4,072 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements

    Get PDF
    Condition monitoring is a highly effective prognostic tool for incipient insulation degradation to avoid sudden failures of electrical components and to keep the power network in operation. Improved operational performance of the sensors and effective measurement techniques could enable the development of a robust monitoring system. This paper addresses two main aspects of condition monitoring: an enhanced design of an induction sensor that has the capability of measuring partial discharge (PD) signals emerging simultaneously from medium voltage cables and transformers, and an integrated monitoring system that enables the monitoring of a wider part of the cable feeder. Having described the conventional practices along with the authors’ own experiences and research on non-intrusive solutions, this paper proposes an optimum design of a Rogowski coil that can measure the PD signals from medium voltage cables, its accessories, and the distribution transformers. The proposed PD monitoring scheme is implemented using the directional sensitivity capability of Rogowski coils and a suitable sensor installation scheme that leads to the development of an integrated monitoring model for the components of a MV cable feeder. Furthermore, the paper presents forethought regarding huge amount of PD data from various sensors using a simplified and practical approach. In the perspective of today’s changing grid, the presented idea of integrated monitoring practices provide a concept towards automated condition monitoring.fi=vertaisarvioitu|en=peerReviewed

    A review of optimal planning active distribution system:Models, methods, and future researches

    Get PDF
    Due to the widespread deployment of distributed energy resources (DERs) and the liberalization of electricity market, traditional distribution networks are undergoing a transition to active distribution systems (ADSs), and the traditional deterministic planning methods have become unsuitable under the high penetration of DERs. Aiming to develop appropriate models and methodologies for the planning of ADSs, the key features of ADS planning problem are analyzed from the different perspectives, such as the allocation of DGs and ESS, coupling of operation and planning, and high-level uncertainties. Based on these analyses, this comprehensive literature review summarizes the latest research and development associated with ADS planning. The planning models and methods proposed in these research works are analyzed and categorized from different perspectives including objectives, decision variables, constraint conditions, and solving algorithms. The key theoretical issues and challenges of ADS planning are extracted and discussed. Meanwhile, emphasis is also given to the suitable suggestions to deal with these abovementioned issues based on the available literature and comparisons between them. Finally, several important research prospects are recommended for further research in ADS planning field, such as planning with multiple micro-grids (MGs), collaborative planning between ADSs and information communication system (ICS), and planning from different perspectives of multi-stakeholders

    Operational Planning and Optimisation in Active Distribution Systems for Flexible and Resilient Power

    Get PDF
    The electricity network is undergoing significant changes to cater to environmental-deterioration and fuel-depletion issues. Consequently, an increasing number of renewable resources in the form of distributed generation (DG) are being integrated into medium-voltage distribution networks. The DG integration has created several technical and economic challenges for distribution network operators. The main challenge is basically the problem of managing network voltage profile and congestion which is caused by increasing demand and intermittent DG operations. The result of all of these changes is a paradigm shift in the way distribution networks operate (from passive to active) and are managed that is not limited only to the distribution network operator but actively engages with network users such as demand aggregators, DG owners, and transmission-system operators. This thesis expands knowledge on the active distribution system in three specific areas and attempts to fill the gaps in existing approaches. A comprehensive active network management framework in active distribution systems is developed to allow studies on (i) the flexibility of network topology using modern power flow controllers, (ii) the benefits of centralised thermal electricity storage in achieving the required levels of flexibility and resiliency in an active distribution system, and (iii) system resiliency toward fault occurrence in hybrid AC/DC distribution systems. These works are implemented within the Advanced Interactive Multidimensional Modelling Systems (AIMMS) software to carry out optimisation procedure. Results demonstrate the benefit provided by a range of active distribution system solutions and can guide future distribution-system operators in making practical decisions to operate active distribution systems in cost-effective ways

    Distributed photovoltaic systems: Utility interface issues and their present status. Intermediate/three-phase systems

    Get PDF
    The interface issues between the intermediate-size Power Conditioning Subsystem (PCS) and the utility are considered. A literature review yielded facts about the status of identified issues

    Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements

    Get PDF
    Condition monitoring is a highly effective prognostic tool for incipient insulation degradation to avoid sudden failures of electrical components and to keep the power network in operation. Improved operational performance of the sensors and effective measurement techniques could enable the development of a robust monitoring system. This paper addresses two main aspects of condition monitoring: an enhanced design of an induction sensor that has the capability of measuring partial discharge (PD) signals emerging simultaneously from medium voltage cables and transformers, and an integrated monitoring system that enables the monitoring of a wider part of the cable feeder. Having described the conventional practices along with the authors' own experiences and research on non-intrusive solutions, this paper proposes an optimum design of a Rogowski coil that can measure the PD signals from medium voltage cables, its accessories, and the distribution transformers. The proposed PD monitoring scheme is implemented using the directional sensitivity capability of Rogowski coils and a suitable sensor installation scheme that leads to the development of an integrated monitoring model for the components of a MV cable feeder. Furthermore, the paper presents forethought regarding huge amount of PD data from various sensors using a simplified and practical approach. In the perspective of today's changing grid, the presented idea of integrated monitoring practices provide a concept towards automated condition monitoring.This work is done under the project Smart Condition Monitoring of Power Grid that is funded by the Academy of Finland (Grant No. 309412)

    Maximising Penetration of Distributed Generation in Existing Urban Distribution Network (UDN)

    Get PDF
    Electrical power generation is currently moving towards greater penetration of distribution generation (DG), using multiple small generators instead of fewer and larger units. This can potentially create improvements in efficiency, by allowing use of waste heat (cogeneration). However, it also generates new problems related to control and co-ordination of large numbers of DGs, usually connected across the urban distributed network (UDN). In particular, concerns about security of supply and reliability together with the integration of new energy resources, are presenting a number of new challenges to system operators. One of the major changes that are being observed is the connection of significant levels of generation to the UDN. To accommodate this new type of generation the existing UDN should be utilised and developed in an optimal manner. It is well known that present arrangements for planning, dispatching and protection of central power generators are not directly applicable to the new technology. This thesis presents a mathematical method that facilitates the large scale integration of CHP generation, as the most common type of DG, connected onto the UDN. A new methodology is developed to determine the optimal allocation and, size of CHP generation capacity with respect to the technical, environmental and economic constraints of the UDN. The method estimates the adverse impact of any particular constraints with respect to the size and location of DG/CHP plants connected into the UDN. Also, the method provides the basis for quantifying the contribution that DG/CHP units makes to the security of energy supply i.e to what extent the particular DG/CHP can reduce the operational performance demand for the UDN facilities and substitute for the network assets. The method is implemented and tested on a 34 busbars network that represents a section of an UDN. The impact of CHP generation on losses in the UDN is also analysed and incorporated into the optimal capacity allocation methodology. The installation of CHP generation is leading to a major change in the way UDNs are designed and operated. UDNs are now used as a media to connect geographically distributed energy generation to the electrical power system, thereby converting what were originally energy supply networks to be used both for distribution and harvesting of energy. A mathematical model in the form of a Multiple Regression Analysis is presented in order to determine the maximum capacity of CHP generation that may be connected in a given area, while taking account of connection costs as well as technical, environmental, economic and operational setting constraints. Results obtained from various analyses related to the network performance and management are used as data for multiple regression analysis. These analyses include: load flow, fault analysis, environmental and economic analysis. The increased applications of CHP generation presents a substantial challenge to the existing connection policies used to connect CHP plant into UDNs. The section of a typical Irish UDN is used as a case study, and with reference to the available network parameters, the cost and benefits of CHP generations are determined under a number of planning and operational strategies. It is shown that a substantial increase in the net benefits of CHP generation is gained if the appropriate connection method is applied from the start and equally that significant CHP generation connection costs are sustained if ad hoc methods are employed. Connection of CHP generation can profoundly alter the operation of a UDN. Where CHP generation capacity is comparable to or larger than local demand there are likely to be observable impacts on network power flows and voltage regulation. In fact, two major problems to be considered are the voltage levels and operation of protection during faults and disturbances. New connection of CHP generation must be evaluated to identify and quantify any adverse impact on the security and quality of local electricity supplies. There are a number of well-established methods to deal with adverse impacts caused by CHP generation connection into a UDN. While a range of options exist to mitigate adverse impacts, under current commercial arrangements the developer will largely bear the financial responsibility for their implementation. The economic implication can make potential schemes less attractive and in some instances have been an impediment to the development of CHP generation in urban areas. Development of a CHP generation system connection algorithm corresponding to the Least Cost Technically Acceptable (LCTA) method is absolutely vital in order to maximise the penetration of CHP generation into existing UDN with respect to different UDN/CHP system operational settings/constraints and minimal economic implication. In this thesis, results from a number of mitigation methods analysis are compared and used to create the connection process algorithm. This algorithm equally can be applied in the connection process of other distribution generation technologies into existing UDNs

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identiïŹ cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and ïŹ‚ exible, inverter-equipped testing microgrids. To this end, the combination of ïŹ‚ exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries
    • 

    corecore