820 research outputs found

    Improving situation awareness of a single human operator interacting with multiple unmanned vehicles: first results

    Get PDF
    In the context of the supervision of one or several unmanned vehicles by a human operator, the design of an adapted user interface is a major challenge. Therefore, in the context of an existing experimental set up composed of a ground station and heterogeneous unmanned ground and air vehicles we aim at redesigning the human-robot interactions to improve the operator's situation awareness. We base our new design on a classical user centered approach

    Using acoustic sensor technologies to create a more terrain capable unmanned ground vehicle

    No full text
    Unmanned Ground Vehicle’s (UGV) have to cope with the most complex range of dynamic and variable obstacles and therefore need to be highly intelligent in order to cope with navigating in such a cluttered environment. When traversing over different terrains (whether it is a UGV or a commercial manned vehicle) different drive styles and configuration settings need to be selected in order to travel successfully over each terrain type. These settings are usually selected by a human operator in manned systems on what they assume the ground conditions to be, but how can an autonomous UGV ‘sense’ these changes in terrain or ground conditions? This paper will investigate noncontact acoustic sensor technologies and how they can be used to detect different terrain types by listening to the interaction between the wheel and the terrain. The results can then be used to create a terrain classification list for the system so in future missions it can use the sensor technology to identify the terrain type it is trying to traverse, which creating a more autonomous and terrain capable vehicle. The technology would also benefit commercial driver assistive technologie

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    Investigating the mobility of unmanned ground vehicles.

    Get PDF
    Unmanned Vehicles have to be as capable if not more capable than a human in the same situation, especially when used by the military to serve as an extension of the soldiers capability on the battlefield. All unmanned systems types have obstacles and encounter difficulties when trying to complete their missions, but none more so than the Unmanned Ground Vehicle (UGV). This is because UGV’s have to operate in environments with a large amount of variables which includes a range of different obstacles, and terrain types; making the simple task of driving from A to B very hard. This highlights the fact that a UGV’s capability is predominantly dependant on its mobility and is seen as one of the most important factors in their development, because the more capable of traversing over all types of terrain the vehicle is, then the less likely it will become stuck and need human assistance. This paper investigates current military UGV’s, their mobility capabilities and the future of UGV development

    Teleoperated visual inspection and surveillance with unmanned ground and aerial vehicles,” Int

    Get PDF
    Abstract—This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle) consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicles (UAV). The paper focuses on three topics of the inspection with the combined UGV and UAV: (A) teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B) the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C) the architecture and hardware of the UAV

    Modified Cooper Harper Scales for Assessing Unmanned Vehicle Displays

    Get PDF
    In unmanned vehicle (UV) operations, displays are often the only information link between operators and vehicles. It is essential these displays present information clearly and efficiently so that operators can interact with the UVs to achieve mission objectives. While there are a variety of metrics to evaluate displays, there is no current standardized methodology for operators to subjectively assess a display’s support and identify specific deficiencies. Such a methodology could improve current displays and ensure that displays under development support operator processes. This report presents a quasi- subjective display evaluation tool called the Modified Cooper-Harper for Unmanned Vehicle Displays (MCH-UVD) diagnosis tool. This tool, adapted from the Cooper-Harper aircraft handling scale, allows operators to assess a display, translating their judgments on potential display shortcomings into a number corresponding to a particular deficiency in operator support. The General MCH-UVD can be used to diagnose deficiencies for any UV display, while the Specific MCH-UVD is UV and mission specific in its evaluation of displays. This report presents the General MCH-UVD and provides guidance on how to adapt it to create a Specific MCH-UVD through the use of UV mission taxonomies and a questioning method. A UGV search mission case study provides a how-to guide example for generating a Specific MCH-UVD. The report also presents an experiment conducted to validate the MCH-UVD and assess if a mission-specific version is necessary, or if the general form of the MCH-UVD is sufficient for different UV display evaluation. The report concludes with discussion on how to administer the scale, when a Specific scale is necessary, MCH-UVD diagnosis tool limitations, and future work.Prepared for US Army Aberdeen Testing Cente

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems

    Vehicle Teleoperation Interfaces

    Get PDF

    Interoperability in a Heterogeneous Team of Search and Rescue Robots

    Get PDF
    Search and rescue missions are complex operations. A disaster scenario is generally unstructured, time‐varying and unpredictable. This poses several challenges for the successful deployment of unmanned technology. The variety of operational scenarios and tasks lead to the need for multiple robots of different types, domains and sizes. A priori planning of the optimal set of assets to be deployed and the definition of their mission objectives are generally not feasible as information only becomes available during mission. The ICARUS project responds to this challenge by developing a heterogeneous team composed by different and complementary robots, dynamically cooperating as an interoperable team. This chapter describes our approach to multi‐robot interoperability, understood as the ability of multiple robots to operate together, in synergy, enabling multiple teams to share data, intelligence and resources, which is the ultimate objective of ICARUS project. It also includes the analysis of the relevant standardization initiatives in multi‐robot multi‐domain systems, our implementation of an interoperability framework and several examples of multi‐robot cooperation of the ICARUS robots in realistic search and rescue missions
    corecore