10,445 research outputs found

    Epistemic Protocols for Distributed Gossiping

    Get PDF
    Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation in which all the agents know each other's secrets. We consider distributed gossip protocols which are expressed by means of epistemic logic. We provide an operational semantics of such protocols and set up an appropriate framework to argue about their correctness. Then we analyze specific protocols for complete graphs and for directed rings.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Explicit fairness in testing semantics

    Get PDF
    In this paper we investigate fair computations in the pi-calculus. Following Costa and Stirling's approach for CCS-like languages, we consider a method to label process actions in order to filter out unfair computations. We contrast the existing fair-testing notion with those that naturally arise by imposing weak and strong fairness. This comparison provides insight about the expressiveness of the various `fair' testing semantics and about their discriminating power.Comment: 27 pages, 1 figure, appeared in LMC

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007

    Improved Algorithms for Parity and Streett objectives

    Get PDF
    The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on nn vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2)O(n^{5/2}) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn)O(n^2 + nk \log n). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints

    Full text link
    We study the problem of allocating indivisible items to agents with additive valuations, under the additional constraint that bundles must be connected in an underlying item graph. Previous work has considered the existence and complexity of fair allocations. We study the problem of finding an allocation that is Pareto-optimal. While it is easy to find an efficient allocation when the underlying graph is a path or a star, the problem is NP-hard for many other graph topologies, even for trees of bounded pathwidth or of maximum degree 3. We show that on a path, there are instances where no Pareto-optimal allocation satisfies envy-freeness up to one good, and that it is NP-hard to decide whether such an allocation exists, even for binary valuations. We also show that, for a path, it is NP-hard to find a Pareto-optimal allocation that satisfies maximin share, but show that a moving-knife algorithm can find such an allocation when agents have binary valuations that have a non-nested interval structure.Comment: 21 pages, full version of paper at AAAI-201
    corecore