11,891 research outputs found

    Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems

    Full text link
    As robotic systems are moved out of factory work cells into human-facing environments questions of choreography become central to their design, placement, and application. With a human viewer or counterpart present, a system will automatically be interpreted within context, style of movement, and form factor by human beings as animate elements of their environment. The interpretation by this human counterpart is critical to the success of the system's integration: knobs on the system need to make sense to a human counterpart; an artificial agent should have a way of notifying a human counterpart of a change in system state, possibly through motion profiles; and the motion of a human counterpart may have important contextual clues for task completion. Thus, professional choreographers, dance practitioners, and movement analysts are critical to research in robotics. They have design methods for movement that align with human audience perception, can identify simplified features of movement for human-robot interaction goals, and have detailed knowledge of the capacity of human movement. This article provides approaches employed by one research lab, specific impacts on technical and artistic projects within, and principles that may guide future such work. The background section reports on choreography, somatic perspectives, improvisation, the Laban/Bartenieff Movement System, and robotics. From this context methods including embodied exercises, writing prompts, and community building activities have been developed to facilitate interdisciplinary research. The results of this work is presented as an overview of a smattering of projects in areas like high-level motion planning, software development for rapid prototyping of movement, artistic output, and user studies that help understand how people interpret movement. Finally, guiding principles for other groups to adopt are posited.Comment: Under review at MDPI Arts Special Issue "The Machine as Artist (for the 21st Century)" http://www.mdpi.com/journal/arts/special_issues/Machine_Artis

    Evaluating the Augmented Reality Human-Robot Collaboration System

    Get PDF
    This paper discusses an experimental comparison of three user interface techniques for interaction with a mobile robot located remotely from the user. A typical means of operating a robot in such a situation is to teleoperate the robot using visual cues from a camera that displays the robot’s view of its work environment. However, the operator often has a difficult time maintaining awareness of the robot in its surroundings due to this single ego-centric view. Hence, a multi-modal system has been developed that allows the remote human operator to view the robot in its work environment through an Augmented Reality (AR) interface. The operator is able to use spoken dialog, reach into the 3D graphic representation of the work environment and discuss the intended actions of the robot to create a true collaboration. This study compares the typical ego-centric driven view to two versions of an AR interaction system for an experiment remotely operating a simulated mobile robot. One interface provides an immediate response from the remotely located robot. In contrast, the Augmented Reality Human-Robot Collaboration (AR-HRC) System interface enables the user to discuss and review a plan with the robot prior to execution. The AR-HRC interface was most effective, increasing accuracy by 30% with tighter variation, while reducing the number of close calls in operating the robot by factors of ~3x. It thus provides the means to maintain spatial awareness and give the users the feeling they were working in a true collaborative environment

    Embodied conversations: Performance and the design of a robotic dancing partner

    Get PDF
    This paper reports insights gained from an exploration of performance-based techniques to improve the design of relationships between people and responsive machines. It draws on the Emergent Objects project and specifically addresses notions of embodiment as employed in the field of performance as a means to prototype and develop a robotic agent, SpiderCrab, designed to promote expressive interaction of device and human dancer, in order to achieve ‘performative merging’. The significance of the work is to bring further knowledge of embodiment to bear on the development of human-technological interaction in general. In doing so, it draws on discursive and interpretive methods of research widely used in the field of performance but not yet obviously aligned with some orthodox paradigms and practices within design research. It also posits the design outcome as an ‘objectile’ in the sense that a continuous and potentially divergent iteration of prototypes is envisaged, rather than a singular final product. The focus on performative merging draws in notions of complexity and user experience. Keywords: Embodiment; Performance; Tacit Knowledge; Practice-As-Research; Habitus.</p
    • 

    corecore