., smartphones and tablets, from 26% in 2013 to 42% by 2018.

Figure 2.2: Cisco forecasts on mobile devices and connections growth [11].
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Thus, the easy-to-use smart devices becomes more and more central in peoples

lives and gradually essential in doing every-day activities. This massive number of

wireless devices is one of the primary contributors to global mobile traffic growth

in the next few years. Each year, Cisco releases its updated visual networking

index (VNI) survey, which includes forecasts on the volume of mobile traffic.

In its latest report, Cisco highlighted that the global mobile data traffic grew

by 81% in 2013 where it reached 1.5 exabytes per month at the end of 2013,

compared to 820 petabytes per month at the end of 2012 [11]. Hutchinson 3G,

a prestigious mobile operator in the UK, has revealed that their data volume in

2014 has increased by 24 times more than that in 2007, as shown in Fig. 2.3. The

reality, however, is that the potential for higher growth is still to come. Cisco’s

forecasts predict that the overall mobile data traffic will grow to 15.9 exabytes per

month by 2018, nearly an 11-fold increase compared to 2013, the fact illustrated

in Fig. 2.4. Moreover, mobile data traffic will have a growth rate considerably

larger than the growth rate of traffic within the fixed network,

Figure 2.3: Hutchinson 3G traffic growth portfolio from 2007 until 2014. Reproduced

by permission of � Hutchison 3G, U.K.
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reported in [12]. The traffic has been driven mostly by the demand for video-

related services, such as web video or downloading. It is understandable that,

from a consumer point of view, as the broadband access speed increases, so will

the desire for higher quality video be stepped up. A potential consequence of

this situation, is that if the capacity of 4G cellular system increases at a level less

than that required to support such the traffic growth, then this will contribute

to congested networks, poorer user experience, and reduced innovation.

2.2 5G Mobile Cellular System

The continuing growth of traffic motivates the technologists and researchers to

look ahead at how networks can be forged to meet the future anticipated extreme

capacity demand, high quality performance, and a better mobile broadband

Figure 2.4: Cisco forecasts on mobile data traffic until 2018 [11].
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experience. The 4G system may be able to cope with the traffic demands for a

short period of time, but it cannot hope to survive in the long term. 4G sys-

tems presents challenges that have contributed to the inability in keeping up

with such a growth demand in the traffic. One of the most crucial challenges

is the physical scarcity of RF spectrums allocated for cellular communications.

Hence, cellular frequencies use ultra high frequency bands for cellular phone use,

normally ranging from several hundred MHz to several GHz. These frequency

spectrums have been mostly allocated, making it difficult for operators to ac-

quire more. Other backlogged challenges are for example, high-speed mobility,

seamless coverage, diverse QoS requirements, and energy efficiency. To this end,

we need cutting-edge cellular architecture to address these challenges from a fresh

perspective in order to be a step ahead from the increasing traffic demands. Ini-

tial research has already been encouraged by various stakeholders in the wireless

community to investigate beyond 4G (B4G) or the 5G wireless standards. The

project entitled “UK-China Science Bridges: (B)4G Wireless Mobile Communi-

cations” (http://www.ukchinab4g.ac.uk) is perhaps one of the first projects in

the world to start B4G research, where some potential B4G technologies were

identified. Nokia Siemens Networks described how the underlying radio access

technologies can be further developed to support up to 1000 times higher traffic

volumes compared to 2010 travel levels over the next 10 years [13]. Samsung

demonstrated a wireless system, using advanced technologies which can also be

a potential candidate for 5G wireless communication networks with data rates

faster than 1 Gbps [14].

What will the 5G mobile cellular system, which will be standardised around 2020,

look like? It is now too early to define for sure. However, it is widely agreed that

compared to the 4G, the 5G mobile cellular system should achieve 1000 times the

capacity, 10 times the spectral efficiency, 25 times the cell average throughput,

better energy efficiency, and higher data rate for both low and high mobility envi-

ronments. The 5G mobile cellular system should also be able to support commu-

nications for some special scenarios not supported by 4G networks, e.g., for high

speed train users. The aspiration is to connect the entire world, truly creating a

16

http://www.ukchinab4g.ac.uk/


Chapter 2: Background

smaller global village, and accomplish seamless and ubiquitous communications

between Anybody (people to people), Anything (people to machine, machine to

machine), Anywhere (wherever they are), Anytime (whenever they need), and

Anyhow (by whatever electronic devices, services, or networks). Achieving this is

a challenge and requires a dramatic change in the design of cellular architecture.

2.2.1 A Potential 5G Mobile Cellular Architecture

Fig. 2.5 depicts a vision for 5G mobile cellular architecture. It comprises some

promising key wireless technologies that can enable 5G mobile cellular system

to fulfil performance requirements. It has been observed that mobile users stay

indoors for about 80% of the time, whilst they only stay outdoors for about 20% of

the time [15]. In reality, the distribution of users is not as uniform as this, as they

tend to concentrate in certain areas, i.e., hotspots. In this case, a small cell will be

able to offer high data throughput to the hotspot’s users. In the meantime, users

on the macrocell will also experience a more pronounced increase in throughput

because a higher proportion of traffic has been offloaded from the macro cell

into the small cell. Using this knowledge, one of the focus areas in designing

the 5G cellular architecture is to separate outdoor and indoor scenarios. The

5G cellular architecture should then be a heterogeneous one, with macro-cells,

micro-cells, small cells, and relays. This enables the macro base station (BS)

to pay the attention to outdoor traffic while allowing the indoor traffic to be

managed by indoor technologies. In this context, many emerging technologies can

be employed indoors, which are suited for short-range communications to provide

high capacity. Some examples include femtocell, ultra wideband (UWB), mm

wave communications (3–300 GHz) [14], and visible light communication (VLC)

(400–490 THz) [16]. The mm wave and VLC technologies use higher frequencies

not traditionally used for cellular communications. These high-frequency waves

do not penetrate solid materials very well and can be readily absorbed or scattered

by gases, rain, and foliage. Therefore, it is hard to use these waves for outdoor

and long distance applications.
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Figure 2.5: A vision 5G heterogeneous mobile cellular architecture [17].

However, with large bandwidths available, mm wave and VLC technologies can

greatly increase the transmission data rate for indoor scenarios. Furthermore,

to accommodate traffic that’s generated from indoor high-mobility vehicles, we

introduce the concept of MFemtocell. MFemtocell uses the femtocell technology

with mobile wireless backhauling.

The use of advanced MIMO techniques such as massive MIMO [18–20] and SM [21]

can provide a potential solution to accommodate prominent portion of the out-

door traffic. While most current MIMO systems utilise 2–4 antennas, the goal of

massive MIMO systems is to exploit the potentially large capacity gains that can

arise in larger arrays of antennas. Another scenario is that BSs will be equipped

with large antenna arrays with some antenna elements (also large antenna arrays)

distributed around the cell and connected to the BS via optical fibres, i.e., bene-

fiting from both the distributed antenna system (DAS) and massive MIMO tech-

nology [20]. Outdoor mobile users are normally equipped with limited numbers
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of antenna elements but they can collaborate with each other to form a virtual

large antenna array, which together with BS antenna arrays will construct virtual

massive MIMO links. Large antenna arrays will also be installed outside of every

building to communicate with outdoor BSs or distributed antenna elements of

BSs, possibly with line-of-sight (LoS) components. Large antenna arrays have

cables connected to the wireless access points inside the building communicat-

ing with indoor users. This will certainly increase the infrastructure cost in the

short term while can significantly improve the cell average throughput, spectral

efficiency, and data rate of the cellular system in the long run. To reduce the

complexity of the decoding algorithm, the SM concept can be integrated with

massive MIMO systems [21].

To solve the spectrum scarcity problem, besides finding new spectrum not tradi-

tionally used for mobile wireless services, e.g., millimeter (mm) wave communica-

tions and the visible spectrum, we can also try to improve the spectrum utilisation

of the existing radio spectrums using the concept of CR networks [22].

2.3 Promising Key 5G Wireless Technologies

In this section, based on the above proposed heterogeneous cellular architecture,

we will discuss some key wireless technologies that can considered as promising

candidates for 5G mobile cellular system. The purpose of developing these tech-

nologies is to enable a dramatic capacity increase of the 5G mobile cellular system

with efficient utilisation of all possible resources.

2.3.1 Massive MIMO

MIMO systems consist of multiple antennas at both the transmitter and receiver.

By adding multiple antennas, a greater degree of freedom (in addition to time and

frequency dimensions) in wireless channels can be offered to accommodate more

information data. Hence, a significant performance improvement can be obtained
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in terms of the reliability and spectral efficiency. In massive MIMO systems,

the transmitter and/or receiver are equipped with a large number of antenna

elements (typically tens or even hundreds). Note that the transmit antennas can

be co-located or distributed (i.e., DAS system) in different applications. Also,

the enormous number of receive antennas can be possessed by one device or

distributed to many devices. By properly using multi-user MIMO (MU-MIMO)

in massive MIMO systems, the multiple access control (MAC) layer design can be

simplified by avoiding complicated scheduling algorithms [23]. With MU-MIMO,

the BS can send separate signals to individual users using the same frequency at

the same time. Consequently, these main advantages enable the massive MIMO

system to be a promising candidate for 5G mobile cellular system.

2.3.2 Spatial Modulation

In SM, blocks of the number of data bits are represented in the constellation point

in the signal domain and a constellation point in the spatial domain (transmit

antenna index). At each time instant, only one active antenna is active. The re-

ceiver needs first to estimate the activated antenna to use it as a basis to decode

the information. SM can mitigate three major problems in conventional MIMO

systems: inter-channel interference, inter-antenna synchronisation, and multiple

RF chains. Moreover, low-complexity receivers in SM systems can be designed

and configured for any numbers of transmit and receive antennas even for un-

balanced MIMO systems. We have to mention that the transmission rate in SM

increases logarithmically with the increase of the number of transmit antennas,

whilst it increases linearly in the MIMO systems. Hence, the low implemen-

tation complexity comes at the expense of sacrificing some degrees of freedom.

Therefore, it is worth investigating methods that enhance the transmission rate

of SM whilst keeping the complexity as its low level. In this thesis we consider

two schemes that improve the capability of SM. Both schemes can be another

potential candidates for 5G mobile cellular system.
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2.3.3 Cognitive Radio Networks

CR network is an innovative software defined radio technique which has been

considered as one of the promising technologies to improve the utilisation of the

congested RF spectrum. Adopting CR is motivated by the fact that a large por-

tion of the radio spectrum is underutilised most of the time as has been declared

by spectrum authority regulators. In CR networks, a secondary system can share

spectrum bands with the licensed primary system, either on an interference-free

basis or on an interference-tolerant basis [22]. The CR network should be aware

of the surrounding radio environment and regulate its transmission accordingly.

In interference-free CR networks, CR users are allowed to borrow spectrum re-

sources only when licensed users do not use them. A key to enable interference-

free CR networks is how to detect the spectrum holes (white space) that spread

out in wideband frequency spectrums. CR receivers should first monitor and allo-

cate the unused spectrums via spectrum sensing (or combining with geo-location

databases) and feed back this information to the CR transmitter. A coordinating

mechanism is required in multiple CR networks that try to access the same spec-

trum to prevent the users from colliding when accessing the matching spectrum

holes. In interference-tolerant CR networks, CR users can share the spectrum

resource with a licensed system whilst keeping the interference below a thresh-

old. In comparison with interference-free CR networks, interference-tolerant CR

networks can achieve enhanced spectrum utilisation, by opportunistically sharing

the radio spectrum resources with licensed users, as well as better spectral and

energy efficiency. In [24], hybrid CR networks have been proposed to be adopted

in cellular networks to explore additional bands and expand the capacity.

2.3.4 Mobile Femtocell

MFemtocell is a new concept that has been proposed recently to be a potential

candidate technology in the next generation intelligent transportation systems.

It combines the mobile relay concept (moving network) with femtocell technol-
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ogy. MFemtocells are located inside vehicles to communicate with users within

the vehicle, while large antenna arrays are located outside the vehicle to commu-

nicate with outdoor BSs. A MFemtocell and its associated users are all viewed

as a single unit to the BS. From the user point of view, a MFemtocell is seen as

a regular BS. This is very similar to the above idea of separating indoor (inside

the vehicle) and outdoor scenarios. Using this technology, the handover activities

can be reduced for the users within the MFemtocell. This makes the deployment

of MFemtocells suitable for high-mobility environments. In addition, the en-

ergy consumption of users inside an MFemtocell can be reduced due to relatively

shorter communication range and low signaling overhead.

2.3.5 Visible Light Communication

VLC uses off-the-shelf white light emitting diodes (LEDs) used for solid-state

lighting (SSL) as signal transmitters and off-the-shelf p-intrinsic-n (PIN) photo-

diodes (PDs) or avalanche photo-diodes (APDs) as signal receivers [16]. This

means that VLC enables systems that illuminate and at the same time provide

broadband wireless data connectivity. If illumination is not desired in the uplink,

infrared LEDs or indeed RF would be viable solutions. In VLC, the information

is carried by the intensity (power) of the light. As a result, the information-

carrying signal has to be real valued and strictly positive. Traditional digital

modulation schemes for RF communication use complex valued and bi-polar sig-

nals. Modifications are therefore necessary and there is a rich body of knowledge

on modified multi-carrier modulation techniques for intensity modulation (IM)

and direct detection (DD). Data rates of 3.5 Gbps have been reported from a

single LED. It has to be noted that VLC is not subject to fast fading effects as

the wavelength is significantly smaller than the detector area. While the link-

level demonstrations are important steps to prove that VLC is a viable technique

to help mitigate spectrum bottlenecks in RF communications, it is essential to

show that fully-fledged optical wireless networks can be developed by using ex-

isting lighting infrastructures. This includes MU access techniques, interference
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coordination, etc.

In this thesis, the focus would be on MFemtocell, CR and SM with massive MIMO sys-

tems.

2.4 Green Radio Communications

Global warming is primarily a problem of too much CO2 in the atmosphere.

It refers to a century-scale rise in the average temperature of the earth which

leads to an unpredictable climate system that has harmful effects on our com-

munities and our health. The energy consumptions that are involved in different

economic sectors, e.g., electrical supply, transport, industry, etc., contribute to

global warming. This also includes the energy use in the operations of wireless

communication systems. It has been stated that, there have been approximately

24 billion tonnes of total CO2 emissions sine 2011 alone [25]. The ICT sector

contributes to around 2% of that total, of which 0.74% domes from the wireless

industry [26, 27]. Although the low percentage contributed by the mobile indus-

tries does not cause concern at present. However, with the continuous growth

of traffic volume and with the efforts of other economic sectors to reduce their

energy use, the percentage of wireless energy consumption is expected to increase

correspondingly. Adopting innovative technologies with appropriate wireless ar-

chitectures to reduce the energy consumption, is therefore needed in order to

achieve greener radio communication [28, 29]. This contributes to a reduction of

the fraction of CO2 emissions. Wireless stakeholders allover the world should be

encouraged to achieve certain energy consumption levels. As for the cellular op-

erators interest, reducing energy consumption has a welcome impact to its OPEX

and consequently into their total profit. Unlike the previous wireless generations,

the design of 5G mobile cellular system should take into account the assessment

of the energy consumption (i.e., energy efficiency) as a main objective. The in-

door communication technologies are promising deployment strategies to achieve

greater energy efficiency. This is because of the favourable channel conditions
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that they can offer between the transmitters and receivers. It was demonstrated

in [30–32] that the energy efficiency of the system can be improved significantly

by using femtocells deployment within the existing macrocells. Moreover, by sep-

arating the indoor traffic from the outdoor traffic, the marcocell BS will have less

pressure in allocating radio resources and can transmit with low power resulting

in a significant reduction in the energy consumption. SM with massive MIMO

is another potential application to achieve green wireless communications [33].

This is due to the fact that SM-MIMO contributes to a significant reduction into

the circuit power by using a single-RF chain. VLC and mm wave technologies

can also be considered as energy efficient wireless communication solutions to be

deployed in 5G mobile cellular system. For example, in VLC systems the con-

sumed energy in one bulb is much less than that in its RF-based equivalents for

transmitting the same high density data.

2.4.1 Energy Efficiency Metrics

Energy efficiency is defined in several ways [34]. One way is to take the ratio of

the transmitted bit rate per unit time (or spectral efficiency) to the transmitted

power (plus circuit power), measured in bits/Joule (or bits/Hz/Joule). The ob-

jective of this definition is to increase the number of transmitted information bits

per unit energy which has been widely used in various publications [35, 36]. A

different way to define the energy efficiency is to use the energy consumption per

bit, i.e., the ratio of consumed power per achievable rate (or spectral efficiency),

as a metric measured in Joules/bit [37]. The energy consumption increases lin-

early with transmitted power. The objective here is to minimise the total energy

consumption for a given data rate. Another widely used metric in the literature is

energy-per-bit to noise power spectral density ratio i.e.,
(

Eb

N0

)
[38–46]. This met-

ric is useful to evaluate the spectral and energy efficiency from the transmit power

perspective. In this thesis, the bits/Hz/Joule and
(

Eb

N0

)
have been considered as

energy efficiency metrics.
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2.4.2 Spectral-Energy Efficiency Fundamental Trade-off

The spectral-energy efficiency trade-off is becoming a important tool for bringing

insight on how to design an energy efficient communication system. The spectral-

energy efficiency trade-off refers to the amount of consumed energy needed to

reach a specific spectral efficiency or, put simply, how to express energy effi-

ciency as a function of spectral efficiency. The concept of spectral-energy effi-

ciency trade-off was first introduced in [35] where the authors found the rela-

tionship between the energy channel and the channel capacity for the additive

white Gaussian noise (AWGN) channel. Two analytical tools used to analyse the

spectral-energy efficiency trade-off for any given wireless networks were proposed

in [38] and [39] in low and high SNR regimes, respectively. In both tools, the

energy efficiency,
(

Eb

N0

)
, is defined as the required energy per bit (in joules/bit)

normalised to the background noise power N0 for reliable communications. The

spectral efficiency, C, refers to the number of bits per second transmitted over a

given bandwidth (in bps/Hz).

� Low SNR regime

Using the approximation tool of [38] in the low SNR regime,
(

Eb

N0

)
can be

approximated as an affine function with respect to the spectral efficiency

and can be expressed by(
Eb

N0

) ∣∣∣∣∣
dB

=

(
Eb

N0

)
min

+
3

S0
C (2.1)

where
(

Eb

N0

)
min

is the minimum energy efficiency required for transmitting

information reliably over a channel and it is given by(
Eb

N0

)
min

= lim
SNR→0

SNR

C̄(SNR)
. (2.2)

Here, C̄(SNR) is the spectral efficiency as a function of SNR. In (2.1), S0

is the wideband slope of the spectral efficiency, defined as the increase of

bits per second per hertz per 3 dB (bps/Hz/(3 dB)), and can be expressed

by [38]

S0 =
2 ˙̄C(0)

− ¨̄C(0)
(2.3)
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where ˙̄C(0) and ¨̄C(0) are the first and second derivative, respectively, when

SNR=0.

� High SNR regime

In the high SNR regime, the required energy efficiency to obtain a specific

spectral efficiency can be expressed by [39](
Eb

N0

) ∣∣∣∣
dB

≈ C

S∞
10 log10 2− 10 log(C) +

(
Eb

N0

)
penalty

10 log10 2 (2.4)

where S∞ is the slope of the spectral efficiency in the high SNR regime in

bps/Hz/(3 dB) and is given by [39]

S∞ = lim
SNR→∞

SNR ˙̄C(SNR). (2.5)

In (2.4),
(

Eb

N0

)
penalty

is the horizontal penalty which represents the power

offset, in dB units, with respect to a reference channel having the same

high SNR regime slope but with an unfaded channel (i.e., AWGN) and it

is calculated by [39](
Eb

N0

)
penalty

= lim
SNR→∞

(
log2(SNR)−

C̄(SNR)

S∞

)
. (2.6)

Both tools were used to analyse the energy efficiency as a function to spectral

efficiency for different network scenarios [40–46]. Hence, using the low-SNR tool,

the interplay of the spectral and energy efficiency was studied for SU-MIMO

channels [40], SU relay channels [41,42], and MU relay channels [44]. The authors

of [45, 46] used the high-SNR tool to analyse the energy efficiency of MIMO

channels. These tools consider only the transmit power and do not take into

the account the power consumption of other parts such as circuit and processing

power consumption. However, these tools are still useful for scenarios where

the transmit power dominates other parts of power consumption contributors.

Practically, for a communication system where the transmitter and receiver has

a single antenna.
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2.5 Power Consumption Model

Tools (2.1) and (2.4) can be applied for a system with a single transmit antenna

as radiated power is the dominate part of power consumption. However, when

it comes to the MIMO system, the problem becomes more complicated. In this

case, obtaining an accurate PCM is of chief importance to finding a realistic

gaudiness for studying the energy consumption especially for MIMO systems.

Most of the previous work on modeling the PCM system assumed that the total

power consumption is the sum of the radiated transmit power and a constant

that accounts for the circuit power and cooling [47–49]. This can be applicable

for conventional MIMO where the number of transmit antennas and users are

relatively small. However, when it comes to the massive MIMO system, this

model can be very deceptive since it leads to unbounded energy efficiency when

the number of transmit antennas is high [50]. The reason behind this is that

PCM does not take into account the power consumption for the MIMO-related

digital signalling processing such as beamforming and channel estimation as well

as the power consumption by backhauling.

Building on prior works of [47, 50–57], we introduce a modified and more realis-

tic PCM that fits the next-generation MU-MIMO systems. To have a realistic

PCM we first need to understand the structure of communications and break

down the power consumption in each component of the communication system.

Currently, the BS functionality is subdivided between a base band unit (BBU)

processing and a remote radio unit (RRU) or sometimes it is known by a re-

mote radio head (RRH) [58]. The BBU is responsible for digital communication

through the physical interface, whilst RRU implements RF (RF) front-end pro-

cessing for wireless communication. Each unit holds a different power require-

ment. Moreover, in recent years, the cellular communication system has gradually

evolved into a distributed architecture system in which the BBU and the RRU of

a BS are physically separated from each other. The BBU is connected with many

RRUs via fibre, cable , or microwave transmissions. This can indeed increase the

power consumption due to the operational use of the transmission links between
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BBU and RRU. This kind of power consumption should be included within the

PCM. Aside from these components, the power supply and the cooling system

also contribute to the total power use.

2.5.1 BBU Power Consumption

The BBU is responsible for digital signal processing, coding and decoding, map-

ping and de-mapping of physical channels and transport channels, channel es-

timation, and radio resource management of the entire BS system. It further

provides ports for data communication between the RRU and the CN. The BBU

is manufactured by the combination of microprocessors, field-programmable gate

arrays (FPGAs), and other digital and analogue circuits. The BBU further com-

prises a clock module and a power module, which are used for providing clock

synchronisation and power for the BBU, respectively. Therefore, the silicon tech-

nology has a great impact on the total BBU power consumption. The advent

of the next-generation cellular networks, however, will increase the computing

burden within the BS, making floating-point operations (flops) has an impact on

PCM. The power consumption in the BBU depends on the complexity of the unit

design and the algorithms to handle the various load levels or/and the number

of active end users. Moreover, the complexity of the unit design increases with

the number of active antennas which also means additional power consumption.

The power consumption of the BBU happens at three different terms.

� Central processing unit (CPU) power consumption: The total CPU power

consumption Pcpu is the amount of power consumed by different digital unit

processes used for the radio-related functions. This includes the consump-

tion on the radio channel estimation PCE, generating MIMO precoding vec-

tors PPV, and the radio resource management PRRM. Each term depends

linearly or non-linearly on the main MIMO system parameters, i.e., the

number of transmit antenna Nt, the number of user K, and the number

of the receive antenna Nr. Modeling PCE, PPC, and PRRM can be achieved
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by calculating the number of flops, e.g. multiplication, addition, division,

and so on, that a CPU performs in order to determine each of its related

functions [59]. PCE should be included in the PCM because the BS is re-

quired to estimate complete channel vectors by using a mutual orthogonal

pilot sequence that transmits from each user in a dedicated uplink training

phase and so to generate the optimum precoding matrix for the downlink

transmission, assuming time division duplex (TTD). Using minimum mean

square error (MMSE) detection, the estimation is then performed by mul-

tiplying the uplink observation with each user-specific pilot sequence. This

operation requires 2τK2Nt flops [50]. Therefore, the consumed power PCE

for estimating a pilot sequence of length of τK is equal to 2τK2Nt

ηcpu
Watt,

with τ is relative pilot length. ηcpu refers to a computational performance

per watt (or flops per watt) [53] and is equivalent to the number of flops or

instructions executed per joule of energy over a period of time. Once com-

pleted channel coefficients are estimated, the BS can generate a precoding

matrix that can be used on the downlink transmission. For such an opera-

tion, the cost in Watt depends on which scheme and how many flops that

are required to generate a complete precoding matrix. The impact of PRRM

on the total processing power consumption depends on the complexity of

the used algorithm for allocating the radio resources among users. This

includes an additional cost of selecting the optimal (or sub-optimal) users

in the case of K > Nt.

� Transceiver board Power consumption: This type of power consumption

PBBU-TXB accounts for the power required by all circuit components in one

transmit transceiver board (TXB) chain in the BBU such as memory, cyclic

redundancy check (CRC) checker, modulator, fast Fourier transform (FFT)

and inverse FFT (IFFT), encoder/decoder circuits, etc. it should also in-

clude the circuit power of the receiver transceiver chain to perform channel

estimation. PBBU-TXB can be modelled by

PBBU-TXB = NtPBBU-crt + Psta (2.7)
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where PBBU-crt is the circuit power that accumulates all mentioned power

components in the BBU, while Psta is the static power consumption. Both

PBBU-crt and Psta are load-independent factors and can be reasonably as-

sumed to be constants.

� Bit processing power consumption: This kind of power consumption PBP

includes all consumption that are required for procession K sequence of

information symbols, such as bit interleaving, scrambling, and modulation.

This type of consumption is proportionally linear to the achievable rate R

and it can be modelled by

PBP =
BR

ηload
(2.8)

where ηload is the consumption factor in bit
second

per watt and B is the system

bandwidth.

2.5.2 RRU Power Consumption

The RRU contains the BS RF circuitry plus analog-to-digital/digital-to-analog

converters and up/down converters all for converting data between a RF transceiver

module and the BBU switching module, and vice versa. It uses a backhaul in-

terface (e.g., optical) to connect to the BBU processing part and a cellular air

interface to communicate with the user. The main function of RRU is power am-

plification of baseband signal before forwarding it to the antenna interface (AI).

The power consumption resides in the following components.

� Power amplifier consumption: The most distinct component of RRU is the

power amplifier (PA). The PA is characterised by its efficiency ηPA(ηPA < 1)

which refers to the ratio of the radiated power Pr to the total direct DC

input power PPA. The power consumption of a PA is proportionate to the

radiated power of BS, i.e.,

PPA =
Pr

ηPA
. (2.9)
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Typically, the most efficient PA should have an operating point that is close

to the maximum output power. Due to non-linearity effects most of PAs yet

operate in a more linear region, thus 7 to 12 dB below the saturation [54].

Consequently, this operating back-off gives rise to poor power efficiency,

and that is translated to a high power consumption.

� RF transceiver board power consumption: Similar to the BBU, the RRU

consists of multiple TXBs. A TXB comprise AI, digital-to-analog convert-

ers, filters, BBU interfere, PA interface, DC-DC power supply, frequency

AC-DC power supply unit, mixer, time synchronisation interface, low noise

amplifier (LNA), and an optional backhaul interface in the case where the

BBU is remotely connected to the RRU. The power consumption of AI in-

cludes the amount of losses that comes from feeder, filters, duplexers, and

type and length of cable. There are four important factors influence the

power consumption of LNA unit, i.e., power gain ηLNA, operation band-

width B, noise figure NF , and figure-of-merit FOM. Hence, the power con-

sumption of LNA PLNA is modelled by [51]

PLNA =
ηLNABN0

(NF − 1)FOM
. (2.10)

For typical LNA, the FOM is in the range of 10−7 to 10−9 [51]. The total

power consumption PRRU-TXB can be modelled by

PRRU-TXB = M (PRRU−crt + PLNA) (2.11)

where PRRU−crt is the power consumption on a circuit board which includes all

aforementioned components except the LNA part.

2.5.3 Backhauling Power Consumption

The backhaul links are expected to play a significant role on the total network

power consumption for the next-generation cellular systems in order to carry the

continued growing traffic. The increase that is required backhauling power is
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related to the increase in required information exchange between the two units.

This means that the fraction of the power consumption is also dependent on

achievable rate at the radio side. In this sense, backhaul powers must be taken

into account in a realistic PCM especially when BBU is physically separated from

RRU. However, power consumption levels depend on the used backhaul solution.

In general, many operators are now aligning their backhauling strategy toward

optical technology because of its high capacity and low power consumption [55,

56]. The power consumption in the backhaul link PBH can be modelled using the

following formula

PBH = Pfix +
R

ηBH
(2.12)

where Pfix is the fixed part of the power consumed independently from the traffic

load, and ηBH is ratio between the maximum capacity offered by a backhaul link

and maximum power available for the backhaul transmission.

2.5.4 Cooling Power Consumption

In order to keep the BSs working properly, they must be kept cool. Therefore, the

power consumption should not just include the requisite power for BS operation,

but in addition the power consumption of cooling unit. For example, cooling

helps to quickly restore the microprocessors back to ambient temperature which

consequently contributes to a greater extent of power consumption. Hence, it was

highlighted in [57] that the cooling power consumption that is demanded for the

data processing is equivalent to almost half the total power use of data processing.

The type of cooling varies, depending on the local weather and environment

conditions. This includes external air conditioning, FAN installed inside the

cabinet, or internal small FANs. Air conditioning needs a lot of power, but it

is essential in hot countries at summer time. Alternative direct air cooling uses

small fans to conduct heat away from the BS cabinet, and this requires 90% less

energy than traditional air conditioning. The power consumption of external air

condition is a constant. However, the power consumption of internal fan Pfan
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depends on its speed S and, indirectly, on load level. Thus, Pfan can be modelled

by Pfan = κS3 [57], where κ is a constant. The total power consumption for

cooling can be modelled by

Pcooling = T̄ Pfan + Pexternal (2.13)

where T̄ is the number of internal FAN and Pexternal represents the power con-

sumption at the external air conditioning.
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2.6 Chapter Summary

In this chapter, we have first highlighted the importance of mobile wireless com-

munication and how cellular communication has evolved over time. We have also

introduced a potential key technologies that can be deployed in 5G mobile cel-

lular system to satisfy the expected traffic growth. The 5G term should be an

integration of radio frequency (RF) wireless communications with optical wireless

communication. The design of the 5G mobile cellular system should take into the

account the energy-efficiency as one main targets to deliver greener communica-

tion. Secondly, two analytical methods to analyse the spectral-energy efficiency

tradeoff for wireless systems were presented. The tools consider only the transmit

power as an input, thus they suits only the scenarios where transmitter has few

number of transmit antennas. Thirdly, the concept of fractional programming

that fits into the class of energy efficiency optimisation programs has been pre-

sented and an approach for computing the solution has been highlighted. Finally,

in this chapter, more realistic PCM that suits the structure of the next-generation

cellular systems has been introduced. The PCM includes the power consumption

of BBU, RRU, backhauling, and cooling components.
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Chapter 3
Energy-Efficient Radio Resource

Allocation for Multi-User

OFDMA Systems

3.1 Introduction

A rapid evolution has occurred in the cellular system in the last few years. The

cellular industries have started to pay more attention to high speed mobile broad-

band systems which has led to the 4G wireless systems. Meanwhile the 3GPP

has been working toward the development and maintenance of the global cellu-

lar system, including evolved radio access technologies in order to achieve the

requirements of the 4G wireless system, resulting in the introduction of LTE-

Advanced [10]. Orthogonal frequency division multiplexing (OFDM) has become

the multicarrier transmission technique of choice for the 4G wireless systems. It is

also expected that OFDM can play a role in the 5G wireless system [60]. OFDM

is one of the promising technologies that can provide improved spectral efficiency

and the flexibility of the allocation of radio resources among users. Instead of

transmitting symbols sequentially over a single wideband channel for the 3G wire-

less systems, OFDM divides the wideband broadband channel into a number of
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narrowband subchannels, each having a bandwidth much smaller than the coher-

ence bandwidth of the channel [61]. Hence, each sub-channel appears to be as

a flat fading channel. In an MU-OFDM system, there is a need for a multiple

access scheme to allocate a subset of subcarriers with certain power to different

users. This is because particular subcarriers at different instants of time may

appear differently among the users due to the diversity nature of wireless chan-

nels. This offers an opportunity to allocate certain subcarriers to users who can

utilise them in the most beneficial way at that particular moment. This mecha-

nism is the principle of OFDMA scheme. Using OFDMA, a subset of subcarriers

is assigned exclusively to a user at any given time. Moreover, other resources

such as power and modulation format (bit loading) also need to be allocated to

each assigned subcarrier. There will be more freedom in allocating subcarriers,

transmit power and modulation, when there are greater number of users, i.e.,

MU diversity. Therefore, it is essential to form a resource allocation scheme that

adapts to users’ varying channel conditions on a temporal basis. In the last few

decades, there were extensive researches which had sought to study the idea of

adaptively allocating radio resources to users in OFDMA systems in order to

optimise a certain metric of interest such as achievable sum rate, transmission

power, or any utility, subject to certain constraints [62, 63].

3.1.1 Radio Resource Allocation for OFDMA Systems

RRA in OFDMA systems has been extensively studied. Radio resources, which in

this context we mean orthogonal subcarriers and power, are allocated to different

users to increase the performance of the system by the use of different scheduling

algorithms. It has been shown that the cell capacity improves as the number of

simultaneous users increases in a cell due to MU diversity gain. Previous research

on resource allocation in OFDMA-based systems are mainly focused on two ap-

proaches, either rate adaptive (RA) or margin adaptive (MA). The objective of

the first approach is to maximise the total throughput with the constraints on

the total transmit power as well as the users’ data rates [64–66]. Whereas the
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objective of the second approach minimise the total transmit power with the con-

straint on users’ data rates [67–69]. It has been shown that the RRA problems in

OFDMA systems are integer linear programming (ILP) in nature, thereby allow-

ing the optimal subcarrier and bit allocation to be achieved [70, 71]. Converting

the non-linear optimisation into the integer programming is performed by insert-

ing a new indicator variable that refers to the subcarrier assignment variable and

the number of bits loaded into each subcarrier. The number of loaded bits is

taken from a particular set. The ILP optimisation problem can be solved by any

standard package, for example, the branch and bound (BaB) method [71].

Nevertheless, neither RA nor MA provides an energy-efficient solution because,

for both approaches, the overall performance of the algorithms are evaluated

with the aim of enhancing spectral efficiency and user fairness. Recently, much

effort was spent in developing energy-efficient resource allocation solutions for

link-level OFDM systems [72–75]. The energy-efficient link level performance

was studied for flat fading [72] and frequency-selective fading channels [73, 74].

The authors of [75] developed an OFDM water-filling power allocation scheme

that maximises energy efficiency. Furthermore, some works considered a muti-

user scenario [76, 77]. In [76], an energy-efficient power allocation scheme was

proposed for interference-limited OFDMA systems. An algorithm was further

developed in [77] that reduces the complexity with the iterative search technique.

None of the aforementioned works considered the use of the ILP approach to solve

the RRA problems with energy-efficiency objectives. The ILP approach, never-

theless, can not be applied directly to the energy-efficient optimisation problem

because the optimisation problem has a fractional objective function. Therefore,

in this chapter, we reformulate the energy-efficient optimisation problem in or-

der to attain a solution by ILP approach and find the optimum solution. The

contribution of this chapter can be summarised as follows.

� We present a mathematical framework based on fractional programming

for energy efficiency optimised algorithm design. We represent the objec-

tive function of the optimisation problem by associated parametric single
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function in order to simplify the problem.

� We propose a sub-channel and bit allocation algorithm to minimise the en-

ergy per transmitted bit for MU-OFDMA system. The algorithm ensure

that the minimum energy efficiency is achieved for a given spectral effi-

ciency and user’s QoS, providing that this is dose not break the total power

constraint.

� We analyse the spectral-energy efficiency trade-off under the constraint of

maintaining the fairness among users and total power.

The rest of this chapter is organised as follows. Section 3.2 describes the sys-

tem model adopted in this work. Section 3.3 formulates the resource allocation

optimisation problem and introduce the energy-efficient iterative algorithm. Sec-

tion 3.4 presents simulation results with detailed analysis. Finally, Section 3.5

summarise the chapter.

3.2 System Model

A downlink OFDMA system is considered, as shown in Fig. 3.1, where a single BS

is transmitting data towards a number of users, utilising a number of orthogonal

sub-channels. Each sub-channel comprises of a group of subcarriers which are

assumed to have correlated channel gains in frequency domain. The number of

users and sub-channels are denoted by k = 1, ..., K and s = 1, ..., S, respectively.

The BS and users are all assumed to be equipped with a single antenna. It has

been assumed that each sub-channel which belongs to a particular user is under

flat fading and corrupted by AWGN. The perfect channel state information (CSI)

is sent to the BS over a feedback channel from each user. The CSI that represents

a sub-channel is assumed to be equal to the linear average of all subcarriers’ gain

within that sub-channel. Based on this information, the BS allocates a set of sub-

channels to each user and decides on the number of bits in each sub-channel. It is

assumed that each sub-channel is exclusively allocated to one user, i.e., sharing
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Energy-efficient sub-channel 
and bit allocation

 

 

 

 

Figure 3.1: System model of an OFDMA-based system where BS serves multiple users.

a sub-channel by two or more users is not allowed at any given time.

Adaptive modulation schemes with binary phase-shift keying (BPSK), quadrature

phase-shift keying (QPSK), 16 quadrature amplitude modulation (16-QAM), and

64-QAM are adopted to achieve a target bit error rate (BER). The information

regarding subcarrier assignment and bit loading is sent to users over a control

channel. The transmit power for user k on sub-channel s is decided upon accord-

ing to the target BER and the received power level. In other words, the transmit

power, normalised to background noise, can be expressed as

Pk,s(BER, c) =
f(BER, ck,s)

|hk,s|2 (3.1)

where hk,s is the complex-valued channel gain that the uth user experiences on

the sub-channel s. f(ck,s)
1 is the required received power level that depends

on the modulation scheme, and ck,s is defined as the number of loaded bits on

the sth sub-channel sent to user k over one OFDM symbol. ck,s takes a value

from the an integer non-negative vector D = S̄ × {0, b1..., bv} ∈ ZV×1. Here, S̄ is

1For notational convenience, the BER index will be omitted in f(.) and Pk,s(.) through the

rest of the chapter since the value of BER is fixed in this work.
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the number of subcarriers within each sub-channel, V is the number of possible

modulation schemes, and bv is the number of bits that equivalents to modulation

order. Indeed, V depends on the maximum supported modulation scheme that

the BS can adapt. For BPSK and QPSK, f(ck,s) equals to S̄
2
(Q−1(BER))2 and

S̄(Q−1(BER))2, respectively [78], where Q−1 is the inverse Q-function. For the

higher modulation schemes, i.e., 16-QAM and 64-QAM, the required received

power can be calculated by [78]

f(ck,s) =
S̄ × 2b

3

(
Q−1

(
b× BER

4

))2

. (3.2)

3.3 Energy-Efficient Resource Allocation

In this section, the problem of energy-efficient subcarrier and bit allocation, sub-

ject to some constraints, will be formulated. Hereafter, an iterative approach will

be adopted to achieve the optimum solution.

3.3.1 Problem Formulation

We define the EE as the energy required to transmit information data reliably

within one OFDM symbol, measured in Joules/bit/Hz and SE is the spectral effi-

ciency, i.e., the total transmit bits in one OFDM symbol measured in bits/OFDM

symbol (or equivalently bps/Hz). Let’s define Īk,s as a binary indicator variable

which is equal to one, if the sub-channel s is allocated to user k, or zero if other-
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wise. The energy-efficient resource allocation problem can be expressed as

(P) min
ck,s∈D

EE =
PC +

∑K
k=1

∑S
s=1 Pk,sĪk,s
η∑K

k=1

∑S
s=1 ck,sĪk,s

(3.3)

s.t.
K∑
k=1

S∑
s=1

ck,sdk,s ≥ SE (3.4)

S∑
s=1

ck,sĪk,s ≥ Rmin
k (3.5)

K∑
k=1

S∑
s=1

Pk,sĪk,s ≤ PT (3.6)

K∑
k=1

Īk,s = 1 (3.7)

Īk,s ∈ {0, 1} (3.8)

where PC is a circuit power dissipation that is assumed to be constant in this

work while η represents the efficiency of a power amplifier. The objective of

problem (P) is to minimise the transmit energy per bit for a given spectral ef-

ficiency whilst satisfying each user’s QoS requirement as well. The minimum

required spectral efficiency in this problem is an input under the constraint

(3.4) that the solver must satisfy when allocating the radio resources. In (3.3),

D = S̄×{0, b1..., bv} represents the set of all possible values of modulation schemes

that can be used by a subcarrier ck,s. Thus, adaptive modulation is performed

at in each sub-channel. Constraint (3.5) ensures each user obtains the minimum

rate to satisfy the QoS requirement. (3.6) is the constraint for the total transmis-

sion power at BS, with Pk,s being given by (3.1) and PT being the maximal total

transmission power. Constraint (3.7) means that each sub-channel is allocated

to one user only.

Let’s define a variable binary vector X as [x1 x2 . . . xS]
T ∈ {1, 0}SKV×1, where

xs = [xs
1 xs

2 . . . xs
K ]

T ∈ {1, 0}KV×1 is the allocation vector that allocates a

sub-channel s to a user k. Now, xs
k = [xs,k

1 xs,k
2 . . . xs,k

V ]T ∈ {1, 0}V×1 is the

modulation vector that decides which modulation index will be in sub-channel s

that is assigned to user k. Also, let’s define a power loading vector P as [p1

p2. . . pS] ∈ R
1×SKV , where ps = [ps

1 ps
2 . . . ps

K ] ∈ R
1×KV . ps

k = [f(1)
h2
k,s

f(2)

h2
k,s

. . .
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f(V )
h2
k,s

] ∈ R1×V represents the possible transmit power. Likewise, a vector C which

denotes the transmit bits in each sub-channel is defined as C= [c1 c2 . . . cS]

∈ Z1×SKV , where, cs = [D1 D2 . . . DK ] ∈ Z1×KV . Furthermore, we relax the

constraint (3.7) to make the summation equal to either 0 or 1 because. This is

because for some channel realisations when they are in a deep fading situation,

it is more energy-efficient not to assign the sub-channel s to any particular user.

By using these vector definitions, the optimisation problem (3.3)–(3.8) can be

reformulated to

min
x

EE =
(PC +

PX
η
)

CX
(3.9)

s.t. −CX ≤ −SE (3.10)

−Au ·X ≤ −Rmin (3.11)

PX ≤ PT (3.12)

Ae ·X ≤ 1T (3.13)

X ∈ Ω ⊆ {0, 1} (3.14)

where Au = [a1a2 . . . aK ]T ∈ ZK×SKV , ak = [ak
1a

k
2 . . . ak

S] ∈ Z1×SKV , ak
s =

[0k
s,1a

k
s,k . . . 0k

s,K ] ∈ Z1×KV , and ak
s,k = D ∈ Z1×V . Note that

Ae =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11,1 01,2 . . . 01,S

02,1 12,2 . . . 02,S

...
...

. . .
...

0S,1 0S,2 . . . 1S,S

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ {1, 0}S×SKV is to ensure that sub-channel k is either allocated exclusively to one

user or excluded from the allocation. Here 1s,s ∈ {1}1×KV and 0s,s ∈ {0}1×KV .

Rmin = [Rmin
1 Rmin

2 . . . Rmin
K ]T is the minimum rate vector to ensure each user’s

QoS and Ω refers to the feasible region for the described problem (3.9)–(3.14).

The objective function (3.9) is the ratio of two linear integer functions to be

minimised. This type of optimisation problem is commonly known as linear

integer fractional programming [79]. The optimisation problems of this kind can

be more tractable by adopting Dinkledbach’s parametric approach [80] as we will

see in the following sub-section.
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3.3.2 Problem Transformation and Parametric Algorithm

The energy efficiency optimisation problem is formulated by minimising the pro-

portion between the achievable rate to the entire power consumption (or max-

imising the proportion between the consumed power to achievable rate). The

energy efficiency problems leads to a fractional programming problem [81]. The

objective function in a fractional program is a ratio of two functions that are in

general nonlinear. A general nonlinear fractional program has the following form

(Q) min
x∈S

f(x)

g(x)
(3.15)

s.t. h(x) ≥ 0; (3.16)

where f(x), g(x), and h(x) are real-valued functions, S ⊆ R is a convex set.

Problem Q usually comes with some constraints such as constraints on the trans-

mit power and required spectral efficiency. Additional sum rate constraints can

represent QoS for a traffic or user. If f(x) is convex and g(x) is concave, the

problem Q is called concave-convex fractional programing, providing that S is a

convex set [82]. However, such a problem can not be solved by convex programing

algorithm. One way to solve such problem is by representing the optimisation

problem by a parametric program [83].

Theorem 1. Solving problem min f(x)
g(x)

is equivalent to obtaining q∗ that makes

F (q) = min{f(x)− qg(x)} = 0, and thus q∗ = f(x∗)
g(x∗) is the optimum solution.

Proof: S ee Appendix A �

Therefore, according Theorem 1 problem Q can be related to

(Q̄) min
x∈S

f(x)− qg(x) (3.17)

s.t. h(x) ≥ 0; (3.18)

One can see x∗ is optimal for problem Q if and only if it is optimal for Q̄ with q∗

being the only zero of F (q) = max{f(x)−qg(x), x ∈ S}. It was shown in [80] that

F (q) is convex, continuous and strictly decreasing in q. There are various iterative
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algorithms available for ascertaining the root of F (q). Dinkelbach in [80] proposed

an iterative procedure that solves the equivalent parametric program i.e., Q̄, with

a sequence that converges to the optimal point with a fast convergence rate [84].

The algorithm terminates once the objective value of the problem Q̄ becomes

zero. The procedure of Dinkelbach is illustrated in Algorithm 1. It is worth

mentioning that Dinkelbach’s method is still valid for fractional problems with

objectives being maximised.

Algorithm 1 Dinkelbach algorithm

Compute q1 =
f(x0)
g(x0)

, x0 ∈ S, i = 1.

Find xi by solving problem Q̄

if F (qi) < δ then

q∗ ⇐ qi, x
∗ ⇐ xi, Stop.

end if

q∗ = f(xi)
g(xi)

, i = i+ 1, go to Step 2.

3.3.3 Energy-Efficient Algorithm

Form (3.9) one can see that f(x) ≡ (PC +
PX
η
) is convex because it is an affine

function whilst g(x) ≡ CX is concave [70]. Applying the Dinkelbach’s approach

to the energy-efficient optimisation problem, EE in this case will be equivalent

to q∗. This inspires us to propose an energy-efficient allocation algorithm which

is summarised in Algorithm 3. Step 2 represents the optimisation problem which

is convex and equivalent to Q̄. Hence, any binary LP-based solver, e.g., BaB

method, can be used in Step 2 to solve the optimisation problem (Q̄) for a given

q. The complexity of the algorithm depends completely on the optimisation

problem solver in Step 2 and how many iterations it takes to converge to q∗.
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Algorithm 2 Energy-efficient subcarrier and bit allocation

Require: q∗ ⇐ q(0), j ⇐ 0.

1: while q∗ 	= ∞ do

2: Find X∗ by solving the problem min{(PC +
PX
η
)− q∗ ×CX} problem

3: Z =(PC +
PX∗
η

)− q∗ ×CX∗, j = j + 1

4: if |Z| < δ then

5: Return q∗ &X∗.

6: else if j > MAX then

7: X∗ ⇐ 0T , q∗ ⇐ ∞ {consider this solution infeasible}
8: else

9: q∗ =
(PC+

PX∗
η

)

CX∗

10: end if

11: end while

12: Allocate the resources according to X∗.

13: EE = q∗.

3.4 Simulation Results and Discussions

This section evaluates the proposed energy-efficient algorithm and presents the

simulation results. The simulator has a single cell with a radius of 1 km. LTE-

Advanced frame structure, as standardised by 3GPP Release 8, is adopted with

blocks of 12 contiguous subcarriers in frequency domain and 14 OFDM symbols

in the time domain [85]. Hence, the data transmissions are scheduled every 1 ms

using 10MHz bandwidth. The simulation results presented in this paper are

averaged over 1000 different channel conditions. The bandwidth of each sub-

channel is equal to 180 kHz. The channels are subject to path-loss, log-normal

shadowing with standard deviation of 8 dB, and a frequency-selective fading with

6 taps. The path loss model is calculated by [86],

L[dB] = 136 + 37.6× log10(d) (3.19)

where d is the distance between a user and the BS, in km. The BER is fixed

to 10−4 in all examples. The circuit power PC is 23 Watt and η = 0.38.
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Fig. 3.2 illustrate how the energy consumption increase with the increases in the

spectral efficiency, against different user’s QoS requirements. The number of sub-

channels is 15 and shared by 4 users. The users are distributed uniformly at the

cell edge. The total transmit power is equal to 43dBm. As it can be shown, for

a given required QoS, the increase in the spectral efficiency has no impact on the

energy consumption until reaching a specific spectral efficiency point of which the

energy efficiency starts increasing. This is because, below this point, the energy

consumption is stable to satisfy the QoS requirement of each user and that does

not break (3.4). However, beyond this certain spectral efficiency point, the QoS

is more than adequately compensated by the spectral efficiency, and we can see

an increase to energy consumption. This is also the reason why the gaps between

energy consumption tend to be small at high spectral efficiency for different QoS

requirements because the constraint on the spectral efficiency is dominant and

can satisfy the user’s QoS requirement.
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Figure 3.2: System spectral-energy efficiency trade-off against different user’s

QoS (S=15, K=4, and PT=43dBm).
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Figure 3.3: Energy efficiency vs. the number of users (S=32, Rmin=1 Mbps and

PT=43dBm).

Fig. 3.3 depicts the energy efficiency as a function of the number of active users

in the cell. The number of sub-channels is assumed to be 32 and Rmin is equal

1 Mbps. Here, the users are being distributed uniformly in each snapshot. Also,

it has been assumed that the BS has an advanced CPU with high computational

performance per watt. Thus, the CPU power consumption has a minor impact

on the total power consumption for a moderate number of users. The power con-

sumption of channel feedback overhead has not been considered in this analysis.

As it is clearly shown, increasing the number of users results in decreasing the

consumed energy per bit due to multi user diversity gain. It can also be noticed

that with a greater number of users, a smaller amount of energy is required to

double the spectral efficiency.

Fig. 3.4 compares the energy efficiency as a function of the distance between the

BS and users for two spectral efficiency and different user’s QoS requirements.

The number of users and the number of sub-channels are assumed to be 5 and 20

respectively. The energy efficiency are approximately the same for the two given

spectral efficiency when the users are near the BS. The difference between energy

efficiency for the two spectral efficiency increases when the users are far from the

BS full power is transmitted in the case of the highest spectral efficiency.
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Figure 3.4: Energy efficiency vs. the distance between the BS and users (S=20, K=5,

and PT=43dBm).

3.5 Chapter Summary

This chapter has studied the sub-channel and bit allocation scheme to minimise

the energy per transmit bit for MU in an OFDMA system. It has explained

how the optimisation problem with the energy efficiency objective function can

be reformulated to an non-fractional function. It also has proposed an iterative

algorithm to find the optimum resource allocation that gives the minimum en-

ergy efficiency for given spectral efficiency whilst maintaining the user’s QoS and

without breaking the total power constraint.
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Chapter 4
Spectral-Energy Efficiency Trade-off of

Cellular System with Mobile Femtocell

Deployment

4.1 Introduction

Heterogeneous network (HetNet) deployments are seen as a promising solution for

cellular operators to improve indoor coverage and increase the spectral efficiency

with low OPEX [87]. In fact, HetNet is considered crucial for mobile data offload-

ing and will become an essential part of the next-generation cellular systems [88].

One key component in HetNet is femtocell technology. Femtocells are low range,

low power mobile BSs that improve the coverage inside a home or office build-

ing [89]. They use broadband networks as backhaul to carry the traffic to the

operator’s data centre. Femtocell technology has proven its excellent capability

of grabbing the indoor traffic from the macrocell layer and thus enables the latter

to focus its attention toward outdoor traffic. Moreover, femtocell technology is

considered as an energy-efficient solution due to its ability to achieve high data

rate with low transmitted power due to the short distances toward its users [90].

Public vehicles, e.g., trains and buses, are moving hotspots with many people

potentially requesting diverse data services, e.g., web browsing, video streaming,
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and gaming. Users inside a moving vehicle may execute multiple handovers at the

same time causing a significant increase in signalling load and high connection

failures in the network. Furthermore, the vehicle may have high penetration loss

through its metallic enclosure, resulting in a poor network connection. Therefore,

it is important to minimise the signalling load and drop calls within a fast moving

vehicle whilst providing a better internet experience on the move. To this end,

adopting femtocell technology inside a vehicle have inspired us to propose a new

concept called MFemtocell [91].

4.1.1 Mobile Femtocell

MFemtocell is a mobile small cell that can dynamically change its connection to

the operator’s CN. The MFemtocell can be deployed on public transport buses,

trains, and even private cars. The implementation of MFemtocells can poten-

tially benefit cellular networks. For instance, they can contribute to signalling

overhead reduction in the network and improve the system performance [92]. The

MFemtocell can also perform handover on behalf of all its associated users. This

would reduce the number of handover attempts as the users move between cells in

the network, especially in high speed mobility environment. Because of the short

communication range with the MFemtocell, the battery life of associated users

would increase significantly. Moreover, since the MFemtocells are located inside

vehicles with antennas located outside the vehicle, this setup improves the signal

quality inside the vehicle by avoiding the penetration loss. In addition to that,

a larger number of antennas can be utilised at the MFemtocell with significant

diversity/multiplexing gain. Last but not least, the MFemtocell is multi-operator

friendly, meaning that the MFemtocell is able to tunnel the traffic of users, which

may belong to different operators, through dedicated backhaul.

Various research efforts were made to study and appraise the operation of MFem-

tocell deployments [93–99]. In [93], the authors studied the performance advan-

tage of using MFemtocell by communicating with the macro BS to improve and

extend coverage for users. The potential advantages of using moving cells to
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boost performance for UEs in transit vehicles were highlighted in [94]. The au-

thors of [95] proposed the deploying mobile small cells to improve the uplink

performance for users within vehicles. The work of [96] investigated the outage

performance in the presence of MFemtocells, and discovered that the outage can

also be improved in a high speed mobility environment by using MFemtocells.

The work of [98] introduced a scheduling algorithm that aims to provide seamless

multimedia service within high-speed trains by using small cells onboard. The

work of [99, pp. 53–73] investigated an appropriate precoder at the MFemtocell

in the vehicle to overcome the degraded performance of the received signal in

outdoor wireless links. The proposed precoded helps in extracting the underly-

ing rich multi-path Doppler diversity inherited in this type of double-selective

fading link. To utilise the MFemtocell to its full advantage, one must overcome

challenges such as finding the most reliable backhaul to carry the traffic between

the CN and MFemtocells’ users, developing a strategy for sharing the spectrum

between the macro BS and MFemtocells, and optimising spectral and energy ef-

ficiency. One way to achieve this is to use the standardised cellular air interface

as a backhaul link, thus creating a similar situation to the concept of the mobile

relay [100]. In this case, an MFemtocell behaves as a femtocell when serving its

users and as a regular user when communicating with the macro BS. Further-

more, the traffic of users within an MFetmocell can be treated as an SU traffic

when sending to or receiving from the MFemtocell over the air interface. MFem-

tocell is also able to adopt other backhaul methods for carrying the traffic such

as using a different RAT (e.g., Wi-Fi [97] or satellite) on a different spectrum.

These options will enable more reliability in case that the serving macro BS is

broken down due to failures and/or high congestion. Under these failure situ-

ations, a group of MFemtocells within close proximity will be able to create a

new network layer and by adopting different backhaul methods the system can

maintain the connectivity between the CN and the users. This offers a solution

to the challenge that is posed during an emergency situation where the standard

networks are jammed.

Regarding the second challenge of how to share the spectrum between the macro
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BS and MFemtocell, we can examine the research that have studied femtocell-

based cellular systems. In this context, the femtocell can share the same spectrum

with macro BS (i.e., non-orthogonal transmission scheme) or utilise a dedicated

spectrum (i.e., orthogonal transmission scheme) [101–104]. Using the same spec-

trum would improve spectrum utilisation but contribute to additional interference

for indoor and outdoor users. In an orthogonal transmission scheme, the femto-

cell uses a dedicated spectrum band that is not used by macro network. This

mode eliminates the mutual interference between femtocell and macro BS, i.e.,

intra-cell interference. However, additional spectrum resources are required and

this may have a negative impact on the spectrum utilisation.

To the best of our knowledge, no existing work has investigated the spectral and

energy efficiency in MFemtocell networks. Therefore, our main contributions of

this Chapter are summarised as follows:

1) The investigation of the spectral-energy efficiency trade-off for MFemtocell

networks. Closed form expressions for the relationships between the en-

ergy efficiency and the spectral efficiency are derived in low and high SNR

regimes for an SU MFemtocell with two different resource partitioning (i.e.,

orthogonal and non-orthogonal) schemes.

2) We also present a spectral efficiency analysis of MUMFemtocells with OFDMA-

based spectrum reuse and opportunistic scheduling schemes.

The rest of this chapter is organised as follows. Section 4.2 describes the MFemto-

cell system model and explain two resource partitioning schemes. In Section 4.3,

the relationship between the energy efficiency and spectral efficiency is analysed

for an SU MFemtocell network with two different resource partitioning schemes.

Section 4.4 investigates the spectral efficiency of an MU MFemtocell network

with MUs and opportunistic scheduling schemes. Finally, Section 4.5 concludes

the chapter.
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4.2 Mobile Femtocell System Model

Let us consider an MFemtocell-assisted cellular network shown Fig. 4.1 with

a single BS, multiple MFemtocells, and multiple users. The MFemtocell set

is denoted by J = {1, · · · , J}. The total of K users, given by the set K =

{1, · · · , K}, are divided into two categories: direct transmission and access users.

Let N d = {1, · · · , Ud} denote the set of users that communicate directly with

the BS. Furthermore, there is the set Mj = {1, · · · , Ua
j } of access users which

communicate with MFemtocell j {j ∈ J }. Both Ua
j and Ud can be variables,

however,
∑J

j=1U
a
j + Ud = K. The index of the BS is assumed to be zeros and

therefore omitted from the analysis. We assume a relaying-based backhauling in

which the MFemtocells are using the same standardised air interface to carry the

traffic from the BS. The terms backhaul link, access link, and direct link are used

to denote BS-MFemtocell, MFemtocell-user, and BS-user links, respectively.

BS
user1

user2

user3

MFemtocell1

MFemtocell2
Direct link

Backhaul link

Access link

MFemtocellJusMFemtocell

user1
user2

MMMMMMMF ll

user1
user2

MF t ll

user1
user2a

jU
user

d
U

user

a
jU

user

a
jU

user

Figure 4.1: System model: a single cell with multiple MFemtocells and users.

We assume that the backhaul, access, and direct links all experience non-line-of-

sight (NLoS) Rayleigh block fading channels, which are kept constant within a

sub-frame and change independently in the following sub-frame. We also assume

that the backhaul link has a gain G over the direct link. This gain can be achieved
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by using a highly directional antenna pattern as well as pointing MFemtocell’s

antenna toward the BS.

4.2.1 Resource Partitioning Schemes

By adopting the MFemtocell, the spectrum has to be allocated (or reused) among

different links, i.e., the backhaul, direct, and access links. It is essential to de-

sign an efficient resource partitioning policy in the MFemtocell-enhanced system

to improve the performance of the whole system. We assume a time division

relaying-based backhualing scheme, in which the transmission to end users oc-

curs in two time periods. Each time period contains a specific number of time

slots. The BS will transmit traffic to MFemtocells over backhaul links in the first

time period. In the second time period, the BS and MFemtocell are communi-

cating simultaneously to the direct transmission and access users, respectively,

using either orthogonal or non-orthogonal transmission scheme. The two resource

partition policies are explained as follows:

� Orthogonal resource partitioning scheme In this scheme, the radio resources

allocated to the backhaul, direct, and access links are all orthogonal either

in the time or frequency domain and hence there is no intra-cell interference

from the BS to MFemtocell users and vice verse. In this scheme, a fraction φ

(0 < φ <1) of the spectrum is allocated exclusively for direct transmissions

whilst the rest of the spectrum is allocated to the access transmission, as

presented in Fig. 4.2 (a). The interference from an MFemtocell to access

users of other MFemtocells can be negligible or considered as background

noise. This is because signals that come from an MFemtocell should travel

through at least two metallic enclosures to reach the other MFemtocell users.

The instantaneous faded SNR for the direct transmission user n {n ∈ N d}
and access user mj {mj ∈ Mj} can be calculated by

γd(n) =
|hd(n)|2PBS

BN0
, n ∈ N d (4.1)
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γa(j,mj) =
|ha(j,mj)|2PMF

BN0
, mj ∈ Mj (4.2)

respectively, where hd(n) and ha(j,mj) are complex-valued channel gains

over the direct link and access link, respectively, PBS and PMF are the BS

and MFemtocell transmit powers, respectively, B is the system bandwidth,

and N0 is noise spectral density.

BS MFemtocell

time

MFemtocell UEa

fr
eq

ue
nc

y

(a) Orthogonal resource partitioning scheme
T1 T2

BS MFemtocell

time

MFemtocell UEa

(b) Non-orthogonal resource partitioning scheme

BS UEd

BS UEd

fr
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ue
nc

y

T1 T2

1-Ø

Ø

Figure 4.2: Resource partitioning schemes.

� Non-orthogonal resource partitioning scheme In this scheme, the radio re-

sources are reused by the direct and access links, as it is shown in Fig.

4.2(b). However, the radio resources are still orthogonally allocated between

backhaul and direct links and between backhaul and access links. Non-

orthogonal mode means that there will be intra-cell interference to the ac-

cess and direct transmission users due to the simultaneous transmissions

from MFemtocell and the BS on the same spectrum. The advantage of this

scheme is the improvement in resource utilisation compared to the orthogo-

nal scheme. In addition, this scheme gives the flexibility to implement radio

resource management (RRM) at the BS and the MFemtocell independently.

The instantaneous received signal to interference plus noise ratio (SINR) for
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a direct transmission user, denoted by γ́d(n), can be calculated by

γ́d(n) =
|hd(n)|2PBS

I +BN0

, n ∈ N d (4.3)

where I is the intra-cell interference generated from all the MFemtocells.

This type of interference can be scaled down significantly by the indoor

penetration loss as well as by constraining the transmit power within the

MFemtocell using a directive antenna. On the other hand, the received

SINR for an access link user is given by

γ́a(j,mj) =
|ha(j,mj)|2PMF

|hd(mj)|2PBS +BN0

=
γa(j,mj)

γd(j,mj) + 1
, mj ∈ Mj. (4.4)

So, γ́a(j,mj) can be characterised by the instantaneous SNR received from

an MFemtocell, γa(j,mj) in (4.2), and the achieved SNR if the same user

is served by the BS instead, i.e., γd(j,mj). Again, the interference between

MFemtocells is negligible or considered as background noise. Now, if we

assume that the distance between an MFemtocell and the BS and the dis-

tance between the MFemtocell’s users and the BS are approximately the

same, then (4.4) can be re-written as

γ́a(j,mj) ≈ γa(j,mj)
γb(j)
G

+ 1
, m ∈ Mj (4.5)

where G is the backhaul gain over the direct transmission link. In (4.5),

γb(j) is the SNR for a backhaul channel of MFemtocell j and can be calcu-

lated by

γb(j) =
|hb(j)|2PBS

BN0

, j ∈ J (4.6)

where hb(j) denotes the complexed-value channel gain of the backhaul link

for MFemtocell j.
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4.3 Spectral-Energy Efficiency Trade-off for an

SU MFemtocell

In this section, the spectral-energy efficiency trade-off is studied for an SU MFem-

tocell network in low and high SNR regimes. The system we are interested in here

consists of the BS, a single MFemtcell and a user. For notational convenience,

the user and MFemtocell indexes will be omitted as well since we are dealing with

SU performance. The channel gains will be denoted by hd, hb, and ha for direct,

backhaul, and access links, respectively. The energy efficiency here is defined as

the required energy per bit (in joule per bit) normalised to the background noise

spectral level,
(

Eb

N0

)
, for reliable communication. The spectral efficiency refers to

the number of bits per second transmitted over a given bandwidth (in bps/Hz).

The MFemtocell will receive the data in the T1 and then transmit the data again

to user in the T2. For simplicity and without lost of generality, both T1 and T2

are assumed to be equal to one time slot. In the interest of making a fair com-

parison, the total bandwidth and the transmit power are set to be the same for

cases with or without MFemtocell deployment. Thus, the total transmit power P

over the two time slots is shared between the BS and MFemtocell. The transmit

power from the BS is then given by

PBS = αP (4.7)

and the remainder power, PMF, will be allocated to the MFemtocell and is given by

PMF = (1− α)P (4.8)

with α is a ratio, i.e., (0 ≤ α ≤1). Therefore, in the case where no MFemtocell

deployment, the BS able to serve users with full transmit power, i.e., α = 1. In

addition to that, it has been assumed that the same size of bandwidth is used in

T1 and T2.

4.3.1 Low SNR regime

� Direct transmission scheme:
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Let us first analyse the required normalised energy per bit for direct transmission

scheme that will be used later as a reference. Here we assume that BS is com-

municating directly with a user without the assistance of MFemtocell. For direct

transmission scheme with a Rayleigh fading channel, the relationship between(
Eb

N0

)
and the direct spectral efficiency Cdirect is given by

(
Eb

N0

)direct

dB

≈ −1.59 + 10 log10(Ad) + 3Cdirect (4.9)

where Ad denotes the mean power of the direct transmission channel.

Proof. See Appendix B.

� Orthogonal scheme:

In this scenario, we assume that a user is communicating with the MFemtocell

rather the BS. However, the MFemtocell will receive and buffer the data in T1

from the BS and serve the user in T2. In this case, the required
(

Eb

N0

)
to achieve

the spectral efficiency of orthogonal scheme, Corthg, in the low SNR regime can

be given by (
Eb

N0

)orthg

dB

≈ 10 log10

(
2 ln 2

αGAd

)
+ 2Corthg × 10 log10 2 (4.10)

where α (0 < α < 1) denotes a fraction of the total transmit power available for

orthogonal transmission. In (4.10) Ab = GAd represents the mean power of the

backhaul channel.

Proof. See Appendix C.

� Non-orthogonal scheme:

In the scenario two uses are receiving data in T2, one with single MFemtcell and

another directly with the BS. For a fair comparison, the BS transmit power is also

shared equally between the MFemtocell and the direct transmission user. The
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required
(

Eb

N0

)
to achieve the spectral efficiency, Cnon-orthg, for non-orthogonal

scheme in the low SNR regime is given by(
Eb

N0

)non-orthg

dB

≈ 10 log10

(
max

{
4 ln 2

(αG+ 1)Ad

,
2 ln 2

(1− α)Aa + Ad)

})
+

3(G2α2 + 1)κ(|hd|)
(Gα+ 1)2

Cnon-orthg (4.11)

where Aa denotes the mean power of the access channel.

Proof. See Appendix D.

4.3.2 High SNR regime

� Direct transmission scheme:

The dependence between
(

Eb

N0

)
and Cdirect for the direct transmission link with

the absence of the MFemtocell can be calculated by(
Eb

N0

)direct

dB

≈ Cdirect10 log10 2− 10 log10(C
direct) + 2.5067 + 10 ln(Ad). (4.12)

Proof. See Appendix E.

� Orthogonal scheme:

Assuming that the user is within close proximity to the respective MFemtocell,

then the relationship between
(

Eb

N0

)
and Corthg is characterised by

(
Eb

N0

)orthg

dB

≈ Corthg10 log10 2− 10 log10(C
orthg)

+

(
− log2(2αGAd) +

Υ

ln 2

)
10 log10 2

(4.13)

where Υ is the Euler-Mascheroni constant.

Proof. See Appendix F.
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� Non-orthogonal scheme:

Again, we assume here there are two users served by the BS and an MFemto-

cell at T2. The total power transmitted in the both time slots is limited to P .

The relationship between
(

Eb

N0

)
and Cnon-orthg in the high SNR regime is then

characterised by(
Eb

N0

)non-orthg

dB

≈ Cnon-orthg10 log10 2− 10 log10(C
non-orthg)

+

(
−0.5 log2(αGAd) +

Υ

ln 2

)
10 log10 2. (4.14)

Proof. See Appendix G.

4.3.3 Simulation Results and Discussions

To verify the derived equations with different resource partitioning schemes, we

performed simulations with a single BS, an MFemtocell, and two users. The

distance between the MFemtocell and its user is much smaller than the distance

between the MFemtocell and the BS. The macrocell user or direct transmission

user was placed far away from the MFemtocell so that the interference from the

MFemtocell to the direct transmission user can be neglected or considered as

background noise. In the non-orthogonal scheme, both users can receive data

from the MFemtocell and BS. Both Ad and Aa are equal to 1 while backhaul

gain G is equal to 8 dB. Furthermore, α is equal to 70% for orthogonal and non-

orthogonal schemes.

Fig. 4.3 presents the spectral-energy efficiency trade-off for the direct, orthogonal,

and non-orthogonal schemes. In the low SNR regime, the orthogonal partitioning

scheme provides better energy efficiency (i.e., needs less energy) than both the

non-orthogonal partitioning scheme and direct transmission scheme with the same

spectral efficiency. However, the gap between the orthogonal and non-orthogonal

partitioning schemes starts to decrease as we move to the high SNR regime. The

decrease in the gap is due to the fact that the slope of the orthogonal scheme
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Figure 4.3: Spectral efficiency vs. energy efficiency for an SU MFemtocell with or-

thogonal and non-orthogonal resource partitioning schemes.

is less than the slope of the non-orthogonal scheme. We can also notice that

the direct transmission scheme has better energy efficiency than the orthogonal

partitioning scheme when the spectral efficiency is more than 3 bps/Hz. This is

because when the underlying channel condition is good (high spectral efficiency),

it is more energy efficient for the BS to transmit signals directly to a user with one

time slot rather than to transmit to a user with an MFemtocell. Furthermore,

in both SNR regimes, the non-orthogonal partitioning scheme provides better

spectral efficiency than the direct transmission scheme with the same energy con-

sumption because of the spectrum sharing between the BS and the MFemtocell.

As we can see, the simulation results match well the derived closed-form expres-

sions in high and low SNR regimes.

The maximum spectral efficiency can be achieved when backhaul spectral effi-

ciency, Cb, and the access spectral efficiency, Ca, are equal. In this case, the

optimum value for the power fraction α∗ can be calculated according to

α∗ =
|ha|2

|ha|2 + |hb|2 . (4.15)

Hence, the spectral efficiency can be enhanced by using the optimum power frac-

tion to allocate the power between the BS and the MFemtocell. Fig. 4.4 depicts

the spectral-energy efficiency trade-off for the two partitioning schemes using the
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optimum and fixed power allocation schemes. We can see that in the case of the

orthogonal scheme, there is a 3 dB improvement in the energy efficiency by using

the optimum power allocation compared with using the fixed power allocation.

Furthermore, the slope of the spectral efficiency for the orthogonal scheme is not

changed in both power allocation mechanisms. This is due to the fact that the

slope does not depend on the power fraction α. We can also notice that when

the spectral efficiency is less than 4 bps/Hz, the non-orthogonal scheme provides

better energy efficiency by adopting the optimum power allocation scheme rather

than adopting the fixed power allocation scheme. However, when the spectral ef-

ficiency is larger than 4 bps/Hz, the non-orthogonal scheme needs more energy to

achieve a given spectral efficiency by using the optimum power allocation scheme

compared with using the fixed power allocation scheme. This is due to the fact

that there is strong intra-cell interference from the BS to the users.
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onal and non-orthogonal resource partitioning schemes having different power control

schemes.
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4.4 Spectral Efficiency Analysis for MU MFem-

tocells with Multi-User Scheduling

In this section, we consider an MU MFemtocell network with one BS (single cell),

multiple MFemtocells and multiple users. The spectrum is split into orthogonal

resource blocks (RBs) for OFDMA-based cellular systems. These RBs are shared

by different users by using opportunistic resource allocation in both frequency and

time domains. Multiuser scheduling is assumed here where the macrocell users

and MFemtocells are served over S RBs (or sub-channels), indexed by s=1,...,S,

based on the well-known MAX-SINR and proportional fairness (PF) scheduling

policies [105]. The BS and all MFemtocells transmit with fixed power per RB. To

support the opportunistic scheduling, the BS gathers the channel quality indi-

cator (CQI) from all users and MFemtocells. The users within an MFemtocell

will feedback this information to the MFemtocell only. By using the MAX-SINR

scheduler, the BS will assign a RB s to a user n having the highest instantaneous

rate at a sub-frame t. i.e.,

n̄s = argmax
n∈N d

Rn(t, s), s = 1, ..., S (4.16)

where Rn(t, s) ∝ γn(D)
(t, s) in the orthogonal scheme (or γ́n(D)

(t, s) in the non-

orthogonal scheme) is the instantaneous achievable rate on RB s for a user n

and argmax f is an operator that gives the index at which the vector f has the

maximum value. In the PF scheduling case, the scheduler allocates the RB s to

a user n ∈ N d according to the following criterion:

n̄s = argmax
n∈N d

Rn(t, s)

R̄n(t)
s = 1, ..., S (4.17)

where R̄n(t) is the average delivered rate in the past, measured over a fixed

window of observation. It can be calculated using an average filtering [105],

which will be updated using the following formula

R̄n(t) = (1− 1

T
)R̄n(t− 1) +

1

T

S∑
s=1

Rn(t, s) Īn(t, s) (4.18)
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where T is the time window constant, Īn(t, s) is a binary indicator that is set to

1 if user n is scheduled on RB s at time t and to 0 otherwise.

The communication over the BS-MFemtocell links takes place over a dedicated

time-frequency zone, as shown in Fig. 4.2 (a) and Fig. 4.2 (b). Moreover, the

same scheduling algorithm is used for the BS to schedule MFemtocells and direct

transmission users. Within the jth MFemtocell, it is assumed that the users (Mj)

are served according to round-robin policy. In case of the orthogonal scheme,

it is assumed that a fraction of the spectrum φ, 0 < φ <1, is allocated exclu-

sively for direct transmissions in the second portion of the time, as shown in

Fig. 4.2(a). Whereas in the non-orthogonal scheme, the BS and MFemtocells can

utilise the whole spectrum to serve their users, as shown in Fig. 4.2(b).

The achievable spectral efficiency on the direct transmission link on time t can

be calculated by

Cd(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2B

∑
n∈N d

φS∑
s=1

Rn(t, s) Īn(t, s), orthogonal

1
2B

∑
n∈N d

S∑
s=1

Rn(t, s) Īn(t, s), non orthogonal.

(4.19)

The achievable spectral efficiency on the access link can be given by

Cj
a(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2B

∑
mj∈Mj

(1−φ)S∑
s=1

Rmj
(t, s) Īmj

(t, s), orthogonal

1
2B

∑
mj∈Mj

S∑
s=1

Rmj
(t, s) Īmj

(t, s), non orthogonal

(4.20)

where Rmj
(t, s) is the instantaneous achievable rate for an access user mj . How-

ever, the rates on access link between MFemtocells and their users are truncated

by the achievable spectral efficiency of the backhaul link for MFemtocell j, i.e.,

Cj
b(t) =

1

2B

S∑
s=1

Rj(t, s) Īj(t, s) (4.21)

where Rj(t, s) is the instantaneous achievable rate over the backhaul link for an

MFemtocell j. As a result, the total system spectral efficiency (in bps/Hz/cell)
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after allocating all RBs to the selected users, including MFemtocell users, can be

calculated according to

Csys(t) =

J∑
j=1

min[Cj
b(t− τ), Cj

a(t)] + Cd(t) (4.22)

where τ is the time required to decode, buffer, and re-encode the incoming data

from the backhaul links. The first term in (4.22) stands for the achievable spectral

efficiency of data flow from the BS to users through an MFemtocell and the second

term represents the spectral efficiency for direct transmission users. To get an

efficient resource usage for MFemtocell deployment, the spectral efficiency over

the backhaul and access links should be equal, i.e., Cj
b(t− τ) = Cj

a(t). It is worth

mentioning that to improve the spectral efficiency, another form of spectrum reuse

scheme can be adopted. For example, multiple MFemtocells can use a common

set of sub-channels simultaneously to serve their users. Both orthogonal and non-

orthogonal resource partitioning schemes can benefit from MFemtocell spectrum

reuse to improve spectral efficiency. This can only work, however, if multiple

MFemtocells are located large distances apart or the coverage of each MFemtocell

is limited to a small area by using a directive antenna.

4.4.1 Simulation Results and Discussions

The performance of the MFemtocell in the cellular system is evaluated in this

section. A frequency-selective fading channel with 6 taps is used. Without loss

of generality, The LTE frame structure is considered, which consists of blocks of

12 contiguous sub-carriers in the frequency domain and 7 orthogonal frequency-

division multiplexing (OFDM) symbols in the time domain. One sub-frame (1

ms) is regarded as a scheduling period. Dynamic system level simulator which is

compliant with 3GPP LTE specification [106] is used. The simulations are based

on the Monte Carlo method, which consists of multiple snapshots. In each snap-

shot, the direct transmission users are distributed randomly and independently

within the coverage of the BS. In addition to that, each snapshot having 20000

65



Chapter 4: Spectral-Energy Efficiency Trade-off of Cellular System with
MFemtocell Deployment

sub-frames, which are divided into units of 10. Each 10 time slots are further di-

vided equally so that the first 5 time slots are allocated to the T1 and the second

5 time slots are allocated to the T2. The carrier bandwidth is fixed at 10 MHz

with 50 RBs. All users are equipped with a single antenna while the MFemtocells

have two antennas working in diversity mode. A full BS buffer is considered where

there are always buffered data ready for transmission for each node. The users

inside an MFemtocell experience 5 dB penetration loss when receiving a signal

from the BS. Other relevant simulation parameters are summarised in Table 4.1.

Table 4.1: MFemtocell Simulation Parameters.

Parameter BS-MFmeto BS-user MFemto-user

Antenna height (m) 20 20 2

Shadowing (dB) 8 8 4

Antenna gain (dBi) 18 18 5

Bandwidth (MHz) 10 10 10

Transmit power (dBm) 46 46 35

Spectrum sharing (φ) 100% 50% 50%

Time sharing 50% 50% 50%

Distance D (m) ≥40 ≥50 ≤15

path loss (dB) 128.1 + 37.6 log10
(

D
1000

)
128.1 + 37.6 log10

(
D

1000

)
127 + 30 log10

(
D

1000

)

Fig. 4.5 compares the average spectral efficiency of the orthogonal and non-

orthogonal partitioning schemes using MAX-SINR and PF scheduling algorithms

in an MFemtocell-enhanced system as a function of a percentage of users that

associate with MFemtocells. Here, it has been assumed that the total number

of users, K, and MFemtocells, J , are assumed to be 50 and 3, respectively. The

MFemtcells are mounted inside buses which carry 10 users each. The MFemto-

cells are distributed randomly within the coverage of the BS in each snapshot.

Regardless of using either orthogonal and non-orthogonal partitioning schemes,

adopting the concept of the MFemtocell has a positive impact on the overall

spectral efficiency. In addition to that, increasing the percentage of users that

communicate through the MFemtocell leads to an increase in the overall spectral

efficiency in comparison with the case where all the users are communicating
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Figure 4.5: Average spectral efficiency of MU MFemtocells with multi-user scheduling

and resource partitioning schemes (K=40, S=50, PBS=46 dBm, PMF=35 dBm, G =8

dB).

directly to the BS, i.e., Ud = K. This is because of the MU diversity gain,

offered by opportunistic scheduling for users and the MFemtocells, as well as

the backhaul gain over the direct transmission that the MFemtocell can offer.

The simulation results demonstrate that there is a better spectral efficiency gain

which can be achieved through sharing the spectrum between the BS and the

MFemtocell in the same cell in the case of non-orthogonal transmission scheme.

Although, the access users experience additional interference contributed from

the BS, however, their performance does not get impacted in a noticeable way

since they have a good quality channel to the MFemtocell station with high sig-

nal power. We can consider the spectral efficiency with the MAX-SINR scheduler

as an upper bound performance for MFemocell systems because the BS always

selects an MFemtocell and/or a user which has the best channel condition. How-

ever, it is noticeable that the gap between the MAX-SINR and PF scheduling

algorithms in the non-orthogonal partitioning scheme is much larger than that

in the orthogonal partitioning scheme. Although MAX-SINR scheduling gives a

more consistent performance, it is at the cost of degrading the performance of

cell-edge users. It is very important that MFemtocell deployment does not com-
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promise the performance of the direct users, thus PF scheduling is more suitable

in this case.

Fig. 4.6 depicts the system spectral efficiency of the two partitioning schemes as

functions of transmit power of the BS. Here, we assume that there is one MFem-

tocell which is located 200 m distance apart from the BS and carries traffic for

10 users. There are also 40 direct transmission users which are randomly located

within the coverage of the BS. We can notice that both schemes provide better

performance, as compared to the direct transmission reference system. However,

when the BS transmit power is sufficiently high , i.e., when PBS

BN0
is larger than

14 dB, the direct transmission scheme offers better spectral efficiency than the

orthogonal partitioning scheme. This is due to the fact that in the high SNR

regime, it is worth transmitting directly to a user using one time slot rather than

using two time slots through an MFemtocell. This also means that the orthogonal

partitioning scheme may not be suitable when the MFemtocells are moving near

the BS.

In wireless communication systems, the BS will require some information from

the end users in order to allocate the radio resources efficiently or make handover

operation. The end users in LTE cellular systems, for instance, are needed to

feed back
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their downlink channel quality to the BS to support the channel-dependent schedul-

ing and link adaptation. This information is forwarded to the BS over dedicated

uplink control signalling channels. More control signalling means more sacri-

fice in system performance. As mentioned earlier, the MFemtocell can decrease

significantly the uplink control signalling information of the direct transmission

users. To demonstrate this fact, we analyse the uplink control signalling over-

head in LTE cellular systems with and without MFemtocell deployment. The

signalling overhead is the percentage of required control signalling with respect

to the reference direct transmission. Here, we use discrete adaptive modulation

schemes including quaternary QPSK, 16-QAM, and 64-QAM. Each modulation

scheme with a different coding rate is supported when the uplink SNR is above a

predefined SNR threshold. The SNR thresholds have been taken from [107]. The

size of the control signal in unit of symbol/sub-frame is determined by [107]

Zctrl =

[
Nsys × CR

Mmod

]
(4.23)

where Nsys, Mmod, and CR are the number of control signalling bits, bit per sym-

bol, and the coding rate of the selected modulation and coding scheme (MCS),

respectively. Fig. 4.7 presents the reduction in the control signalling in the uplink

backhaul link as a function of the number of users, within a vehicle, that commu-

nicate through an MFemtocell. As it is clearly shown, the greater a percentage of

users that register to an MFemtocell, the greater a reduction in the control sig-

nalling overhead, compared with that of the reference direct transmission scheme,

i.e., 0% of users communicate through an MFemtocell. Thus, with MFemtocell

deployment, all users within an MFemtocell only need to send their control sig-

nalling to the MFemtocell rather than to the BS. The MFemtocell will cut off

all these messages and send only its feedback to the BS. The control signalling

information between users and the MFemtocell does not add to the total system

control signalling overhead. The amount of reduction in signalling overhead can

then be replaced with useful data and hence improvement in the users and system

throughput. We can also notice that for any case of registered users, the control

signal overhead tends to be saturated after a certain number of users within the
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Figure 4.7: Normalised signalling overhead as a function of the number of users within

an MFemtocell (J=10, S=50).

MFemtocells. This is due to the fact that there is a limitation to the number of

users that can use the uplink control channel. In the case of 50% (or 80%) of

registered users, the control signalling overhead consists of the control signal that

comes from both the direct and access users.

4.5 Chapter Summary

This chapter has introduced the MFemtocell concept, which can be a potential

candidate for the 5G cellular system, and highlighted the advantages of this idea.

It has studied the performance of two resource partitioning schemes which can

be used for the MFemtocell deployed scenarios. In this context, the spectral

efficiency and energy efficiency for an SU MFemtocell system have been anal-

ysed first. The analysis has demonstrated the beneficial impact of using the

non-orthogonal scheme in both low and high SNR regimes. Following that, the

spectral efficiency of two resource partitioning schemes has been studied in the

presence of opportunistic scheduling in a system level with a multi user and multi

MFemtocell scenario. Finally, the performance of the MFemtocell deployment is

investigated in term of signalling overhead reduction.
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Spectral and Energy Efficiency Analysis

for Cognitive Radio Networks

5.1 Introduction

Radio spectrum refers to the electromagnetic spectrum that equivalents to radio

frequencies lower than around 300 GHz. It is employed to transmit information

using wireless communication media. Typically, radio spectrum is a precious and

rare resource. The spectrum allocation is regulated by government agencies, for

example, the federal communications commission (FCC) in the USA and the office

of communications (Ofcom) in the UK. Today, the radio spectrums are congested

and there are limited new spectrum bands available for commercial use. The

pattern in Fig. 5.1 indicates how overcrowded the spectrum allocation is in the

USA, and it is evident to even the casual observer that the radio spectrum has

been fully reserved. Despite this fact, FCC has revealed that a significant amount

of the radio spectrum in the United States is underutilised during the day [109].

Likewise, Ofcom has reported that the spectrum utilisation shows huge temporal

and spatial variations ranging from 15 to 85%, as it is indicated in Fig. 5.2. It is

generally agreed that the current policy of the spectrum usage is inefficient. The

fixed spectrum allocation and the exclusive use of the spectrum does not allow

us to exploit the spectrum to its full advantage.
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Figure 5.1: U.S. frequency allocations chart [108].

Figure 5.2: Spectrum occupancy measurements in a rural area (top), near Heathrow

airport (middle) and in central London (bottom) [109].
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By adopting an approach that is both dynamic and adaptable, it is possible then

to use the spectrum to a fuller potential. This ignited the research activities

to improve the usage of the highly sought-after radio spectrum and as a result,

the CR concept has been introduced [110, 111].

5.1.1 Cognitive Radio Technology

CR is an innovative radio technique that aims to utilise the radio spectrum more

efficiently by intelligently exploiting the licensed spectrum. Hence, a CR network,

i.e., secondary network, shares radio spectrum owned by a licensed network, i.e.,

primary network. The secondary network is authorised of dynamically and au-

tonomously adapting its radio operating parameters to coexist with the primary

network, providing that the performance primary network is protected or above

a certain level of quality. CR can be classified under two categories, namely

interference-free and interference-tolerant CR networks [112]. In the interference-

free CR networks, secondary transmitters (STs) can only use those spectrums

which are not occupied by PRs [113, 114]. The IEEE 802.22 working group has

chosen the interference-free CR mode as the enabling technique for the first stan-

dardised CR network, known as wireless regional area network (WRAN) [115].

Whereas in the interference-tolerant CR networks, the STs can share the whole

spectrum as long as the interference to PRs is kept below a threshold and with-

out causing any outage on primary network operation. If the aim is to apply an

interference-tolerant CR then information is required from the PR on how much

interference it can tolerate across the spectrum. This is known as the interference

temperature limit [116]. Therefore, it is essential that CR systems acquire the

interference temperature limit, in real time feedback, from the PRs. To this end,

some modification to the primary system is unavoidable. In this chapter, we focus

on the spectral and energy efficiency for the interference-tolerant CR networks.

There were various studies that analysed the spectral efficiency of CR networks

at the link level [117–120] as well as at the system level [24,121,122]. For SU CR

networks, the spectral efficiency for AWGN channels was derived in [117] under
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an assumption of average power constraint. In [118], the spectral efficiency of

a CR channel was analysed against various fading channel distributions. The

authors of [119] studied the spectral efficiency of a CR channel under different

power allocation policies. In [120], ergodic and outage capacities of CR channels

were evaluated under both peak and average interference power constraints. The

spectral efficiency for both the link level and system level cooperative CR net-

works was studied in [121]. However, the power control of STs did not consider

the interference threshold that the PRs can tolerate. In [122], the authors derived

the average throughput of a system level CR network and studied its asymptotic

behavior. However, the analysis was limited to a single PR. The spectral ef-

ficiency for hybrid CR networks was studied in [24] under average interference

power constraint. Hybrid CR allows a network to be simultaneously both pri-

mary and secondary networks, thus gaining the advantages of both networks.

Hybrid CR networks can be adopted in cellular networks to explore additional

bands and enhance the spectral efficiency. It is noticeable that all the afore-

mentioned studies focused on analysing the spectral efficiency but neglected to

study the spectral-energy efficiency trade-off which is an increasingly important

area nowadays. Therefore, our novel contributions in this chapter are summarised

as follows:

1) We compare the spectral-energy efficiency trade-off in the low and high

SNR regimes when transmitting a signal under average power constraint

with transmitting a signal under peak power constraint while keeping the

interference on PR below an acceptance level for both.

2) We propose a CR-based cellular network where a secondary network shares

a spectrum that belongs to an indoor system. The spectral efficiency for the

proposed network with multiple primary and secondary users is analysed

using extreme value theory. The analysis will highlight the impact of the

MU diversity gain of both the primary and secondary users on the achievable

spectral efficiency.

3) We evaluate the spectral-energy efficiency trade-off of CR-based cellular
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network using a general analytical framework all SNR values using peak-

power interference constraint. The framework takes into account the num-

bers of primary and secondary receivers, transmit power, and interference

threshold.

The remainder of this chapter is organised as follows. Section 5.2 describes the SU

model of the proposed study and study the resulting spectral-energy efficiency

trade-off, along with numerical results and discussions. The MU CR spectral

efficiency and energy efficiency of multiple cognitive links are subsequently derived

in Section 5.3. Finally, summary of the chapter is drawn in Section 5.4.

5.2 SU CR Spectral-Energy Efficiency Trade-off

In this section, we consider an SU CR channel. It consists of an interference-

tolerant secondary transmitter-receiver pair that shares a spectrum with a pri-

mary transmitter-receiver pair [118–120], as it is shown in Fig. 5.3. We assume a

point-to-point flat fading channel that is corrupted by AWGN. All nodes in this

model are assumed to be equipped with a single antenna. The channel between

the ST and secondary receiver (SR) is defined as the cognitive channel, while the

channel between the ST and the PR is defined as the interference channel. The

cognitive and interference channel gains are denoted by gc and gi, respectively.

They are random variables drawn from an arbitrary continuous distribution with

an expected value of unity and they are mutually independent. The ST is as-

sumed to have perfect knowledge of the instantaneous CSI for the cognitive and

interference channels. It is further assumed that the interference from the pri-

mary transmitter (PT) to the SR is considered as background noise. There are

two constraints that the ST has to take into the account before transmitting a

signal to the SR. The first constraint is the allowable received peak interference

power at the PR. This constraint is essential in CR networks in order to avoid

harmful interference at the PR. The second constraint is the available power that
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Figure 5.3: SU CR System model.

the ST has. In this paper, we consider two types of power constraint which are

the average and peak transmit power constraints.

5.2.1 Fading Channels with Average Transmit Power Con-

straint

If we consider a CR channel under the average transmit power and peak interfer-

ence power constraints, the spectral efficiency in this case can be calculated by

C = max
γs(gc,gi)≥0

E[log2

(
1 +

gcγs(gc, gi)

N0

)
] (5.1)

s.t. E[γs(gc, gi)] ≤ γavg (5.2)

giγs(gc, gi) ≤ Q (5.3)
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Figure 5.4: Cut off values γ0 versus SNR with optimum power allocation.

where γs(gc, gi), γavg, and Q are the instantaneous transmit power, allowed av-

erage transmit power, and peak received interference power that the PR can

tolerate, respectively, and E[·] denotes the statistical expectation. The optimum

power allocation can then be expressed by

γ∗
s (gc, gi) = min

{(
1

γ0
− N0

gc

)+

,
Q

gi

}
(5.4)

where γ0 is the water-filling cutoff value that can be calculated from the constraint

in (5.2) and (x)+ = max{0, x}. Numerical optimisation is required to get the

optimum value of γ0. Fig. 5.4 shows different value of the cutoff γ0 value versus

SNR under different peak interference constraints, Q. Unlike in the primary

network, where only the CSI of the PR is required at the PT, the CSIs of both

the PR and SR are needed at the ST as inputs for the power allocation algorithm.

Depending upon the gains of the two types of channel, the CR transmission resides

in different modes. No communication is allowed as long as the CR channel gain

is below the cutoff value, i.e., gc ≤ γ0. The classical water-filling algorithm can be

adopted if
(

1
γ0

− N0

gc

)
≤ Q

gi
. If

(
1
γ0

− N0

gc

)
> Q

gi
, the transmit power is equal to Q

gi
.

Theorem 2. Under average transmit and peak interference power constraints,

the minimum energy efficiency required for reliable information over the cognitive
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channel is given by (
Eb

N0

)
min

=
ln 2

gc(max)

(5.5)

Proof. See Appendix H.

where gc(max) is the supremum of a random variable gc. Unsurprisingly, the mini-

mum energy is only affected by the cognitive channel while the interference chan-

nel has no influence on it. If the cognitive channel, for instance, is an AWGN

channel,
(

Eb

N0

)
min

will be equal to -1.59 dB. For the Rayleigh fading channel,(
Eb

N0

)
min

= 0 (−∞ dB) as the fading channel gain is unbounded, i.e., gc(max) = ∞.

Fig. 5.5 presents the spectral-energy efficiency trade-off when the cognitive chan-

nel is under Rayleigh and AWGN channels against different interference channel

fading distributions. Here, Q is assumed to be -5 dB. We can see that
(

Eb

N0

)
min

depends only on the fading statistics of the cognitive channel regardless of the

distribution of the interference channel, which verifies Theorem 1. Better energy

efficiency can be obtained when the cognitive channel follows a Rayleigh distri-

bution due to additional gain in the fading distribution. In the high SNR regime,
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Figure 5.5: Per-link spectral-energy efficiency trade-off with different fading distribu-

tions of the interference channel in the low SNR regime (Q = −5, Rician factor �=5).
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Fig. 5.6 shows the spectral-energy efficiency trade-off when gc and gi are both

changing according to Rayleigh fading distributions. It is worth noting that the

SNR regime in which the cognitive channel resides is not only decided by the

transmit power but also by the interference threshold Q. Regardless Q and the

fading distribution of the cognitive and interference channels, the slope of the

spectral efficiency goes to 0 as
(

Eb

N0

)
grows. The reason is that for CR channel

the spectral efficiency is limited by interference threshold of the primary channel,

i.e., even without Gaussian noise it achieves a bounded spectral efficiency Cmax. If

the cognitive and interference channels follow Rayleigh distributions, then Cmax

is equal to

Cmax =
log2(

Q
N0

)

(1− N0

Q
)
. (5.6)

The detailed derivation is given in Appendix I. Hence, Cmax is characterised by Q

and it is independent of the fading distribution of the cognitive and interference

channels. However, we can notice that If Q is high enough, the spectral-energy

efficiency trade-off can be approximated by(
Eb

N0

)
dB

≈ C × 10 log10 2− 10 log(C) + 2.5067 ∀C < Cmax. (5.7)
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Expression (5.6) is similar to spectral-energy efficiency trade-off approximation

that can be applied to the single primary channel [39]. The only difference is

that Cmax has no limited value for the primary channel while it is limited for the

cognitive channel.

5.2.2 Fading Channels with Peak Transmit Power Con-

straint

The optimum power allocation in this case is equal to

γ∗
s (gc, gi) = min

{
γpk,

Q

gi

}
(5.8)

where γpk is the peak transmit power of the ST. Unlike (5.4), only gi is required

as input for power policy. That makes it more straight forward as it only requires

the CSI of the interference channel as an input. The minimum energy efficiency

can be calculated by(
Eb

N0

)
min

= lim
γpk�0

E[γ∗
s (gc, gi)]

N0E[log2(1 +
γ∗
s (gc,gi)gc

N0
)]
. (5.9)

In the low SNR regime, E[γ∗
s (gc, gi)] = γpk. When we take this into considera-

tion,
(

Eb

N0

)
min

is always equal -1.59 dB for all types of cognitive channel fading

distribution.

Fig. 5.7 compares spectral-energy efficiency trade-off when the ST transmits a

signal under the average and peak power constraints. In the low SNR regime,

transmitting a signal with average power constraint provides better energy effi-

ciency than transmitting a signal with peak power constraint. Moreover, reliable

communication is no possible for
(

Eb

N0

)
<-1.59 dB when transmitting a signal

under peak power constraint. This is due to that fact that the power policy with

peak power constraint does not benefit from the available energy at those mo-

ment in which the cognitive channel fading is exceedingly high. In the high SNR

regime, both power policies behave similarly and approach the same maximum

spectral efficiency Cmax since the transmit power for both policies is controlled

by Q
gi
. Therefore, (5.7) can also be applied in the high SNR regime if Q is high

enough.
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Figure 5.7: Per-link spectral-energy efficiency trade-off for CR channel with average

and peak power constraints (Rician factor �=5).

5.3 MU CR Spectral-Energy Efficiency Trade-

off

In this section, we will study the spectral and energy efficiency for a CR-based

cellular network. The intention here is not to build a complete cellular network

using the concept of CR, but rather to enhance the spectral efficiency of the

cellular networks for a short period of time by sharing a spectrum that belongs

to another licensed network. We assume that a CR network consists of a single

ST, i.e., macro BS, that transmits signals to multiple SRs. The CR network

shares a spectrum owned by indoor primary network. The primary network also

consists of multiple PRs, i.e., primary indoor access points (APs). The SRs and

PRs are indexed by n ∈ N = {1, ..., N} and k ∈ K ={1, ..., K}, respectively. The
SRs and PRs are uniformly distributed in a cell of radius d and a cell of radius

D (d ≤ D), respectively, as it is shown in Fig. 5.8. The downlink transmissions of

the CR network are considered and assumed to occur in the uplink transmission

of the primary network. There are many advantages for sharing the spectrum of

the uplink transmissions of an indoor network. First, since the primary network

is assumed to be an indoor one, the mutual interference between the primary

and secondary networks will be scaled down because of the penetration losses.
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Figure 5.8: System model of CR-based cellular secondary BS, multiple primary re-

ceivers, and multiple secondary receivers.

Secondly, as the PRs, are all fixed in position, this offers an opportunity to easily

detect them by the ST. Hence, the STs can detect the pilot channel broadcasted

from indoor PRs and decide how many PRs with which they are surrounded [123].

The ST can then rely on channel reciprocity and estimate the channel coefficient

of the interference channel using injected pilots in the uplink channel of the PRs.

Finally, it is also possible that the interference CSI (ICSI) is sent from all PRs

along with their identities and collected by a certain central unit. In fact, using a

separate wireline control channel that broadcasts the interference measured over a

broadband connection is a very practical solution. Before the secondary network

can utilise the spectrum, it must register itself with the central unit first in order

to be updated regarding the ICSI. However, the PRs do not necessarily need to

identify each registered ST. The ICSI can inform the STs regarding the status of

the worst aggregate interference that a PR suffers. The STs can also use ICSI

as an alternative way to estimate the channel status to that PR and regulate

their transmit power accordingly. In this work, we assume that there is only one

registered CR network with a single secondary cell.
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5.3.1 The Distribution of the Channel Gain

The cognitive channel power gain between the ST and the nth SR is denoted

by gc(n), while the interference channel gain between the ST and the kth PR is

denoted by gi(k). The cognitive and interference channels experience pathloss,

shadowing, and multi-path fading. The focus in this section will be on the cog-

nitive channel. However, the same analysis can be applied to the interference

channel. The pathloss is a function of the distance r between the ST and the nth

SR, and can be expressed by gp(n) = Arβ(n), with β representing the pathloss

exponent. The propagation coefficient A includes parameters related to antenna

height, antenna gain, path-loss frequency dependence, and, in the case of the in-

terference channel, the indoor loss. The combined channel gain gc(n) is given by

gc(n) =
gm(n)gs(n)

gp(n)
, where gs(n) and gm(n) represent the power gain of the shad-

owing and multi-path fading of the nth SR, respectively. We use the composite

channel model for both shadowing and fast fading [124]. This model is the result

of the multiplication of the log-normal distribution with the Nakagami distri-

bution. Thus, the composite channel gain can be approximated by log-normal

distribution [124, pp. 132], i.e.,

fh(x) =
ξ√
2πσx

exp

{
−(10 log10(x)− μ)2

2σ2

}
(5.10)

where ξ = 10
log(10)

. The mean μ and variance σ2 can be given by

μ =

(
m−1∑
k=1

1

k
− ln(m)

)
+ μΩ (5.11)

σ2 =

∞∑
k=0

1

(m+ k)2
+ σ2

Ω (5.12)

respectively, where μΩ and σ2
Ω are the mean and variance of the shadowing, re-

spectively, while m represents the Nakagami fading factor. If we recall gc(n) =

gm(n)gs(n)
gp(n)

and (5.10), the distribution of gc(n) can be expressed by

fgc(g) =
Be(

2
a
(μ−ξ log g))

g
erfc

(
a(Lmax + ξ log g − μ)− 2σ2

a
√
2σ2

)
−Be(

2
a
(μ−ξ log g))

g
erfc

(
a(Lmin + ξ log g − μ)− 2σ2

a
√
2σ2

)
(5.13)
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where Lmax and Lmin are the maximum and minimum path-loss values in dB,

respectively, and they depend on the cell radius d and minimum distance to the

ST dmin. In (5.13), a = ξβ and B is a constant given B is a constant given by

B =
ξe

(
2σ2

a2

)

aA2(d2 − d2min)
. (5.14)

The detailed derivation of (5.13) is given in Appendix J.

5.3.2 Interference Constraint and CR Power Control

In order to keep a certain level of performance for the primary network, the aggre-

gate interference Ik at any PR must always be below a predefined threshold, i.e.,

Q. The interference Ik that a PR experiences consists of the aggregate interfer-

ence Ip from all transmit nodes in the primary network as well as the interference

Ic = γsgi(k) from the CR network, where γs is the ST transmit power. In other

words, the aggregate interference at a PR can be calculated by

Ik = Ip + Ic ≤ Q (5.15)

It is assumed that the adjacent indoor APs are using orthogonal radio recourses

to avoid strong interference among them. Moreover, the interference between non-

adjacent indoor APs, i.e., Ip, can be negligible or considered as background noise.

This is because signals that come from a primary user should travel through at

least two walls to reach the other primary APs [125]. However, Ic = γsgi(k) is

dominate compared with Ip because typically macro BS transmits a signal with

high power and then its signal could be high enough to propagate through the

walls of the building where the PR is deployed and generate interference. Given

there are many PRs, it is important to ensure that ST transmit power γs should

always be tightly controlled to avoid harmful interference on a PR which has the

maximum channel gain toward ST. This will inevitably protect the other PRs and

(5.15) remains true for all PRs. Therefore, the transmit power of ST is controlled
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according to

γs =

⎧⎪⎨⎪⎩
Q

max
k∈K

gi(k)
, max

k∈K
gi(k) >

Q
γpk

γpk, max
k∈K

gi(k) ≤ Q
γpk

(5.16)

where γpk is the peak transmit power. The above power control is similar to (5.8)

which demonstrates the power control under peak power constraint. It is more

suitable for the proposed system to use the power policy with peak power con-

straint rather than power policy with average power constraint for many reasons.

Firstly, in typical cellular networks, the BS has a limited maximum power that

it can transmit with. The power control with average power constraint does not

take into account this limitation. Secondly, to get as much benefit as possible of

CR network, the SRs would usually be close to the ST, and so they can be within

high SNR regime. This means that any gain of power control under average

power constraint is minor. Finally, the power control with peak power constraint

is more straight forward as it requires gi only as an input rather than gi and gc.

To this end, the ST can request the worst ICSI, which belong to the surrounding

PRs, from the central unit. The ST then uses this ICSI to estimate the channel

status and regulate the transmit power. Alternatively, or concurrently, the ST

can use injected uplink pilots to estimate the channel status assuming that the

channel is reciprocal.

5.3.3 Spectral Efficiency Analysis

The ST schedules SRs in orthogonal mode to avoid the intra-cell interference. In

this work, time division multiple access (TDMA) is assumed by which the ST

chooses an SR whose CSI implies the largest channel gain among all other SRs.

In this case, the received SINR, γ́, for the scheduled SR is equal to

γ́ =
γsgc(n

∗)
I

=

⎧⎨⎩
Q
I
X
Y
, Y > Q

γpk

γpk
I
X, Y ≤ Q

γpk

(5.17)

where X and Y are random variables that represent max
n∈N

{gc(n)} and max
k∈K

{gi(k)},
respectively, and n∗ is the index for an SR who has the maximum value of the
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channel gain. In (5.17), I is interference plus noise power. The spectral efficiency

can then be evaluated by

Csys =

∫
log2(1 + γ́)f(γ́)dγ́ (5.18)

where f(γ́) is the probability density function (PDF) of γ́. By adopting the

extreme value theory [126], f(γ́) converges to

f(γ́) �

K1γ́
−1.5

2
exp

(−K1γ́
−0.5 −K2

)
− K1Kγ́−1

2 (Kγ́0.5 + 1)
exp

(−K1γ́
−0.5 −KK1

)
+

K

2 (K + γ́−0.5)2 γ́
3
2

(
1− exp

(−K1γ́
−0.5 −KK1

))
.

(5.19)

See Appendix K for the detailed derivation. In (5.19),

K =

(
Iδp
Qδc

)0.5

(5.20)

K1 =

(
γpkδc
I

)0.5

(5.21)

K2 =

(
γpkδp
Q

)0.5

(5.22)

where δc and δp are the scale parameters for the cognitive and interference chan-

nels, respectively. A numerical integration of (5.18) provides convenient spectral

efficiency evaluation.

5.3.4 Spectral-Energy Efficiency Trade-off

The average energy efficiency is given by
(

Eb

N0

)
sys

= γ̄avg
N0Csys

, where γ̄avg is the

average transmit power. From (5.16), we have

γ̄avg = E[γs] =

∫
γs(y)fY (y)dy

=

∫ ∞

Q
γpk

Q

2
δ0.5p y−2.5 exp−

(
δp
y

)0.5

dy

+γpk exp

[
−
(
δpγpk
Q

)0.5
]
= P1 + P2 (5.23)
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Figure 5.9: The average transmit power as a function of
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Q (N =20, Q=0 dB, D=1000

m, I
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= 1, AdB=128 dB).

where fY (y) is the PDF of Fréchet distribution (refer to (K.4) in Appendix K).

The transmit power can be modeled as a summation of two power components,

i.e., P1 and P2. Fig. 5.9 shows how P1, P2, and γ̄avg change as a function of
γpk
Q
. We

can notice that P1 is a monotonously increasing function while P2 is a waterfall

curve with respect to
γpk
Q
. Hence, γ̄avg is dominated by P2 until a point, after

which γ̄avg is relatively constant and dominated by P1. This gives the conclusion

that γ̄avg can be approximated by

γ̄avg ≈ max(P1, P2). (5.24)

If we allow the ST to transmit to the best user who has the maximum channel

gain, then the average energy efficiency is given by

(
Eb

N0

)
sys

=

⎧⎪⎪⎨⎪⎪⎩
γpk exp

[
−
(

δpγpk
Q

)0.5
]

N0Csys
, Csys < Cmax(

Eb

N0

)
max

, otherwise

(5.25)

where Cmax and
(

Eb

N0

)
max

are the maximum spectral efficiency and energy effi-

ciency that the CR network can reach, respectively. They are given by

Cmax =

∫
log(1 + γ́)

K

2 (K + γ́−0.5)2 γ́
3
2

dγ́ (5.26)

(
Eb

N0

)
max

=
P1

N0Cmax
=

∫∞
Q

γpk

Q
2
δ0.5p x−2.5 exp−

(
δp
x

)0.5

dx

N0Cmax
. (5.27)
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See Appendix L for the detailed derivation of (5.26). We can notice that Cmax and(
Eb

N0

)
max

can be considered as new parameters that characterise the CR network.

In (5.25), γpk can be numerically calculated as a function of Csys from (5.18)

and (5.19).

So far, the theoretical framework, which numerically evaluates the spectral-energy

efficiency trade-off, is established for MU CR networks. In the following two sub-

sections, we will focus on low and high SNR regimes for the proposed network.

Low SNR regime

If we recall (2.2),
(

Eb

N0

)
min

is giving by(
Eb

N0

)
min

= lim
γ̄avg→0

γ̄avg

N0E[log2(1 +
γ̄avgX

I
)]

(5.28)

where the expectation is with respect to the random variableX . Applying L’Hopital’s

Rule into (5.28),
(

Eb

N0

)
min

can then be calculated by(
Eb

N0

)
min

=
I ln 2

N0E[max
n∈N

{gc(n)}] . (5.29)

We can conclude that in a very noisy region, the minimum energy efficiency in

the CR network is characterised by the cognitive channels of the best SR. Hence,

the interference channels have no impact on
(

Eb

N0

)
min

. The slope of the spectral

efficiency versus Eb

N0
is given by

S0 =
2E2[max

n∈N
{gc(n)]

E[max
n∈N

{gc(n)}2] =
2

k(X)
(5.30)

with k(X) is the kurtosis of X.

High SNR regime

In the high SNR regime, the available transmit power and Q are important. If

Q is set to be high, the spectral and energy efficiency converges to Cmax and(
Eb

N0

)
max

, respectively. Using (2.5), The spectral efficiency slope of the cognitive
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network in this case is equal to 1. The horizontal penalty with respect to the

AWGN channel,
(

Eb

N0

)
penalty

, is given by(
Eb

N0

)
penalty

= E

[
log2

(
1

X

)]
. (5.31)

See Appendix M for the detailed derivation.

5.3.5 Numerical Results and Discussions

This section presents the simulation results of the spectral and energy efficiency

for an MU-CR network. The simulation is based on the Monte Carlo method,

which consists of 106 channel realisations. The analysis is carried out with the

following parameters: I
N0

= 1, β = 3.7, the indoor loss is 8 dB, and A=120 dB

(128 dB in the case of the interference channel).

Fig. 5.10 shows the spectral efficiency of the CR network as a function of the

number of SRs. We assume a reasonable transmit power that can be used in a

typical cellular network. The number of PRs is assumed to be 20.
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Figure 5.10: The average network spectral efficiency of the CR network as a func-

tion of the number of the secondary users (γpk=43 dB, K=20, D=1000 m, I
N0

= 1,

AdB=128 dB).
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We can notice from this figure that the maximum spectral efficiency is still achiev-

able even with a reasonable transmit power and does not need to be unlimited.

The spectral efficiency of the CR network improves with the increase of the num-

ber of the SRs due to the additional gain that comes from the MU diversity. The

theoretical results obtained from the numerical integration of (5.26) agree with

the simulation results. It is worth mentioning that these results represent an ideal

situation assuming that there are no constraints on the users’ ability to feedback

the channel to the BS. Of course, in reality, this is unlikely to be the case, as

the number of users able to feedback at any one time is limited by the feedback

resources available for this purpose. Nevertheless, this figure us an insight into

the potential upper bound if the best spectral efficiency was achieved for the CR

system.

The increase in the spectral efficiency is, however, sensitive to the interference

threshold and the number of the PRs. Fig. 5.11 shows the impact of the number

of the PRs on the spectral efficiency of the CR network. The number of the SRs

is assumed to be 20 in this example. As shown, the spectral efficiency decreases

quickly with the increase of the number of PRs. It indicates that adopting the

spectrum sharing with another licensed network is unsuitable if the density of

the PRs is relatively very high. However, the spectral efficiency can be improved

by relaxing the interference threshold of the primary network, as it is shown in

Fig. 5.11. The spectral efficiency can also be improved if the CR network con-

siders only the SRs that are within a short distance to the ST. Hence, Fig. 5.12

shows the spectral efficiency of the CR network as a function of the number of

the PRs with different values of d for a given D, assuming Q = 0 dB. Clearly, for

the given number of the PRs, the spectral efficiency increases dramatically with

the decreasing of d.
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Fig. 5.13 shows the spectral-energy efficiency trade-off for the CR network. The

numbers of SRs and the PRs are assumed to be 30 and 20, respectively. As we

can see, for a given Q, the spectral-energy efficiency trade-off curve tends to a

point that corresponds to the maximum spectral efficiency, i.e., Cmax. It also

indicates that the high SNR asymptotic tool is valid only if the CR network is

working below its maximum spectral efficiency. The minimum energy efficiency,

defined in (5.29), is the same for all curves.
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Figure 5.13: Per-network spectral-energy efficiency trade-off for CR network with

different values of Q (N=30, K=20, D=1000 m, I
N0

= 1, AdB=128 dB).

The impact of the MU diversity gain on the spectral-energy trade-off is pointed

out in Figs. 5.14 and 5.15. Thus, Fig. 5.14 illustrates the spectral-energy effi-

ciency trade-off as a function of the number of the SRs. We can notice that, for a

given spectral efficiency, increasing the SRs improves the energy efficiency. This

improvement is because the horizontal penalty spectral-energy efficiency trade-off

and
(

Eb

N0

)
min

are characterised by the cognitive channels only. Here, it has been

assumed that the CPU power consumption has a minor impact on the total power

consumption, giving that the CPU’ computational performance per watt is high.

The impact of the number of the PRs on the spectral-energy efficiency trade-off,
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however, has a different aspect. Thus, from Fig. 5.15, the number of PRs has

impact only on the maximum spectral efficiency but not on the horizontal penalty

nor
(

Eb

N0

)
min

.

50 55 60 65 70 75 80 85 90 95
0

2

4

6

8

Energy efficiency, Eb

N0
(dB)

S
p

e
c
tr

a
l 
e

ff
ic

ie
n

c
y
, 

C
s
y
s
 (

b
p

s
/H

z
)

 

 

 N=20
 N=50
 N=100
 N=200
 N=400

Figure 5.14: Per-network spectral-energy efficiency trade-off as a function of the num-

ber of secondary receivers (K=50, D=1000 m, I
N0

= 1, AdB=128 dB).
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5.4 Chapter Summary

This chapter has investigated the spectral and energy efficiency in interference-

tolerant CR networks. It has first studied the spectral-energy efficiency trade-off

for an SU CR network under transmit power and interference constraints. Here,

it has compared the case when the CR transmitter is transmitting a signal with

average power and when transmitting a signal with peak power constraint in

the low and high SNR regimes. The chapter has also analysed the spectral and

energy efficiency for a system level CR network with multiple SRs and PRs. In

this scenario, by the use of the extreme value theory, the analysis has highlighted

the impact of the number of SRs, the number of PRs, the interference threshold,

and the distance where SRs are located, on the performance of the CR network.
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Chapter 6
Spectral-Energy Efficiency Trad-eoff for

Multi-User Spatial Modulation in

Massive MIMO Networks

6.1 Introduction

SM is a novel MIMO technique that has been proposed for low complexity im-

plementation of MIMO systems without degrading the system performance [127].

Instead of simultaneously transmitting multiple data streams from the available

antennas, SM encodes part of the information data using the spatial position of

each transmit antenna in the antenna array. Therefore, only one transmit an-

tenna is active at any time instance while other antennas are idle. In addition

to the usual signal constellation diagram, the antenna array plays the role of a

second constellation diagram, the so-called spatial constellation diagram. This

can be used to increase the transmission data rate compared to single-antenna

wireless systems. A block of information bits is split into two sub-blocks, each of

base-2-logarithm number of bits. The first sub-block identifies the active antenna

from a set of transmit antennas, while the second sub-block selects the symbol

from the signal constellation diagram that will be sent from that active antenna.

Therefore, SM is a combination of space shift keying (SSK) and amplitude/phase
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Figure 6.1: SM constellation diagram using four transmit antennas and QPSK mod-

ulation scheme.

modulation. Fig. 6.1 shows the SM constellation diagram with 4 transmit anten-

nas and QPSK modulation scheme as an example. The receiver must determine

which of the antennas was selected for transmission in order to decode that part

of the information and uses it as a base for decoding the rest of the information.

The receiver can then employ optimal ML detection to decode the received sig-

nal [128]. Using the SM approach, the inter-antenna interference and the need for

synchronising the transmit antennas are avoided since the received signal comes

from a single antenna.

The performance of SM has been studied extensively in the last few years to

understand the impact of different channel fading propagation on the end-to-end
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error probability. The SM scheme excels is in the feasibility to design a very

efficient and simpler decoder compared with the conventional point-to-point SU-

MIMO schemes such Vertical-Bell laboratories layered space-time (V-BLAST)

and maximum ratio combining (MRC) [128–131]. A comprehensive survey of

SM is available in [33] where many advantages of the SM have been highlighted.

Despite these advantages, there are two important limitations to the SM scheme.

The first limitation is that the SM fails in offering additional degrees of freedom

or multiplexing gain. The multiplexing gain is the asymptotic gain that can be

achieved gain over single-antenna channels [132]. This is because in SM scheme

only one antenna is active for sending the information. The second limitation

in the SM is that the encoding/decoding processes of SM require the number of

transmit antennas to be in a power of two.

One way to overcome these two limitations whilst keeping similar SM encod-

ing/decoding schemes is to use the so-called generalised SM (G-SM) schemes [133,

135]. The primary intention of G-SM is to modulate the information bits onto

both the signal constellation diagram and combinations of multiple active anten-

nas, thus increasing the degrees of freedom with unrestricted number of transmit

antennas. The G-SM in [133] offered more diversity gain because of transmitting

the same complex symbol via the activated antennas. The diversity gain refers to

the improvement in the reliability or total number of channel fading gains that

one can average this to [132]. The authors of [135] proposed another version of

G-SM, named multiple active antennas SM (MA-SM). Unlike [133], the MA-SM

allows to transmit multiple symbols on the activated antennas, thus offering more

multiplexing gain. In the MA-SM, a different constellation plane is required for

each antenna group in order to maximise the minimum distance between two

codewords. This is done by rotating the constellation diagram on an angle for

each plane. The optimum angles are calculated by an extensive computer search.

Hence, the complexity in the transmission scheme is high, especially with a larger

number of transmit antennas. In this chapter, we intend to take this further by

proposing an enhanced G-SM based scheme that offers less complexity than MA-

SM.
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Another way to overcome the limitations of SM is by adopting the SM decoder

into a MU-MIMO environment. This potentially can be an potential opportunity

for the 5G cellular system especially with the deployment of the massive MIMO

system, in which the number of transmit antennas is large. Recently, there were

some works that studied SM-based MU-MIMO system [136–139]. The work of

[136,137] focused at adopting SM on the uplink multiple access schemes. In [138],

the authors applied SM for an MU-OFDMA system. Only [139] considered a sys-

tem that is capable of serving multiple users on the same time/frequency resources

and then each user decodes the received signal using SM-like decoder in donwlink.

In that work transmit symbols are encoded by channel impulse responses (CIRs)

of selected active antennas and then using zero-forcing (ZF) beamforming to elim-

inate the MU interference. However, an important drawback in this work is that

the proposed scheme was devised under the assumption that the transmitting

signals function under an average power constraint. This potentially means that

the instantaneous power can be high. Moreover, the deployment scenario was

necessarily limited to comply with the dimensional restriction, i.e., the number

of active transmit antennas should be equal to the number of total received an-

tennas. In this chapter, we will propose an enhanced version of the MU-SM

transmission scheme in which (BD) linear precoding technique is first employed

to construct parallel channels and then the SM scheme is employed individually

on each channel. From the transmitter perspective, unlike SM, the precoding col-

umn index is now the additional source to convey information. Employing such a

system, a higher degrees of freedom with low complexity decoder can be achieved.

We will also investigate the trade-off between the spectral and energy efficiency

for MU-SM system in this chapter. In this chapter, the spectral efficiency is

defined as the number of bits per second over a given bandwidth (in bps/Hz)

while the energy efficiency is defined as the number of bits per joule over a given

bandwidth (in bit/joules/Hz). Therefore, we can summarised contribution in this

chapter as follows:

1) We propose a novel G-SM based transmission scheme that offers more de-
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grees of freedom than the original SM with reasonable complexity at the

transmitter and receiver sides. The proposed scheme does not necessarily

require more antennas at the transmitter side compared to the original SM.

The complexity of the transmission scheme in the transmitter and receiver

sides is much simpler than that of the MA-SM.

2) We propose a transmission scheme that will enable the SM decoder to be

adopted in MU-MIMO systems. BD precoding is adopted to prevent the

inter-antenna interference. The performance of the proposed system is com-

pared with that of other MU-MIMO systems.

3) We study the spectral-energy efficiency trade-off analysis of SM-based MU-

MIMO systems in the presence of a large number of antennas under a more

practical PCM. Under such a set up, the transmit power is optimized in

order to achieve optimum energy efficiency for a specific spectral efficiency.

The rest of this chapter is organised as follows. Section 6.2 describes the

system model of the pre-coded SM and evaluates its performance. Section

6.3 introduces the MU-SM system model. Section 6.4 analyses the resulting

performance in terms of bit error rate (BER), achievable rate, and energy

efficiency along with numerical results and discussions. Finally, Section 6.5

summarises the chapter.

6.2 Pre-coded SM

In this section, we focus on a point-to-point SU-MIMO system that consists

of a transmitter, i.e., BS, with Nt antennas, and a receiver, equipped with Nr

antennas, as shown in Fig. 6.2. The transmitter divides the number of transmit

antennas into M groups, each group has ŻM antennas. The total number of the

groups should be in a power of 2, however, there is no condition on the total

number of antennas. Thus, the same antenna collection as in the G-SM and MA-

SM schemes can be adopted. The total number of bits that can be transmitted
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per given channel is given by b = log2(M) + ŻMm̄ with m̄ is the number of bits

per modulated symbol. A random sequence of independent bits of size of b enters

the pre-coded SM mapper which maps them onto a transmit vector x ∈ CNt×1,

i.e.,

x = [0 .. 0︸ ︷︷ ︸
1

0 .. 0︸ ︷︷ ︸
m− 1

x̄
↑

mth group

0 .. 0︸ ︷︷ ︸
m+ 1

.. 0 .. 0︸ ︷︷ ︸
M

]T (6.1)

where x̄ = Qa ∈ C
ŻM×1 is a vector that contains the pre-coded symbols, and a is a

vector that contains modulated symbols from M-array constellation. In (6.1), mth

represents the selected antenna group that the pre-coded symbols are transmitted.

The transmitter exploits the antenna group index as additional means for
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Figure 6.2: Pre-coded SM system model.

information. The transmit signal x is normalised in a such that each active

antenna has unit transmit power. The received signal of the channel when the

signal x is transmitted through the MIMO channel H ∈ CNr×Nt is

y =

√
ρ

ŻM
Hx + n. (6.2)

where ρ is the average SNR, n is AWGN vector with zero-mean and unit variance

per dimension at the receiver output. H can be written as a set of vectors

which corresponds to channel gains between a transmit antenna group and receive
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antennas, i.e,

H = [H̄1 H̄2 ... H̄M ]. (6.3)

The entries of H̄m = [h̄m,1 h̄m,2 ... h̄
m, ŻM

] ∈ C
Nr× ŻM are modelled as complex

independent and identically distributed (i.i.d) Gaussian random variables with

zero-mean and unit-variance.

6.2.1 Pre-coded SM detector

The most significant role of the detector is how to estimate the active antenna

group. One possible idea to do so is to project the received signal y into subspaces

P⊥
m that is orthogonal to subspace vm, where vm is the subspaces that is spanned

by a set of vectors H̄m [134]. The detection for the antenna group is performed

by finding the minimum norm among the resulting projected vectors, i.e.,

j = argmin{||P⊥
my||2F} (6.4)

where P⊥
m is the orthogonal projection whose range is H̄

⊥
m. See Appendix N for

more details about generating matrix P⊥
m. Once the index of antenna group j is

estimated, the transmit modulated symbols can be estimated as follow

Ža = Q́(QHWm=jy) (6.5)

where Q́(·) is constellation slicing function and Wm=j is the weight matrix. The

performance of the decoder can be further improved by employing the MMSE pre-

equalisation to reduce the impact of the noise. In this case, the weight matrix is

given by

Wm = (H̄
H
mH̄m + σ2I)−1H̄

H
m. (6.6)

6.2.2 Pre-coded Matrix

Unlike in [135], rotating the constellation diagram is not required in the proposed

scheme. Instead, the modulated symbols are pre-coded by a random matrix Q
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before transmitting. The use of pre-coded operation is to improve the separa-

tion of the different layers, i.e., reducing the inter-stream interference. The pre-

coding matrix is generated in a way that the columns are orthogonal with each

other, i.e., QHQ = I. One way to generate an orthogonal matrix is to apply the

QR decomposition on a random matrix A [59]. The entries of A are Gaussian

random variables with zero-mean and unit-variance. The transmitter and the

receiver both have a pre-coded matrix Q that is decided once the transmission

begins and can then be fixed for the rest of the transmission. Without using the

unitary matrix Q, the receiver is only able to decode part of transmitted symbol

that is based on active antenna group.

6.2.3 Simulation Results and Discussions

Let us evaluate the performance of pre-coded SM by comparing its performance

with other MIMO schemes, such the SM, MA-SM, and V-BLAST. Here, a flat

Rayleigh fading is assumed AWGN is assumed. The receiver, but not the trans-

mitter, is assumed to have a full channel knowledge. The BER performance of

these systems was evaluated as a function of the average SNR per receive antenna

against various MIMO schemes, using Monte Carlo simulations. The V-BLAST

system uses MMSE detection with ordered successive interference cancellation

decoding, assuming that the receiver has a knowledge of SNR. The SM system

uses the maximum likelihood (ML) detector. The BER curves of 10 bits trans-

mitted with 5 receive antennas are plotted in Fig. 6.3. In this example, the

pre-coded SM and MA-SM use Nt = 4, ŻM = 2 and 16-QAM modulation, the

V-BLAST uses Nt = 2 and 32-QAM modulation, and the SM system with two

different antenna configurations. As it is shown, the pre-coded SM provides SNR

gains of 2 dB, 1 dB, 4 dB, and 6 dB over MA-SM, V-BLAST, SM with Nt = 8,

and SM with Nt = 4, respectively, at BER value of 102.
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The V-BLAST system outperforms the MA-SM when SNR>18 dB and the
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Figure 6.3: BER performance comparison of transmitting b= 10 bits among different

SU-MIMO schemes with Nr=5 (Pre-coded SM and MA-SM use Nt=4 and ŻM = 2,

V-BLAST uses Nt=2, and SM uses Nt= 8 and 4).

performance of pre-coded SM at higher SNR values (SNR>24 dB). This is be-

cause at the high SNR regime, the error is dominated by the estimation of the

active antenna group.

The proposed pre-coded SM scheme can also be used to reduce the complexity

of the SM at high spectral efficiency requirements, assuming that there is a large

number of transmit antenna. The pre-coded SM can be near-optimal detector

that is based upon the projection-based antenna group detection. In this case,

n = 1 and Q = 1. Fig. 6.4 presents the comparison of projection-based detection

SM over optimal SM [128] and sub-optimal SM [127]. In [127], maximum receive

ratio combining (MRRC) is used to detect the index of the active transmit an-

tenna. However, the CSI has to be known at the transmitter (CSIT) in order

to normalise the channel gain and to get similar results to [127]. Our compari-

son also includes the case of sub-optimal SM but without CSIT. To have a fair

comparison, we assume that b = 10 with Nt = 16 and Nr = 4 antennas for the

all cases. We can see that, with projected-based SM, there is minor performance

degradation at the high SNR regimes (SNR > 18 dB). However, the pre-coded

SM gains 6 dB over sub-optimal detector (with CSIT) of [127].
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Figure 6.4: BER performance comparison between pre-coded SM and different SM

decoding schemes (b= 10 bits, Nt=8, and Nr=4).

6.3 Multi-user SM System Model

In this section, we consider a broadcast channel consisting of a single BS, with

Nt antennas, and K receivers, each equipped with Nrk antennas, as it is shown

in Fig. 6.5. For simplicity and without loss of generality, we assume that all

users can have the same number of receive antennas and therefore the index k

can be omitted (i.e., Nr1 = Nr2 = Nrk = Nr). The transmit symbol of user k

is denoted as a ŻMk-dimensional vector x̄k, which has the following form

x̄k = [0 ... 0 a
↑

jth position

0 ... 0]T (6.7)

where a is the complex modulated symbol. Similar to SM scheme, the number

of transmit bits for each user bk can be adjusted in two different ways, either by

changing the signal modulation order of a or by changing the location j where

modulated symbol a is positioned, providing that the length of vector x̄k is in a

power of 2.
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Figure 6.5: Multi-user SM system model.

The vector x̄k has unity power constraint, i.e., E[x̄H
k x̄k] = 1. The BS embeds all

vectors from all users and constructs a vector x ∈ C

(∑K
k=1

ŻMk

)
×1
, i.e.,

x = [x̄1 ... x̄k ... x̄K ]
T . (6.8)

In MU-MIMO system, the BS simultaneously transmits to multiple users causing

co-channel interference to occur among the users. In a such case, the channel

knowledge of each user at the BS is essential for mitigating the interference.

Hence, CSI of any user is required to be entirely known at the BS in order

to produce pre-coding vector that aids in interference mitigation. One way to

accomplish this is by using common downlink pilot symbols that are broadcast

from the BS in order to permit the users to estimate their CSIs. The CSIs from

all users are then feedback via an uplink control channel to the BS. This scheme is

well-known as frequency-division duplexing (FDD) in which the downlink phase

occurs in a different spectrum band from that of the uplink phase. In a such
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arrangement, however, overheads of the channel estimation at the receiver and

of the training required to collect the CSI at the transmitter both grow linearly

with the number of transmit antennas and the number of users. Consequently,

the expected improvement from the large-scale MIMO can be limited significantly

by such overheads. An alternative solution is to exploiting channel reciprocity

where the CSI can be obtained from uplink pilot signals by using a time division

duplexing (TDD) protocol. Hence, in TDD systems, both uplink and downlink

phases occur in the same spectrum band but at different time components, each

carrying information and pilot signals [18–20]. One major issue with TDD is that

it is time consuming to re-farm the spectrum bands that have been standardised to

FDD systems to the TDD protocol [140]. Therefore, this study has accounted for

the fact that the BS and users are perfectly synchronised and operate according

to a particular case of TDD. As it is indicated in Fig. 6.5, there are set up ratios

of uplink and downlink phases, denoted by α and 1− α, respectively. Unlike the

traditional TDD system, only pilot signals are transmitted in the uplink phase

period. The proposed scheme will likewise benefit the FDD systems in reaching

high-data rate in the downlink despite the fact of dedicating the α portion of

time of the downlink band for the pilot signals. It is assumed that the channels

Hk ∈ CNr×Nt that experience by different users are statistically independent. Let

us define the network channel matrix and pre-coding vectors as H ∈ CKNr×Nt

and V ∈ C
Nt×K

(∑K
k=1

ŻMk

)
as

H = [HT
1 ... HT

2 HT
K ]

T

V = [v1 ... v2 vK ]
TΛ

1
2 (6.9)

where Λ
1
2 is a diagonal matrix whose elements are to scale the transmit power on

each column and satisfy the total power Pmax constraint. Next step is to design a

precoding vector V that eliminates the co-channel interference while generation a

similar channel situation to let the user adopt the same SM decoder for recovering

the information. An effective means to construct complete diagonalisation is by

using BD-based linear precoding, discussed in the following sub-section.
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6.3.1 BD-based SM Algorithm

The key idea of BD is to eliminate all MU interference by designing a pre-coding

vector vk ∈ CNt× ŻMk so that Hivk = 0 for all i 	= k [141]. Now, if we define a

matrix H̃k as

H̃k = [HT
1 ... HT

k−1 HT
k+1 ... HK ]

T (6.10)

vk should lie in the null space of H̃k and then the zero-interference constraint

is fulfilled. BD-based precoding has, however, a dimension restriction which is∑K
k=1Nrk ≤ Nt. This condition can be easily to meet in the massive MIMO

system. The pre-coding vector vk can be constructed using the singular value

decomposition (SVD) of matrix of H̃k, i.e.,

H̃k = ŨkΣ̃k[v̄k vk]
H (6.11)

where vk contains the last ŻMk columns of singular vectors and v̄k contains the first

columns (Nt − ŻMk) singular vectors. The required magnitude of computations

in (6.11) makes the SVD operation very onerous, especially when there is a large

number of transmitting antennas. The complexity of the BD can be reduced

significantly by adopting QR decomposition method instead [59]. This can be

done by building a projection whose range is H̃k, i.e., (N.2), followed by QR

decomposition operation. Table 6.1 illustrates the computational cost in term of

number of flops of QR-BD precoding which has been assumed in this work [59].

Thus, the QR decomposition on a matrix A of Nt×Nr size using Gram-Schmidt

orthogonalisation or fast given method takes about 12N2
t (Nr − Nt

3
) flops, while

matrix inverse on (AHA)−1 takes 6N3
t flops. Furthermore, although the water-

filling operation is performed in real-valued domain, it does not have a fixed

complexity. However, in the worst case, water-filling over M eigenvalues needs

up to at most 2N2
t + 6Nt flops [59].

Assuming that the channels Hk experienced by different users are statistically
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Table 6.1: QR-BD Precoding Computational Cost

QR-BD Step 1 12K(K − 1)2N2
r

(
(Nt−(K−1)

3

)
Step 2 8KNrNt(Nt − (K − 1)Nr)

Step 3 6K(9N3
r + 8N2

r (NT − (K − 1)Nr) + 4Nr(Nt − (K − 1)Nr)
2)

Step 4 2N2
t + 6Nt

Step 5 KNr + 2KN2 +KNrNt(Nt − (K − 1)Nr)

independent, then

HV =

⎡⎢⎢⎢⎢⎣
H1v1 . . . 0

...
. . .

...

0 . . . HKvK

⎤⎥⎥⎥⎥⎦
where H̄k = Hkvk = [h̄k,1 h̄k,2 ... h̄

k, ŻMk

] ∈ CNrk× ŻMk represents the effective

channel after precoding process that the receiver k only needs to estimate to

decode the received signals based on any SM-based receiver. The received signal

yk ∈ CNrk×1 at the k’th user is given by

yk = Hk

K∑
k=1

√
ρkvkxk + nk (6.12)

=
√
ρkH̄kx̄k + nk (6.13)

where ρk is the transmit power for the kth user. From (6.13), we can notice that

the receive signal is similar to that signal received using original SM scheme.

Although BS can rely on channel reciprocity and estimate the complete channel

matrix, each user is however required to calculate its effective channel matrix H̄k.

6.4 Spectral-Energy Efficiency Trade-off

6.4.1 Achievable Rate for SU-SM

Let us first discuss the achievable information rate (in bps/Hz) of point-to-point

SU-SM scheme which is nevertheless subject to interpretation. It is interesting

to know that the achievable rate of SM system has been analysed even before the
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invention of SM. Thus, the authors of [142] discussed the achievable rate that can

be obtained when there are a number of transmit antennas and cycling through

all transmit antennas in sequence, using only one antenna at a time to transmit

the signal. The achievable ergodic rate RSM for a such system is given by

RSM = E

[
1

Nt

Nt∑
i=1

log2(1 + ρ||hi||2F )
]

(6.14)

where hi ∈ CNr×1 represents a column from the channel matrix. The exception

in (6.14) is taken with respect to the Frobenius norm of the channel column

vector. In [143], the authors placed that the achievable rate is the sum of two

terms, one account for signal constellation R1 and another for spatial constellation

diagrams R2. However, assuming Gaussian input signals, then the impact of R2

is very minor, thus the achievable rate is lower bonded by the R1, i.e., (6.14).

Proposition 1. In SM, if the number of transmit antenna is very large Nt � ∞,

the instantaneous rate approaches the ergodic rate, i.e.,

1

Nt

Nt∑
i=1

log2(1 + ρ||hi||2F ) yields−−−→ RSM. (6.15)

Proving the Proposition 1 can be simply achieved by applying the law of a large

number theorem to (6.14). Now, for a given Nt, by taking the expectation over

all channels and assuming independent and identically distributed fading, then

achievable rate of SM and SIMO are almost the same. This implies that, assuming

one antenna at the receiver side, the rate of single-input-single-output (SISO) is

a lower bound of the SM rate, i.e., RSM = RSISO. Therefore, even SM is capable

of improving the transmission rate compared with SISO/MISO, The degrees of

freedom is still limited to SISO/MISO.

6.4.2 Achievable Rate for Pre-coded SM

The achievable rate of proposed pre-coded SM, which is also applied to G-SM

based schemes, is given by

Rpre-coded SM = E

[
1

M

M∑
m=1

[
r∑

i=1

log

(
1 +

ρ

ŻM
λi

)]]
(6.16)
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where λ1. . . λm are the eigenvalues of H̄mH̄
H
m ∈ Cr×r, while r = min( ŻM, Nr) is the

additional degrees of freedom that proposed pre-coded SM can offer. In (6.16)

the expectation is taken with respect to probability distribution of the ordered

eigenvalue. Therefore, the rate is now bounded by the rate of r×r MIMO system.

6.4.3 Achievable Rate for MU-SM

Diagonalising the channel matrix using BD precoding provides multiple paral-

lel independent SU-MIMO channel. Hence, by deploying SM-based decoding

scheme, the achievable rate for each user is given by

Rk =
1

ŻMk

ŻMk∑
i=1

log2(1 + ρ||h̄k,i||2F ). (6.17)

Assuming that there is K active users each with Nr antennas, with Nt ≥ KNr

and taking the summation of achievable rate to the parallel users yields the total

achievable rate of the MU-SM system, i.e.,

RMU-SM = (1− α)E

[
K∑
k=1

Rk

]
(6.18)

≤ (1− α)E

[
KNr∑
i=1

log

(
1 +

ρ

KNr

λi

)]
(6.19)

≤ (1− α)

∫
KNr log

(
1 +

ρ

KNr

λ

)
fNt,Nr(λ)dλ (6.20)

= (1− α)

∫
K log

(
1 +

ρ

K
λ
)
fNt=1,Nr(λ)dλ (6.21)

where fNt,Nr(λ) is the distribution of unordered eigenvalues and it is given by [144]

fNt,Nr(λ) =
1

j

j∑
i=1

i!

(i+ n− j)!

[
Ln−l
i (λ)

]2
λn−je−λ (6.22)

with j = min(NT , KNr) and n = max(NT , KNr), and Ln−m
i (λ) is associated

Laguerre polynomials of order i. It is obvious that rate of MU-SM is inferior

to the optimum BD-based MIMO capacity. Inequalities in (6.19) and (6.20)

hold because not all eigenvalues are utilised within each user’s channel dimension

while equality (6.21) holds by applying j = 1 and n = Nr. We can notice that
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the degrees of freedom is increased by factor K. Moreover, selecting MU-SM or

other MU-MIMO schemes means the trade-off between diversity and multiplexing

gains. This because, in MU-SM, the transmit power is concentrated on a single

eigenvalue and that strengthens the SNR received at the users. Whereas in others

MU-MIMO schemes, the power is allocated among all available eigenvalues, thus

providing a more multiplexing gain to the users.

6.4.4 Energy efficiency

In this sub-section, the spectral and energy efficiency analysis for MU-SM system

is studied. The spectral efficiency is defined as the number of bits per second

transmitted over a given bandwidth (in bps/Hz) while the energy efficiency is

defined as the number of bits per joule unit transmitted over a given bandwidth

(in bit/joules/Hz).

6.4.5 Power Consumption Model

Recall Section 2.5 in Chapter 2, the total power consumption Ptotal is given by

Ptotal =
Pr

ηPA
+BR

(
1

ηload
+

1

ηBH

)
+ PBBU-TXB + PRRU-TXB + Pcpu + Pfix + Pcooling

(6.23)

where Pr, PBBU-TXB, PRRU-TXB, Pcpu, Pfix and Pcooling refer to the total radiated

power, BBU TXB power consumption, RRU TXB power consumption, CPU

power consumption, fixed backhaul power consumption, and cooling power con-

sumption, respectively. Also, ηPA, ηload, and ηBH are power amplifier efficiency,

load consumption factor (in bps/Watt), and backhaul consumption factor (in

bps/Watt), respectively.

6.4.6 Energy Efficiency Optimisation

The objective of optimisation problem is to optimally distributed the power Pt(λ)
∗

on active eigenvalues over the time so then the energy efficiency EE (in bit/HZ
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per Joule) can be maximised for a given spectral efficiency SE (in bps/Hz). The

optimisation problem (P) can be denoted as

(P)max
Pt(λ)

EE =∫
KN̄ log

(
1 + Pt(λ)

N0
λ
)
fN̄,Nr

(λ)dλ

KN̄
∫
PtfN̄,Nr

(λ)dλ

ηPA
+B

∫
KN̄ log

(
1 + Pt(λ)

N0
λ
)
fNt,Nr(λ)dλ

(
1

ηload
+ 1

ηBH

)
+ Pother

(6.24)

s.t.

∫
KN̄ log

(
1 +

Pt(λ)

N0

λ

)
fN̄,Nr

(λ)dλ ≥ SE (6.25)

KN̄∑
k=1

Pt(λk) ≤ Pmax (6.26)

where N0 is the noise power and Pmax is the maximum sum transmit power

that the BS able to use, Pother accounts for all other power consumptions i.e.,

PBBU-TXB, PRRU-TXB, Pcpu, Pcooling, and Pfix, that scaled only with the number of

transmit antennas. N̄(1 ≤ ¯N ≤ Nr) is the degrees of freedom that one user is

able to achieve. Here we assumed that M >> K. The constraints of (6.28) and

(6.29) represents the lower bound of spectral efficiency and the upper bound of

sum transmit power. The solution of the above problem is nontrivial since the

objective function is nonconcave. The objective function (6.24) is the ratio of two

functions to be maximised. This type of optimisation problem is commonly known

as fractional programming [80–84]. In Chapter 2, we have leaned an approach

that deals with such kind of problems. The approach begins by separating the

numerator and denominator with the help of parameter q. Therefore, assuming q

is not negative, problem (6.24)–(6.29), can be transferred to another problem (P̄ )

with parametric and non-fractional objective function, i.e.,

(P̄ )maxPt(λ) ĒE =
∫
KN̄ log

(
1 + Pt(λ)

N0
λ
)
fN̄ ,Nr

(λ)dλ− q

×
(∫

PtfN̄,Nr
(λ)dλ

ηPA
+B

∫
KN̄ log

(
1 + Pt(λ)

N0
λ
)
fNt,Nr(λ)dλ

(
1

ηload
+ 1

ηBH

)
+ Pcons

)
(6.27)
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s.t.

∫
KN̄ log

(
1 +

Pt(λ)

N0
λ

)
fN̄,Nr

(λ)dλ ≥ SE (6.28)

KN̄∑
k=1

Pt(λk) ≤ Pmax (6.29)

We know that, the method to solve problem P̄ must ensure that the opti-

mum value of Pt(λ) resides between Pmin and Pmax to satisfy constraints (6.28)

and (6.29). Here Pmin refers to the minimum power required to achieve the

target spectral efficiency SE. Now if we relax the problem P̄ by removing con-

straint (6.29) and applying the Karush-Kuhn-Tucker (KKT) optimality condi-

tions, the optimum solution can be then given by

Pt(λ)
∗ =

[
KN̄ηPA(1− Bq( 1

ηBH
+ 1

ηload
) + ν)

q
− N0

λ

]+

(6.30)

Proof. See Appendix O.

where ν is the nonnegative variables which can be determined by substitut-

ing (6.30) into the constraints (6.28). Once achieving this, we must now identify

if the optimum solution Pt(λ)
∗ falls within the interval of [Pmin, Pmax]. If it does

not, then the solution is infeasible. We refer to the [Pmin, Pmax] as the feasible

region of the sum transmit power. Nevertheless, expression (6.30) has a water-

filling fashion in which q is equivalent to water level. The solution can be seen as

an energy-efficient version of well-know water-filling power allocation algorithm.

Meanwhile, Algorithm 3 is employed to determine both q and ν. The algorithm

is based on the application Dinkelbach’s method [84]. Once both q and ν are

calculated, the BS regulates the transmit power on each eigenvalue, providing

that the solution is within the feasible region of the su transmit power.

6.4.7 Simulation Results and Discussions

In this section, the performance of MU-SM in terms of average BER, achievable

rate, and the spectral-energy efficiency trade-off is evaluated using Monte Carlo

simulations. In the simulation, a flat Rayleigh fading that is corrupted by AWGN

113



Chapter 6: Spectral-Energy Efficiency Trade-off for Multi-User SM in Massive
MIMO Networks

Algorithm 3

Require: Pt ⇐ P
(0)
t , M,K, N̄, fN̄,Nr

(λ).

1: while |Z| > δ do

2: q =

∫
KN̄ log

(
1+

Pt(λ)
N0

λ
)
fN̄,Nr

(λ)dλ
∫
PtfN̄,Nr

(λ)dλ

ηPA
+B

∫
KN̄ log

(
1+

Pt(λ)
N0

λ
)
fNt,Nr (λ)dλ

(
1

ηload
+ 1

ηBH

)
+Pother

3: Find ν by solving

4:
∫
KN̄ log

(
KN̄ηPA(1−Bq( 1

ηBH
+ 1

ηload
)+ν)λ

qN0

)
fN̄ ,Nr

(λ)dλ = SE

5: P ∗
t =

[
KN̄ηPA(1−Bq( 1

ηBH
+ 1

ηload
)+ν)

q
− N0

λ

]+
6: Z= E

[
KN̄ log

(
1 + Pt(λ)

N0
λ
)]

−q
(

E[Pt]
ηPA

+ E

[
KN̄ log

(
1 + Pt(λ)

N0
λ
)](

B
ηload

+ B
ηBH

)
+ Pcons

)
7: end while

8: q ⇐ q∗, ν ⇐ ν∗.

is assumed. The receive antennas are assumed to be separated wide enough to

avoid correlation.

In Fig. 6.6, the robustness of the proposed MU-SM based on BD precoding

scheme is studied against others MU-MIMO schemes. We assume that there are

5 active users each with 4 receive antennas. The number of transmit bits for

each user, i.e., bk, is assumed to be 10 bits. We will compare the performance of

MU-SM with the performance of SU-SM, ZF-based MU-MIMO, and BD-based

MU-MIMO with two different detection algorithms, i.e., V-BLAST and ZF. For

the V-BLAST scheme, the SNR is assumed to be known at each user when using

MMSE for the signal detection. In the case of SU-SM, the BS picks up the best

user which has the maximum norm channel gain using a TDMA scheme. For a fair

comparison, all users are assumed to have the same average SNR. Furthermore,

although a better performance can be achieved with water-filling, considering

equal power allocation makes the comparison, in this example, between SU-SM

and MU-SM fair. All schemes show approximately similar performance at the low

SNR (SNR<5 dB), assuming a fixed transmission rate per user. MU-SM scheme

outperforms both BD-ZF and ZF MU-MIMO when SNR> 5dB. Additionally,

MU-SM starts to show noticeably better performance compared with BD-based

with V-BLAST detection scheme specifically when SNR> 10dB. We can also
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notice that, at high SNR values, the users in an MU-SM system lags by 1 dB

behind that of the TDMA-based SU-SM scheme. However, when we consider

that in MU-SM scheme there is actually 5 active users,
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Figure 6.6: BER performance comparison among different MU-MIMO schemes (K =

5, bk= 10 bits, and Nr=4).

each receiving 10 bits, we can then realize that this loss of 1 dB is inconsequential

compared to the gain achieved to the total transmission rate.

Fig. 6.7 compares the ergodic achievable rate achieved by MU-SM compared

with the SU-SM and BD-based MU-MIMO schemes. The results are obtained

with K = 4, Nt = 8, and Nr = 2. The ratios of uplink and downlink phases

are assumed to be 10% and 90%, respectively. The simulation results shows that

MU-SM scheme achieves a significant part of the BD-based MU-MIMO scheme

achievable rate and bound in (6.20) is tight for low and medium SNRs. As SNRs

goes to high SNR, the ergodic achievable rates of MU-SM and BD-based MU-

MIMO schemes both increase with fixed slope. As SNR increases, the achievable

rate is noticeable compared with SU-SM because of the additional degrees of

freedom that the proposed scheme offers.
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Figure 6.7: Ergodic achievable rate of MU-SMS, TDMA-based SM, and BD-based ZF

MU-MIMO in Rayleigh fading channel (Nt=8, K = 4, NR = 2, ŻMk = 2).

Fig. 6.8 shows the achievable spectral efficiency (in bps/Hz per user) and energy

efficiency for different number of transmit antennas Nt under MU-SM scheme.

For each point, the transmit power is optimized according to energy efficiency

iterative water-filling method. In this example, only pathloss is considered for the

large scale fading model and the pathloss model set to 128.1+37.6 log10(d), with d

is the distance in kilometer. The carrier frequency, transmission bandwidth, and

noise density N0 are set to 2GHz, 100MHz, and -174dBm/Hz, respectively. The

simulation parameters that are relevant to the PCM are given in Table 6.2. These

parameters has been taken from prior works of [47,50–57]. The optimum energy

efficiency can be achieved when the spectral efficiency per given user is 5.67

bps/HZ and Nt is 44. We can also notice that achieving spectral efficiency of

more than 8 bps/Hz per user is not possible due to the constraint on maximum

transmit power.
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Table 6.2: Multi-user SM Simulation Parameters.

Parameter Value Parameter Value

BBU Performance per Watt: ηcpu 14 GFLOPS /Watt RRU Power efficiency: η 0.34

Load consumption factor: ηload 1 Gbps/Watt Figure-of-merit: FOM 10−8

RRM: PRRM 1E-3 Watt LMA power gain: ηLAN 10

Circuit power: PBBU-crt 11 Watt Noise power: BN0 −90dBm

Backhaul Fixed power: Pfix 5 Watt Circuit power: PRRU-crt 13 Watt

Load factor: ηBH 0.4 Gbps/Watt Cooling Power: Pcooling 8%
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Figure 6.8: Spectral-energy efficiency trade-off against different numbers of transmit

antennas, Nt > K + 1, Nr = 2, Pmax = 100 Watt, and ŻMk = 2.
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6.5 Chapter Summary

This chapter has proposed two SM-like transmission schemes which can be con-

sidered as promising transmission schemes and likely candidates for the next-

generation MIMO-based cellular systems because of their ability to offer more

degrees of freedom. It has first proposed the pre-coded SM to be an additional

option that suits SU-MIMO systems. The chapter has also proposed a trans-

mission structure that enables the SM scheme to be adopted in an MU-MIMO

system, thus improving the spectral efficiency using the same low-complex SM

detector. Finally, the chapter has evaluated the spectral-energy efficiency trade-

off for the proposed multi user SM system, using an iterative energy-efficient

water-filling algorithm to optimise the transmit power.
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The emergence of easy-to-use smartphones has lead to an exponential increase

in annual data traffic. To address this challenge, an innovative cellular system

(i.e., 5G) is required. The 5G mobile cellular system should be designed with new

technologies to be able to creatively manage the traffic demands from different

perspectives. To achieve this intended objective, however, a certain prerequisite

is important to consider. Each year there is an expected traffic growth level based

upon a data traffic forecast. Therefore, it is important to specify the appropriate

spectral efficiency predicted to manage this level of traffic, whilst as the same

time being mindful of the energy consumption used. In other words, the spectral-

energy efficiency tradeoff tool is required to analyse the energy consumption of a

wireless technology for a given required spectral efficiency. Using this as a guide,

new technologies should be developed with the objective of enhancing the energy

efficiency, with the proviso that the spectral efficiency delivered is able to manage

the level of traffic predicted in a forecast graph.

In this thesis, we analyse the spectral-energy efficiency trade-off for four advanced

technologies, i.e., OFDMA, MFemtocell, CR, and enhanced SM-based schemes.

In this concluding chapter, we summarise the key findings of the chapters and

suggest some interesting ideas for future research directions.
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7.1 Summary of Results

Chapter 3 has studied the sub-channel and bit allocation scheme which min-

imises the energy per transmitted bit for MU-OFDMA systems. An optimisation

problem with an energy efficiency objective function can be reformulated to an

equivalent problem with a non-fractional function. The equivalent problem can

then be solved by using a parametric program. This reduces the complexity of

the original problem. By exploiting the integer linear fractional programming,

a novel iterative RRA algorithm has been proposed. The objective of the pro-

posed algorithm is to minimise the system energy efficiency subject to a given

spectral efficiency and QoS constraints. It is worth mentioning that the proposed

algorithm can also be tweaked to be applied to the energy-efficient optimisation

problem with an objective of maximising the number of bits per joule. The sim-

ulation results have demonstrated the potential benefits of having multiple users

in enhancing the energy efficiency. The simulation results have also highlighted

the impact of the users’ location on the achieved energy efficiency. More inter-

estingly, the simulation results have shown that the users’ QoS requirement has

a minor impact on the energy efficiency if a large spectral efficiency is needed.

Chapter 4 has introduced the concept of the MFemtocell. It has studied the

spectral and energy efficiency for the MFemtocell system with two resource par-

titioning schemes. It has been shown that the energy efficiency can be enhanced

by using the non-orthogonal scheme for the moderate and high SNR values. The

chapter has also investigated the spectral efficiency of two resource partitioning

schemes in a system level MFemtocell in the presence of opportunistic scheduling.

It has been shown that the spectral efficiency can be improved by employing the

non-orthogonal partitioning scheme to share the spectrum between the BS and

MFemtocells. The purpose of using the non-orthogonal transmission scheme is

that the access users are considered indoor and that they are within close prox-

imity to the MFemtocell station. Although the non-orthogonal scheme avoids the

interference, it comes at the price of reduced spectral efficiency. This makes the

non-orthogonal transmission scheme more attractive than the orthogonal trans-
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mission scheme, even in the absence of any kind of coordination between the BS

and MFemtocells. This chapter has also demonstrated that the implementation

of MFemtocells can reduce the signalling overhead resulting in an enhanced sys-

tem performance. In summary, the MFemtocell can be considered as a potential

candidate technology to be deployed in 5G mobile cellular system, to increase the

performance for users within vehicles as well as the overall system.

Chapter 5 has investigated the spectral and energy efficiency for interference-

tolerant CR networks. The initial analysis has studied the spectral-energy ef-

ficiency trade-off for an SUCR network under transmit power and interference

constraints. In the low SNR regime, transmitting a signal with average power

constraint provides better energy efficiency than transmitting a signal with peak

power constraint. In addition to that, the interference channel has no impact

on
(

Eb

N0

)
min

which is required for reliable communications. In the high SNR

regime, however, transmitting signals with either power constraint gives the same

energy efficiency.

We have also proposed a CR-based cellular network in which a secondary network

shares a spectrum belonging to an indoor system. This chapter has also demon-

strated that with CR technology, cellular operators can share their spectrum

opportunistically with each other to increase the performance of their network.

One way to do so is to share a spectrum in the uplink phase of an indoor system.

This is indeed an opportunity to make the implementation of the CR-based cellu-

lar network more feasible in the near future without the necessity of modification

at the end user’s handset. An example of a practical application of CR and its

integration with existing technology, is the use of carrier aggregation applied with

CR to allow greater spectrum accessibility. It manages to remain efficient by us-

ing the underutilised spectrum. The challenge is how to practically estimate the

interference channels by the STs. Relying on channel reciprocity or broadcasting

ICSIs can give some insight to solving this issue.

The spectral and energy efficiency of the proposed network have been analysed.

By adopting the extreme value theory, we have derived the spectral efficiency

of the MU-CR network under optimal power allocation. We have studied the
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impact of MU diversity gain in both the primary and secondary receivers on the

spectral and energy efficiency. The spectral efficiency of the CR network is rela-

tively large while the number of PRs is small. The spectral efficiency, however,

diminishes rapidly with the increase in the number of PRs. This degradation can

be compensated for by relaxing the interference threshold or by increasing the

number of SRs that are within a short distance from the ST.

Chapter 6 has worked on the evolution of the SM scheme. The SM standing

alone may be incapable of providing higher spectral efficiency and may not be

a potential solution in managing the increasing data traffic. To overcome this

limitation and keep the same level of low decoding complexity, we have proposed

two SM-like transmission schemes. Both can be considered as promising trans-

mission proposals and likely candidates for the 5G mobile cellular system. The

first scheme, called pre-coded SM, suits SU-MIMO systems. Here, the simulation

results have demonstrated that, for a given high transmission rate, the pre-coded

SM outperforms the optimal SM, MA-SM and V-BLAST schemes. The second

scheme allows the same SM-like decoder to be adapted in the MU-MIMO en-

vironment with the aid of BD precoding. Using BD precoding is an attractive

technique that transforms the MU-MIMO channel into parallel SU-MIMO chan-

nels. In this case, the transmitter transmits signals simultaneously to multiple

users. The users will then able to decode the received signal using the original SM

scheme. This provides more degrees of freedom whilst keeping the decoding com-

plexity at its low point. Hence, it is able to achieve a higher spectral efficiency

by using the same low-complex SM decoder. This chapter has also examined

the spectral-energy efficiency for the proposed MU-SM system by adopting the

energy-efficient water-filling algorithm. The analysis has been conducted using

a much more realistic PCM. The simulation results have shown that an opti-

mum energy efficiency with high spectral efficiency can be achieved by deploying

massive MIMO with a relatively large number of active users.
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Overall, the studies in Chapter 3 through Chapter 6 have demonstrated how new

advanced radio technologies, such as MFemtocell, CR and SM-based massive

MIMO, are required to offer greater spectral efficiency. The studies have shown

how the spectral-energy efficiency trade-off is an important tool that should be

taken into account when designing the 5G mobile cellular system. This tool helps

to understand and minimise the energy consumption whilst providing a certain

spectral efficiency which is able to manage a certain level of traffic. The re-

search conducted in this thesis is of great practical significance in assisting the

deployment of the next-generation network in future green wireless communica-

tion systems.

7.2 Future Research Topics

For the investigation on the energy-efficient resource allocation algorithm, this

thesis has only focused on the Dinkelbach paramedic approach to solve the op-

timisation problem. However, it is worth expanding the investigation to include

more fractional programming approaches, e.g., parameter-free convex optimisa-

tion, in the future work. In investigation of such techniques, the focus would be

on finding the most sub-optimal algorithm that can find a near-optimal solution

for the resource allocation whilst keeping the complexity as low as possible.

For the MFemtocell concept, the proposed scheme is based on the relaying method

to carry the traffic over the backhaul link. It is worth applying other backhauling

methods and compare their performance with each other. Another interesting

future work is how to allow MFemtocell architecture to be integrated into the

intelligent transportation system (ITS). This is especially beneficial for assisting

with vehicle traffic light control in relaying the important traffic messages through

the cellular system.

For the work on the CR network, this thesis considers only one registered CR

network with a single secondary cell. One possible future research direction would

be to extend the work by considering multiple registered CR networks that are
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all trying to share a spectrum which belongs to a primary network. These CR

networks must make sure that the aggregated interference is below the allowable

level. It would be worthwhile to investigate the impact of using a coordination

scheme for the CR network usage of the primary network spectrum on the system

performance, and compare it to a random allocation scheme, i.e., the absence of

any kind of coordination.

Furthermore, the work in this thesis assumes that the massive MIMO system

uses the TDD scheme to enable the acquisition of CSIs to be achieved via the

uplink pilot signals. However, the assumption here is that the uplink pilot signals

are fully orthogonal among the users. Lack of fully orthogonal pilots and the

growth of pilot resources along with the increase in the number of users create

a bottleneck that limits achieving the full benefit of the massive MIMO system.

An interesting area for future work is to combine the massive MIMO system with

device-to-device (D2D) communication. In such a case, the creation of a single

virtual massive MIMO is possible where the BS is communicating with a group of

users, virtually seen as one user that is equipped with large-scale antennas. D2D

communication is an innovative technology which enables direct communication

between nearby mobiles without the need of a cellular infrastructure. The D2D

has already been considered to be a part of the 3GPP LTE-Advanced cellular

system. Using this system can be deployed in both the TDD and FDD systems.

It is worth investigating the spectral-energy efficiency trade-off for this system

and compare the outcome with one of the MU massive MIMO systems that uses

a precoding scheme to mitigate the inter-user interference.

124



Appendix A
Proof of Theorem 1

Let the vector S is the feasible solution for problem P , then we have

q∗ =
f(x∗)
g(x∗)

≤ f(x)

g(x)
, ∀x ∈ X (A.1)

this leads to

f(x)− q∗g(x) ≥ 0 (A.2)

and concludes a fact that

min
x

{f(x)− q∗g(x)} = 0. (A.3)

Now if the x∗ is the optimum solution, then the following is right:

f(x)− q∗g(x) ≥ f(x∗)− q∗g(x∗) = 0 (A.4)

which proves Theorem 1.
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Derivation of (4.9)

The achievable spectral efficiency C, of the direct transmission scheme is given by

C = E

[
log2

(
1 +

|hd|2PBS

BN0

)]
(B.1)

where E[·] is the expectation operator. If we assume that |hd| follows a Rayleigh

fading distribution, |hd|2 has an exponential distribution (i.e., e−Adx, ∀x > 0)

with E[|hd|2] = Ad denoting the mean power of the channel. By letting SNR

≡ PBS

BN0
, (2.2) and (2.3) can be written as(

Eb

N0

)
min

=
ln 2

E[|hd|2] = −1.59 + 10 log10(Ad) dB (B.2)

S0 =
2

κ(|hd|) (B.3)

respectively. In (B.3), κ(|x|) is kurtosis of random variable x defined as [39]

κ(|x|) =
E[|x|4]
E[|x|2]2 . (B.4)

For Rayleigh fading, κ(|x|)=2 and consequently S0 = 1. We can notice that(
Eb

N0

)
min

is the same in AWGN and Rayleigh fading channels, but the slope,

S0, has a 2.5 dB difference. Applying (B.2) and (B.3) into (2.1), (4.9) is then

obtained.
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Derivation of (4.10)

Refereeing to Fig. 4.2 (a), the MFemtocell will receive the data in the T1 and

then transmit the data again to user in the T2. The achievable spectral efficiency

C over two time slots is limited to minimum capacity, i.e.,

C = min{Cb, Ca} (C.1)

where Cb and Ca are the spectral efficiency of the backhaul and access links,

respectively. However, by considering that the distance between the access user

and MFemtocell is much shorter that the distance between the BS and MFem-

tocell, we can then expect that the spectral efficiency is always limited by the

backhaul spectral efficiency. The spectral efficiency of the backhaul link can be

calculated by

Cb =
1

2
E

[
log2

(
1 +

α|hb|2P
BN0

)]
. (C.2)

The factor 1
2
in (C.2) is due to the fact that the transmission to the end user occurs

in two successive time slots. Moreover, both the BS and MFemtocell transmit

only half of the time. Using (2.2),
(

Eb

N0

)
min

can be calculated by(
Eb

N0

)
min

=

(
Eb

N0

)b

min

=
2 ln 2

αGAd

. (C.3)

The minimum normalised energy is characterised by the backhaul gain and the

fraction of the transmit power allocated to the BS. By substituting (2.3), the

slope of the spectral efficiency for the orthogonal scheme is expressed by
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S0 = (S0)b =
1

κ(|hd|) . (C.4)

Substituting (C.3) and (C.4) into (2.1), (4.10) can be obtained.
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Derivation of (4.11)

In the non-orthogonal partitioning scheme, both BS and MFemtocell can share

the spectrum of T2 to serve direct transmission and access users but at the price

of introducing additional interference to both users. The access user, however,

would experience the burden of the majority of the interference. Hence, the

impact of the MFemtocell interference on the direct transmission users can be

ignored and considered as background noise by assuming that the MFemtocell

and the user are a long distance apart. Nevertheless, the achievable spectral

efficiency is equal to

Cnon-orthog = min{Cb, Ca}+ Cd (D.1)

where Cd =
1
2
E

[
log2

(
1 + |hd|2PBS

2BN0

)]
is the spectral efficiency of the direct trans-

mission link. Here, it has been assumed that the transmit power of the BS is

shared equally between the MFemtocell and direct transmission user. Again, the

factor 1
2
is because the direct transmission happens only in the second time slot.

The spectral efficiency over the access link, Ca, and the backhaul link are given by

Ca =
1

2
E

[
log2

(
1 +

(1− α)|ha|2P
|hd|2PBS +BN0

)]
=

1

2
E

[
log2

(
1 +

(1− α)|ha|2SNR
|hd|2SNR + 1

)]
(D.2)

and

Cb =
1

2
E

[
log2

(
1 +

α|hb|2P
2BN0

)]
(D.3)
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respectively. Substituting (D.1)–(D.3) into (2.2),
(

Eb

N0

)
min

can be obtained as(
Eb

N0

)
min

=
ln 2

∂

(
1
2
E

[
min

{
log2

(
1+

(1−α)|ha|2SNR

|hd|2SNR+1

)
,log2(1+0.5α|hb|2SNR)

}
+log2(1+|hd|2SNR)

])

∂SNR

= max

{
4 ln 2

(αG+ 1)Ad
,

2 ln 2

(1− α)Aa + Ad)

}
, SNR = 0 (D.4)

where Aa = E[|ha|2] denotes the mean power of the access channel. The wide-

band slope S0 can be obtained by substituting (D.1)–(D.3) into (2.3) and can be

expressed by

S0 =

∂

(
E

[
min

{
log2

(
1+

(1−α)|ha|2SNR

|hd|2SNR+1

)
,log2(1+0.5α|hb|2SNR)

}
+log2(1+|hd|2SNR)

])

∂SNR

−
∂2

(
E

[
min

{
log2

(
1+ (1−α)|ha|2SNR

|hd|2SNR+1

)
,log2(1+0.5α|hb|2SNR)

}
+log2(1+|hd|2SNR)

])

∂SNR2

=
(Gα + 1)2

(G2α2 + 1)κ(|hd|) , SNR = 0. (D.5)

Putting (D.4) and (D.5) into (2.1) leads to (4.11).
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Derivation of (4.12)

For direct transmission user, in the high SNR regime, the slope of spectral effi-

ciency is equivalent to

S∞ = lim
SNR→∞

SNR
∂ (log2(1 + |hd|2SNR))

∂SNR
. (E.1)

The asymptotic penalty in the high SNR regime in (2.6) can be calculated by(
Eb

N0

)
penalty

= lim
SNR→∞

log2

(
SNR

1 + |hd|2SNR
)

= −E[log2(|hd|2)]. (E.2)

Since |hd|2 has an exponential probability density function, i.e., e−Adx, (E.2) can

be re-written as(
Eb

N0

)
penalty

= −
∫ ∞

0

e−Adx log2(x)dx =
γ

ln 2
+ ln(Ad) (E.3)

where Υ is the Euler-Mascheroni constant. Putting (E.1) and (E.3) into (2.4),

(4.12) can be obtained.
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Derivation of (4.13)

For the orthogonal scheme, the slope in the high SNR regime is equal to

S∞ = lim
SNR→∞

SNR
∂
(
min

{
1
2
log2(1 + 2αG|hd|2SNR), 12 log2(1 + 2(1− α)|ha|2SNR)

})
∂SNR

(F.1)

while
(

Eb

N0

)
penalty

is given by

(
Eb

N0

)
penalty

= max

{
lim

SNR→∞
log2

(
SNR

1 + 2αG|hd|2SNR
)
, lim
SNR→∞

log2

(
SNR

1 + 2(1− α)|ha|2SNR
)}

= max
{
−(log2(2αGAd) +

γ

ln 2
),−(log2(2(1− α)Aa) +

γ

ln 2
)
}
.

(F.2)

Substituting (F.1) and (F.2) into (2.4), (4.13) can be obtained.
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Derivation of (4.14)

For the non-orthogonal scheme, the slope of the spectral efficiency is give by

S∞ = lim
SNR→∞

SNR

⎧⎨⎩ ∂
(
E

[
min

{
log2

(
1 + (1−α)|ha|2SNR

|hd|2SNR+1

)
, log2 (1 + α|hb|2SNR)

}])
+ log2 (1 + |hd|2SNR)

⎫⎬⎭
∂SNR

.

(G.1)

Also, (2.6) can be calculated as(
Eb

N0

)
penalty

= −0.5 log2(αGAd) +
γ

ln 2
. (G.2)

Substituting (G.1) and (G.2) into (2.4), (4.14) can be obtained.
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Proof of Theorem 5.5

The minimum energy efficiency
(

Eb

No

)
min

occurs when γavg approaches zero, i.e.,(
Eb

N0

)
min

= lim
γavg→0

γavg
N0C

= lim
γavg�0

E[γ∗
s (gc, gi)]

N0E[log2(1 +
γ∗
s (gc,gi)gc

N0
)]

(H.1)

where the expectation in the denominator and nominator is with respect to two

random variables, i.e. gi and gc. We can notice from (5.4) that γavg vanishes

when γ0 approaches gc(max). Then, (H.1) can be re-written as

lim
γ0→gc(max)

∫ gc(max)

γ0

(∫ Q

1
γ0

−N0
gc

0

(
1
γ0

− N0

gc

)
+
∫∞

Q

1
γ0

−N0
gc

Q
gi

)
f(gc)f(gi)dgcdgi

N0

∫ gc(max)

0

(∫ Q

1
γ0

−N0
gc

0 log2

(
gc

γ0N0

)
+
∫∞

Q

1
γ0

−N0
gc

log2(1 +
gcQ
giN0

)

)
f(gc)f(gi)dgcdgi

.

(H.2)

Applying L’Hpital’s Rule into (H.2) and following Leibniz integral rule,
(

Eb

No

)
min

is calculated by

(
Eb

No

)
min

= lim
γ0→gc(max)

(
1
γ2
0

) ∫ gc(max)

γ0

∫ Q

1
γ0

−N0
gc

0 f(gc)f(gi)dgcdgi

1
γ0 ln 2

∫ gc(max)

γ0

∫ Q

1
γ0

−N0
gc

0 f(gc)f(gi)dgcdgi

. (H.3)

Expression (5.5) can then be obtained after applying γ0 → gc(max).
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Appendix I
Derivation of (5.6)

Let us first rewrite (5.1) as

C =

∫ ∞

0

∫ ∞

0

log2

(
1 +

gcγ
∗
s (gc, gi)

N0

)
f(gc)f(gi)dgcdgi. (I.1)

In the high SNR regime, for sufficiently large transmit power, γs(gc, gi))
∗ will be

equal to Q
gi
. Let x = gc

gi
and y = gi. In this case, f(x) =

∫∞
0

yfgc(xy)fgi(y)dy. If

both the cognitive and interference channels follow Rayleigh distribution (i.e.,

both gc and gi would be exponentially distributed with unit-mean), f(x) =∫∞
0

y exp(−xy) exp(−y)dy = 1
(1+x)2

. Therefore,

C =

∫ ∞

0

log2

(
1 +

xQ

No

)
f(x)dx

=

∫ ∞

0

log2

(
1 +

xQ

No

)
1

(1 + x)2
dx. (I.2)

By applying integration by parts method to (I.2), (5.6) can be obtained.
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Derivation of (5.13)

The distance from the ST to a given SR is an independent and identical random

variable following a uniform distribution. The probability that R ≤ r holds is

given by [145]

Fd(r) =

⎧⎨⎩
2r

d2−d2min
dmin ≤ r ≤ d

0 otherwise
(J.1)

where dmin (0 ≤ dmin ≤ d) is the minimum distance between the ST and a SR.

The cumulative distribution function (CDF) of pathloss in the dB scale can be

calculated by

FL(y) = Pr{a log(Ar) ≤ y} =

∫ e(
y
a )
A

dmin

2r

d2 − d2min

dr. (J.2)

The PDF, i.e., dFL(r)
dr

, is then given by

fL(y) =
2e(

2y
a )

aA2(d2 − d2min)
(J.3)

where a = ξβ. The channel gain gc(n) = S(n)
gp(n)

, where S(n) = gm(n)gs(n) is a

random variable derived from (5.10) to represent the combined shadowing and

fading channel status. The CDF of gc(n) can be expressed by

Fgc(g) =

∫ Lmax

Lmin

2e(
2y
a )

aA2(d2 − d2min)

{
1

2
+

1

2
erfc

(
ξ log(geξ

−1y)− μ√
2σ2

)}
dy.(J.4)
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Appendix J: Derivation of (5.13)

By differentiating (J.4) with respect to the random variable g and by applying

Leibniz’s rule, the PDF of gc(n) can be calculated by

fgc(g) =
2ξ

g
√
πaA2(d2 − d2min)

√
2σ2

e(
2
a
(μ−ξ log g))

∫ Lmax+ξ log g−μ

Lmin+ξ log g−μ

e(
2w
a )e

−
(

w2

2σ2

)
dw

(J.5)

= B
e(

2
a
(μ−ξ log g))

g

[
erfc

(
aw − 2σ2

a
√
2σ2

)]Lmax+ξ log g−μ

Lmin+ξ log g−μ

where we have used d
dx
erfc(x) = 2√

π
e−x2

and w = (ξ log(g) + y − μ). By some

manipulations, (5.13) can be obtained.
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Derivation of (5.19)

To derive an explicit expression for the PDF of the γ́, we have to first find the dis-

tribution ofX = max
n=1,...,N

{gc(N)} and Y = max
k=1,...,K

{gi(K)}. Since [gc(1), gc(2), ..., gc(n)]
and [gi(1), gi(2), ..., gi(k)] are independent random variables that are drawn from

a common distribution, i.e., (5.13), then the CDF of the maximum for any size

of the samples is equal to [Fgc(g)]
N and [Fgi(g)]

K, respectively [146]. Using these

two new distributions may not provide understandable results. However, the

distribution of the maximum function can be tracked using the extreme-value

theory, as we will see in the following Lemma.

Lemma 1. Let z1, z2, ..., zn be independent and identically distributed (i.i.d.)

random variables drawn from a common CDF FZ(z). By setting Z = max
n=1,...,N

{zn},
there exist a sequence of constants λ̄, λ̄, δ̄ and some non-degenerate distribution

function H̄Z(λ̄, δ̄, ζ̄) such that f(z) converges to the distribution H̄Z(λ̄, δ̄, ζ̄). The

distribution H̄Z(λ̄, δ̄, ζ̄) is called generalised extreme value distribution (GEVD)

[146] and it is equal to

H̄Z(λ̄, δ̄, ζ̄) = exp−
[
1 + ζ̄

(
z − λ̄

δ̄

)]−1
ζ

(K.1)

where λ̄, δ̄, and ζ̄ are the location, scale, and shape parameters, respectively.

The GEVD inherently contains the three well-known extreme value distributions,

i.e., Gumbel, Weilbull, and Fréchet distributions. If ζ̄ > 0, then the distribution
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Appendix K: Derivation of (5.19)

converges to Weilbull. If ζ̄ < 0, it converges to Fréchet distribution. If ζ̄ = 0,

then it converges to Gumbel distribution. It has been found that the following

condition is sufficient to determine if FX(x) and FY (y) belong to type II or Fréchet

distribution domain of attraction [126, Theorem 1.6.1]:

lim
t�∞

tf(t)

1− F (t)
= α > 0. (K.2)

Therefore,

FX(x) � exp−
(
x− λc

δc

)β̄

(K.3)

FY (y) � exp−
(
y − λp

δp

)β̄

(K.4)

where λc = λ̄c − δ̄c
ζ̄c
, δc = δ̄c

ζ̄c
, λp = λ̄p − δ̄p

ζ̄p
, δp = δ̄p

ζ̄p
, and β̄ = −1

ζ̄
. By applying

Theorem 9.5 of [146], δc and δp can be calculated by δc = F−1
gc

(
1− 1

N

)
and

δp = F−1
gi

(
1− 1

K

)
, respectively. Here, λc and λp both approach 0, and β̄ always

equals -0.5 for all cases. Due to the complicated distribution of channel gain,

finding closed from expressions for δc and δp is difficult. In this work, however,

we adopt the ML method to estimate the parameters of (K.1), and consequently

δc and δp [146]. Other methods to estimate these parameters can be found in [147].

Now, the conditional distribution of γ́, i.e., Pr {γ́ ≤ γ́0}, can be expressed by

F (γ́) = exp

{
−
(
γpkδc
Iγ́

)β̄

−
(
δpγpk
Q

)β̄
}

+ β̄δβ̄p

∫ ∞

Q
γpk

y−(β̄+1) exp

{
−
(
Qδc
Iγ́y

)β̄

−
(
δp
y

)β̄
}
dy

= exp
{
−
(
K1γ́

−β̄
)
−K2

}
+

Kγ́β̄(
Kγ́β̄ + 1

) (1− exp
[
−
(
K1γ́

−β̄ +KK1

)])
(K.5)

where W =
(

Qδc
Iγ́y

)β̄

. Expression (5.19) is obtained by differentiating Fγ́(γ́0) with

respect to γ́0.
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Appendix L
Derivation of (5.26)

In (K.5), if we assume γ̄ � ∞, then the term exp
{− (

K1γ́
−β
)}

vanishes. There-

fore, the PDF of the random variable γ́ is given by

f(γ́) ≈ K

2 (K + γ́−0.5)2 γ́
3
2

(L.1)

which is then used to calculate Cmax, as expressed by (5.26).
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Derivation of (5.31)

From (2.6), we have(
Eb

N0

)
penalty

= lim
SNR�∞

(
log2(SNR)−

E[log2 (1 + SNRX)]

S∞

)
(M.1)

where the expectation is with respect to the random variable X . Knowing that∫∞
0

f(X)dX = 1, (M.1) can be re-written as(
Eb

N0

)
penalty

=

∫ ∞

0

log2

[
lim

SNR�∞
SNR

(1 + SNRX)

]
f(X)dX. (M.2)

Applying L’Hpital’s rule into (M.2) leads to(
Eb

N0

)
penalty

=

∫ ∞

0

log2

(
1

X

)
f(X)dX (M.3)

which is the expected value of log2
(

1
X

)
and (5.31) is then obtained.

141



Appendix N
Projection Matrix

The matrix can be considered as a projection matrix when it satisfies the prop-

erties of idempotence and Hermitian symmetry [148], i.e.,

P2 = P

PH = P. (N.1)

The eigenvalue of a projection are either 0 or 1. However, that does not mean

every matrix whose eigenvalues are 0 or 1 is a projection. If we assumed that H̄m

is disjoint, then building a projection whose range is H̄m is given by [148]

Pm = H̄m(H̄
H
mH̄m)

−1H̄
H
m = H̄mWm (N.2)

where Wm ∈ CNr×n is the weight matrix. This requires n+t ≤ Nr, with t (t ≥ 1)

is an integer number. The orthogonal projection whose range is H̄
⊥
m (orthogonal

to a subspace vm, which is spanned by H̄m) can then be calculated by

P⊥
m = I− H̄mWm. (N.3)

The received signal y and the corresponding H̄m span in the same subspace.

Therefore, by ignoring the impact of the noise, y also lies in the null space of the

corresponding orthogonal projection P⊥
m, as shown in Fig. N.1 In this case,

P⊥
m=jy = 0 (N.4)

with j is the correct antenna group index.
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Appendix N: Projection Matrix

mP

y

2,mh mv

mP

1,mh

Figure N.1: A schematic representation of a projection operation: Pm is the projection

whose range is H̄m, P⊥
m is the orthogonal projection, y is projected onto a subspace

vm that contains vector H̄m.
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Appendix O
Derivation of (6.30)

By introducing the dual variable associated with the spectral efficiency constraint,

the partial Lagrangian of this problem is expressed as

L(Pt, ν) = E

[
KN̄ log

(
1 +

Pt(λ)

N0

λ

)]
− q

(
E[Pt]

ηPA
+ E

[
KN̄ log

(
1 +

Pt(λ)

N0
λ

)](
1

ηload
+

1

ηBh

)
+ Pother

)
− ν

(
E

[
KN̄ log

(
1 +

Pt(λ)

N0
λ

)]
− SE

)
(O.1)

where ν is the nonnegative dual variable associated with the constraint

E

[
KN̄ log

(
1 +

Pt(λ)

N0

λ

)]
≥ SE. (O.2)

The dual function is then expressed as

max
Pt

L(Pt, ν). (O.3)

It is certain that the duality gap is zero for the convex optimisation problem

addressed here, and thus solving its dual problem is tantamount to solving the

problem of (6.27)–(6.29). According to the KKT conditions [149], however, the

optimal solutions needs to satisfy (6.28). Next if we differentiate the Lagrangian

and set the derivative equal to zero, (6.30) can be obtained.
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