902 research outputs found

    A Study on the Automatic Ship Control Based on Adaptive Neural Networks

    Get PDF
    Recently, dynamic models of marine ships are often required to design advanced control systems. In practice, the dynamics of marine ships are highly nonlinear and are affected by highly nonlinear, uncertain external disturbances. This results in parametric and structural uncertainties in the dynamic model, and requires the need for advanced robust control techniques. There are two fundamental control approaches to consider the uncertainty in the dynamic model: robust control and adaptive control. The robust control approach consists of designing a controller with a fixed structure that yields an acceptable performance over the full range of process variations. On the other hand, the adaptive control approach is to design a controller that can adapt itself to the process uncertainties in such a way that adequate control performance is guaranteed. In adaptive control, one of the common assumptions is that the dynamic model is linearly parameterizable with a fixed dynamic structure. Based on this assumption, unknown or slowly varying parameters are found adaptively. However, structural uncertainty is not considered in the existing control techniques. To cope with the nonlinear and uncertain natures of the controlled ships, an adaptive neural network (NN) control technique is developed in this thesis. The developed neural network controller (NNC) is based on the adaptive neural network by adaptive interaction (ANNAI). To enhance the adaptability of the NNC, an algorithm for automatic selection of its parameters at every control cycle is introduced. The proposed ANNAI controller is then modified and applied to some ship control problems. Firstly, an ANNAI-based heading control system for ship is proposed. The performance of the ANNAI-based heading control system in course-keeping and turning control is simulated on a mathematical ship model using computer. For comparison, a NN heading control system using conventional backpropagation (BP) training methods is also designed and simulated in similar situations. The improvements of ANNAI-based heading control system compared to the conventional BP one are discussed. Secondly, an adaptive ANNAI-based track control system for ship is developed by upgrading the proposed ANNAI controller and combining with Line-of-Sight (LOS) guidance algorithm. The off-track distance from ship position to the intended track is included in learning process of the ANNAI controller. This modification results in an adaptive NN track control system which can adapt with the unpredictable change of external disturbances. The performance of the ANNAI-based track control system is then demonstrated by computer simulations under the influence of external disturbances. Thirdly, another application of the ANNAI controller is presented. The ANNAI controller is modified to control ship heading and speed in low-speed maneuvering of ship. Being combined with a proposed berthing guidance algorithm, the ANNAI controller becomes an automatic berthing control system. The computer simulations using model of a container ship are carried out and shows good performance. Lastly, a hybrid neural adaptive controller which is independent of the exact mathematical model of ship is designed for dynamic positioning (DP) control. The ANNAI controllers are used in parallel with a conventional proportional-derivative (PD) controller to adaptively compensate for the environmental effects and minimize positioning as well as tracking error. The control law is simulated on a multi-purpose supply ship. The results are found to be encouraging and show the potential advantages of the neural-control scheme.1. Introduction = 1 1.1 Background and Motivations = 1 1.1.1 The History of Automatic Ship Control = 1 1.1.2 The Intelligent Control Systems = 2 1.2 Objectives and Summaries = 6 1.3 Original Distributions and Major Achievements = 7 1.4 Thesis Organization = 8 2. Adaptive Neural Network by Adaptive Interaction = 9 2.1 Introduction = 9 2.2 Adaptive Neural Network by Adaptive Interaction = 11 2.2.1 Direct Neural Network Control Applications = 11 2.2.2 Description of the ANNAI Controller = 13 2.3 Training Method of the ANNAI Controller = 17 2.3.1 Intensive BP Training = 17 2.3.2 Moderate BP Training = 17 2.3.3 Training Method of the ANNAI Controller = 18 3. ANNAI-based Heading Control System = 21 3.1 Introduction = 21 3.2 Heading Control System = 22 3.3 Simulation Results = 26 3.3.1 Fixed Values of n and = 28 3.3.2 With adaptation of n and r = 33 3.4 Conclusion = 39 4. ANNAI-based Track Control System = 41 4.1 Introduction = 41 4.2 Track Control System = 42 4.3 Simulation Results = 48 4.3.1 Modules for Guidance using MATLAB = 48 4.3.2 M-Maps Toolbox for MATLAB = 49 4.3.3 Ship Model = 50 4.3.4 External Disturbances and Noise = 50 4.3.5 Simulation Results = 51 4.4 Conclusion = 55 5. ANNAI-based Berthing Control System = 57 5.1 Introduction = 57 5.2 Berthing Control System = 58 5.2.1 Control of Ship Heading = 59 5.2.2 Control of Ship Speed = 61 5.2.3 Berthing Guidance Algorithm = 63 5.3 Simulation Results = 66 5.3.1 Simulation Setup = 66 5.3.2 Simulation Results and Discussions = 67 5.4 Conclusion = 79 6. ANNAI-based Dynamic Positioning System = 80 6.1 Introduction = 80 6.2 Dynamic Positioning System = 81 6.2.1 Station-keeping Control = 82 6.2.2 Low-speed Maneuvering Control = 86 6.3 Simulation Results = 88 6.3.1 Station-keeping = 89 6.3.2 Low-speed Maneuvering = 92 6.4 Conclusion = 98 7. Conclusions and Recommendations = 100 7.1 Conclusion = 100 7.1.1 ANNAI Controller = 100 7.1.2 Heading Control System = 101 7.1.3 Track Control System = 101 7.1.4 Berthing Control System = 102 7.1.5 Dynamic Positioning System = 102 7.2 Recommendations for Future Research = 103 References = 104 Appendixes A = 112 Appendixes B = 11

    Application of Machine and Deep Learning to Mooring, Dynamic Positioning, and Ship Berthing Systems

    Get PDF
    In recent years, there have been a surge of advances in machine and deep learning due to accessibility to a large amount of digital data, developments in computer hardware, and state-of-the-art machine and deep learning algorithms proposed. The robust performance of the recent machine and deep learning algorithms have been proven in many applications such as natural language processing, computer vision, market research, self-driving car, autonomous shipping, and so on. The application of machine and deep learning is very powerful in a sense that one does not need to build such a complex and hard-coded system to implement sophisticated functionality. Instead, a machine and deep learning-based system can be trained on a collected training dataset and the trained system can robustly perform as desired. There are two main advantages of the use of machine and deep learning-based systems over the traditional hard-coded systems. First, as mentioned, the machine and deep learning-based systems do not require such complex and hard-coded algorithms, therefore, such learning systems are less prone to errors and faster to implement without much debugging. Second, the machine and deep learning-based systems can adapt to varying circumstances through re-training based on collected data. An example of the varying circumstance can be a varying purchase trend impacted by the media. Therefore, even if the input distribution from the circumstance changes over time, the machine and deep learning-based systems can easily adapt. In this paper, the machine and deep learning algorithms are applied to various applications such as a mooring system, dynamic positioning system (DPS), and ship berthing system. Specifically, the machine and deep learning algorithms are utilized to build a mooring line tension prediction system, a feed-forward system for DPS, an adaptive proportional-integral-derivative (PID) controller for DPS, and an automatic ship berthing system.1. Introduction 1 2. Background of Machine and Deep Learning 4 2.1 Machine Learning 4 2.2 Deep Learning 9 2.2.1 Types of Deep Learning Layers 9 2.2.2 Activation Function and Weight Initialization Methods 18 2.2.3 Optimizers 19 2.2.4 Training Dataset Scaling 26 2.2.5 Transfer Learning 28 2.3 Reinforcement Learning 28 3. Machine Learning-Based Mooring Line Tension Prediction System 39 3.1 Introduction 39 3.2 Brief Comparison Between Conventional and Proposed Mooring Line Tension Prediction Systems 40 3.3 Proposed K-Means-Based Sea State Selection Method 41 3.3.1 Padding 42 3.3.2 K-Means 44 3.3.3 K-Means-Based Monte Carlo Method 45 3.3.4 Feature Vector Generation 47 3.3.5 Clustering of Relevant Sampled Sea States with K-Means 48 3.4 Proposed Hybrid Neural Network Architecture 50 3.4.1 Architecture 50 3.4.2 Training Procedure 54 3.5 Simulation and Result Discussion 55 3.5.1 Simulation Conditions 55 3.5.2 Overall Hs-focused NN model 56 3.5.3 Effectiveness of Batch Normalization 59 3.5.4 Low Hs-focused NN model 60 3.5.5 Proposed Hybrid Neural Network Architecture 61 4. Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 65 4.1 Introduction 65 4.2 PID Feed-Back System and Wind Feed-Forward System 66 4.3 Proposed Motion Predictive Control 69 4.4 Numerical Modeling of Target Ship's Behavior 73 4.4.1 Target Ship and DPS 73 4.4.2 Equation of Motion of Target Ship 74 4.5 Effectiveness of Proposed Algorithms 76 4.5.1 Simulation Conditions 76 4.5.2 Types of Deep Learning Layers 77 4.5.3 Real-Time Normalization Method 78 4.5.4 Replay Buffer 80 4.6 Simulation and Result Discussion 81 4.6.1 Simulation Under One Environmental Condition 81 4.6.2 Simulation Under Two Different Sequential Environmental Conditions 84 5. Reinforcement Learning-Based Adaptive PID Controller for DPS 88 5.1 Introduction 88 5.2 Target Ship and DPS 90 5.2.1 PID Control in DPS 91 5.2.2 Hydrodynamics Associated with a Drifting Motion of a Ship 93 5.3 Proposed Adaptive Fine-Tuning System for PID Gains in DPS 95 5.4 Simulation Results 99 5.4.1 Effectiveness of the Proposed Adaptive Fine-Tuning System 99 5.4.2 Overall Performance Assessment 103 5.5 Discussion 107 6. Application of Recent Developments in Deep Learning To ANN-based Automatic Berthing System 111 6.1 Introduction 111 6.2 Mathematical Model of Ship Maneuvering 112 6.2.1 Mathematical Model for Ship-Maneuvering Problem 113 6.2.2 Modeling of Propeller and Rudder 114 6.3 Artificial Neural Network and Important Factors in Training the Network 115 6.3.1 Artificial Neural Network 115 6.3.2 Optimizer 117 6.3.3 Input Data Scaling 117 6.3.4 Number of Hidden Layers 118 6.3.5 Overfitting Prevention 118 6.4 Application of Recent Developments in Deep Learning to Automatic Berthing 119 6.5 Simulation and Result Discussion 125 7. Conclusion 131 7.1 Machine Learning-Based Mooring Line Tension Prediction System 131 7.2 Motion Predictive Control for DPS Using Predicted Drifted Ship Position Based on Deep Learning and Replay Buffer 132 7.3 Reinforcement Learning-Based Adaptive PID Controller for DPS 133 7.4 Application of Recent Developments in Deep Learning to ANN-Based Automatic Berthing System 134Maste

    Modeling and Simulation of Automatic Berthing based on Bow and Stern Thruster Assist for Unmanned Surface Vehicle

    Get PDF
    In order to solve the technical problems of autonomous berthing of the Unmanned Surface Vehicle (USV), this research has met the requirements of maneuverability berthing under different conditions by effectively using the bow and stern thrusters, which is a technological breakthrough in actual production and life.Based on the MMG model, the maneuverability mathematical model of the USV with bow and stern thruster was established. And the motion simulation of USV maneuvering was carried out through the numerical simulation calculation. Then the berthing plan was designed based on the maneuverability analysis of the USV low-speed motion, and the simulation of automatic berthing for USV was carried out. The research results of this paper can be of certain practical significance for the USV based on the support of the bow and stern thruster in the berthing. At the same time, it also provides a certain theoretical reference for the handling of the USV automatic berthing

    e-Navigation: Challenges and Opportunities

    Get PDF
    e-Navigation is a recent IMO initiative that aims to integrate existing/new shipboard and shore-based navigational tools into an โ€œall embracingโ€ system. Defined as: โ€œ... the harmonised collection, integration, exchange, presentation and analysis of maritime information onboard and ashore by electronic means to enhance berth to berth navigation and related services, for safety and security at sea and protection of the marine environmentโ€ the goal of e-Navigation is to provide an infrastructure that will enable seamless information transfer onboard ship, between ships, ship-to-shore, and between shore authorities. Core elements include high-integrity electronic positioning, electronic navigational charts (ENCs) and improved system functionality towards reducing human error. In particular, this means actively engaging the mariner in the process of navigation while preventing distraction and overburdening. There are two main challenges in going from concept to implementation. 1) Ensuring the availability of all components of the system and using them effectively in order to simplify the display of crucial navigation-related information. 2) Incorporating new technologies in a structured way, while ensuring that their use is compliant with the existing navigational communication technologies and services. To date, the primary focus of IHO Member States has been to complete ENC coverage for major shipping routes. However, e-Navigation has other implications for the hydrographic community, including: 1) Use of AIS binary messages 2) Standards for Displaying e-Navigation Information 3) Guiding Principles for e-Navigation-related Informatio

    e-Navigation and Electronic Charting: Implications for Hydrographic Community

    Get PDF
    e-Navigation is a recent IMO initiative that aims to integrate existing/new shipboard and shore-based navigational tools into an โ€œall embracingโ€ system. Defined as: โ€œ... the harmonised collection, integration, exchange, presentation and analysis of maritime information onboard and ashore by electronic means to enhance berth to berth navigation and related services, for safety and security at sea and protection of the marine environmentโ€ the goal of e-Navigation is to provide an infrastructure that will enable seamless information transfer onboard ship, between ships, ship-to-shore, and between shore authorities. Core elements include high-integrity electronic positioning, electronic navigational charts (ENCs) and improved system functionality towards reducing human error. In particular, this means actively engaging the mariner in the process of navigation while preventing distraction and overburdening. There are two main challenges in going from concept to implementation. 1) Ensuring the availability of all components of the system and using them effectively in order to simplify the display of crucial navigation-related information. 2) Incorporating new technologies in a structured way, while ensuring that their use is compliant with the existing navigational communication technologies and services. To date, the primary focus of IHO Member States has been to complete ENC coverage for major shipping routes. However, e-Navigation has other implications for the hydrographic community, including: 1) Use of AIS binary messages 2) Standards for Displaying e-Navigation Information 3) Guiding Principles for e-Navigation-related Informatio

    A study on the implementation of nonlinear Kalman filter applying MMG model

    Get PDF
    Many technologies need to be established to realize autonomous ships. In particular, accurate state estimation in real time is one of the most important technologies. In the ship and ocean engineering fields, there have been many studies on state estimation using nonlinear Kalman filters. Several methods have been proposed for nonlinear Kalman filters. However, there is insufficient verification on the selection of which filter should be applied among them. Therefore, this study aims to validate the filter selection to provide a guideline for filter selection. The effects of modeling error, observation noise, and type of maneuvers on the estimation accuracy of the unscented Kalman filter (UKF) and ensemble Kalman filter (EnKF) used in this study were investigated. In addition, it was verified whether filtering could be performed in real time. The results show that modeling error significantly impacts the estimation accuracy of the UKF and EnKF. However, the observation noise and types of maneuvers did not have an impact like the modeling error. Thus, we obtained the guideline that UKF and EnKF should be used differently depending on the required computation time. We also obtained that keeping the modeling error sufficiently small is essential to improving the estimation accuracy.The version of record of this article, first published in Journal of Marine Science and Technology (Japan), is available online at Publisherโ€™s website: https://doi.org/10.1007/s00773-023-00953-

    Training of pilots, tugmasters/ferrymasters, coastguard patrol boat and inland watercraft operators

    Get PDF

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations

    Applications of artificial intelligence in ship berthing: A review

    Get PDF
    855-863Ship berthing operations in restricted waters such as ports requires the accurate use of onboard-vessel equipment such as rudder, thrusters, and main propulsions. For big ships, the assistance of exterior supports such as tugboats are necessary, however with the advancement of technology, we may hypothesize that the use of artificial intelligence to support ship berthing safely at ports without the dependency on the tugboats may be a reality. In this paper we comprehensively assessed and analyzed several literatures regarding this topic. Through this review, we seek out to present a better understanding of the use of artificial intelligence in ship berthing especially neural networks and collision avoidance algorithms. We discovered that the use of global and local path planning combined with Artificial Neural Network (ANN) may help to achieve collision avoidance while completing ship berthing operations
    • โ€ฆ
    corecore