
Submitted to:
TARK 2015

c© K. Apt, D. Grossi & W. van der Hoek
This work is licensed under the
Creative Commons Attribution License.

Epistemic Protocols for Distributed Gossiping

Krzysztof R. Apt
Centrum Wiskunde Informatica

Amsterdam, The Netherlands

k.r.apt@cwi.nl

Davide Grossi Wiebe van der Hoek
University of Liverpool

Liverpool, UK

d.grossi@liv.ac.uk wiebe@liv.ac.uk

Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation
in which all the agents know each other’s secrets. We consider distributed gossip protocols which are
expressed by means of epistemic logic. We provide an operational semantics of such protocols and
set up an appropriate framework to argue about their correctness. Then we analyze specific protocols
for complete graphs and for directed rings.

1 Introduction

In the gossip problem ([18, 4], see also [10] for an overview) a number n of agents, each one knowing
a piece of information (a secret) unknown to the others, communicate by one-to-one interactions (e.g.,
telephone calls). The result of each call is that the two agents involved in it learn all secrets the other agent
knows at the time of the call. The problem consists in finding a sequence of calls which disseminates all
the secrets among the agents in the group. It sparked a large literature in the 70s and 80s [18, 4, 9, 5,
17] typically focusing on establishing—in the above and other variants of the problem—the minimum
number of calls to achieve dissemination of all the secrets. This number has been proven to be 2n− 4,
where n, the number of agents, is at least 4.

The above literature assumes a centralized perspective on the gossip problem: a planner schedules
agents’ calls. In this paper we pursue a line of research first put forth in [3] by developing a decentralized
theory of the gossip problem, where agents perform calls not according to a centralized schedule, but
following individual epistemic protocols they run in a distributed fashion. These protocols tell the agents
which calls to execute depending on what they know, or do not know, about the information state of the
agents in the group. We call the resulting distributed programs (epistemic) gossip protocols.

Contribution of the paper and outline The paper introduces a formal framework for specifying epis-
temic gossip protocols and for studying their computations in terms of correctness, termination, and fair
termination (Section 2). It then defines and studies two natural protocols in which the interactions are
unconstrained (Section 3) and four example gossip protocols in which agents are positioned on a directed
ring and calls can happen only between neighbours (Section 4). Proofs are collected in the appendix.

From a methodological point of view, the paper integrates concepts and techniques from the dis-
tributed computing, see, e.g., [1, Chapter 11] and the epistemic logic literature [8, 15] in the tradition of
[16, 14, 7].

2 Gossip protocols

We introduce first the syntax and semantics of gossip protocols.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Epistemic Protocols for Distributed Gossip

2.1 Syntax

We loosely use the syntax of the language CSP (Communicating Sequential Processes) of [11] that
extends the guarded command language of [6] by disjoint parallel composition and commands for syn-
chronous communication. CSP was realized in the distributed programming language OCCAM (see
INMOS [12]).

The main difference is that we use as guards epistemic formulas and as communication primitives
calls that do not require synchronization. Also, the syntax of our distributed programs is very limited. In
order to define gossip protocols we introduce in turn calls and epistemic guards.

Throughout the paper we assume a fixed finite set A of at least three agents. We assume that each
agent holds exactly one secret and that there exists a bijection between the set of agents and the set of
secrets. We denote by P the set of all secrets (for propositions). Furthermore, it is assumed that each
secret carries information identifying the agent to whom that secret belongs.

2.1.1 Calls

Each call concerns two agents, the caller (a below) and the agent called (b). We distinguish three modes
of communication of a call:

push-pull, written as ab or (a,b). During this call the caller and the called agent learn each other’s
secrets,

push, written as a.b. After this call the called agent learns all the secrets held by the caller,

pull, written as a/b. After this call the caller learns all the secrets held by the called agent.

Variables for calls are denoted by c, d. Abusing notation we write a ∈ c to denote that agent a is one of
the two agents involved in the call c (e.g., for c := ab we have a ∈ c and b ∈ c). Calls in which agent a is
involved are denoted by ca.

2.1.2 Epistemic guards

Epistemic guards are defined as formulas in a simple modal language with the following grammar:

φ ::= Fa p | ¬φ | φ ∧φ | Kaφ ,

where p ∈ P and a ∈ A. Each secret is viewed as a distinct symbol. We denote the secret of agent a by A,
the secret of agent b by B and so on. We denote the set of so defined formulas by L and we refer to its
members as epistemic formulas or epistemic guards. We read Fa p as ‘agent a is familiar with the secret
p’ (or ‘p belongs to the set of secrets a knows about’) and Kaφ as ‘agent a knows that formula φ is true’.
So this language is an epistemic language where atoms consist of ‘knowing whether’ statements about
propositional atoms, if we view secrets as Boolean variables.

Atomic expressions in L concern only who knows what secrets. As a consequence the language
cannot express formally the truth of a secret p. This level of abstraction suffices for the purposes of the
current paper. However, expressions Fa p could be given a more explicit epistemic reading in terms of
‘knowing whether’. That is, ‘a is familiar with p’ can be interpreted (on a suitable Kripke model) as ‘a
knows whether the secret p is true or not’. This link is established in [3].

K. Apt, D. Grossi & W. van der Hoek 3

2.1.3 Gossip protocols

Before specifying what a program for agent a is, let us first define the language La with the following
grammar:

ψ ::= Kaφ | ¬ψ | ψ ∧ψ

with φ ∈L .1

By a component program, in short a program, for an agent a we mean a statement of the form

∗[[]mj=1 ψ j→ c j],

where m > 0 and each ψ j→ c j is such that ψ j ∈La and a is the caller in c j.
Given an epistemic formula ψ ∈La and a call c, we call the construct ψ → c a rule and refer in this

context to ψ as a guard.
We denote the set of rules {ψ1 → c1, . . .,ψk → ck} as [[]kj=1 ψ j → c j] and abbreviate a set of rules

{ψ1→ c, . . .,ψk→ c} with the same call to a single rule
∨k

i=1 ψi→ c.
Intuitively, ∗ denotes a repeated execution of the rules, one at a time, where each time a rule is

selected whose guard is true.
Finally, by a distributed epistemic gossip protocol, in short a gossip protocol, we mean a parallel

composition of component programs, one for each agent. In order not to complicate matters we assume
that each gossip protocol uses only one mode of communication.

Of special interest for this paper are gossip protocols that are symmetric. By this we mean that the
protocol is a composition of the component programs that are identical modulo the names of the agents.
Formally, consider a statement π(x), where x is a variable ranging over the set A of agents and such that
for each agent a ∈ A, π(a) is a component program for agent a. Then the parallel composition of the
π(a) programs, where a ∈ A, is called a symmetric gossip protocol.

Gossip protocols are syntactically extremely simple. Therefore it would seem that little can be ex-
pressed using them. However, this is not the case. In Sections 3 and 4 we consider gossip protocols that
can exhibit complex behaviour.

2.2 Semantics

We now move on to provide a formal semantics of epistemic guards, and then describe the computations
of gossip protocols.

2.2.1 Gossip situations and calls

A gossip situation is a sequence s = (Qa)a∈A, where Qa⊆P for each agent a. Intuitively, Qa is the set
of secrets a is familiar with in situation s. The initial gossip situation is the one in which each Qa equals
{A} and is denoted by root. The set of all gossip situations is denoted by S. We say that an agent a is an
expert in a gossip situation s if he is familiar in s with all the secrets, i.e., if Qa = P. The initial gossip
situation reflects the fact that initially each agent is familiar only with his own secret, although it is not
assumed this is common knowledge among the agents. In fact, in the introduced language we have no
means to express the concept of common knowledge.

1Alternatively, La could be defined as the fragment of L consisting of the formulae of form Kaψ . In logic S5, it is easy to
prove that each ψ ∈La is logically equivalent to a formula Kaφ ∈L .

4 Epistemic Protocols for Distributed Gossip

We will use the following concise notation for gossip situations. Sets of secrets will be written
down as lists. e.g., the set {A,B,C} will be written as ABC. Gossip situations will be written down as
lists of lists of secrets separated by dots. E.g., if there are three agents, root = A.B.C and the situation
({A,B},{A,B},{C}) will be written as AB.AB.C.

Each call transforms the current gossip situation by modifying the set of secrets the agents involved
in the call are familiar with. More precisely, the application of a call to a situation is defined as follows.

Definition 2.1 (Effects of calls) A call is a function c : S−→ S, so defined, for s := (Qa)a∈A:

c= ab c(s) = (Q′a)a∈A, where Q′a = Q′b = Qa∪Qb, Q′c = Qc, for c 6= a,b;

c= a.b c(s) = (Q′a)a∈A, where Q′b = Qa∪Qb, Q′a = Qa, Q′c = Qc, for c 6= a,b;

c= a/b c(s) = (Q′a)a∈A, where Q′a = Qa∪Qb, Q′b = Qb, Q′c = Qc, for c 6= a,b.

The definition formalizes the modes of communications we introduced earlier. Depending on the mode,
secrets are either shared between caller and callee (ab), they are pushed from the caller to the callee
(a.b), or they are retrieved by the caller from the callee (a/b).

2.2.2 Call sequences

A call sequence is a (possibly infinite) sequence of calls, in symbols (c1,c2, . . . ,cn, . . .), all being of the
same communication mode. The empty sequence is denoted by ε . We use c to denote a call sequence
and C to denote the set of all call sequences. The set of all finite call sequences is denoted C<ω . Given a
finite call sequence c and a call c we denote by c.c the prepending of c with c, and by c.c the postpending
of c with c.

The result of applying a call sequence to a situation s is defined by induction using Definition 2.1, as
follows:
[Base] ε(s) := s,
[Step] (c.c)(s) := c(c(s)).

Example 2.2 Let the set of agents be {a,b,c}.

ab ca ab

A.B.C AB.AB.C ABC.AB.ABC ABC.ABC.ABC

The top row lists the call sequence (ab,ca,ab), while the bottom row lists the successive gossip situations
obtained from the initial situation A.B.C by applying the calls in the sequence: first ab, then ca and finally
ab. 2

By applying an infinite call sequence c = (c1,c2, . . . ,cn, . . .) to a gossip situation s one obtains
therefore an infinite sequence c0(s),c1(s), . . . ,cn(s), . . . of gossip situations, where each ck is sequence
c1,c2, . . . ,ck. A call sequence c is said to converge if for all input gossip situations s the generated se-
quence of gossip situations reaches a limit, that is, there exists n < ω such that for all m ≥ n cm(s) =
cm+1(s). Since the set of secrets is finite and calls never make agents forget secrets they are familiar with,
it is easy to see the following.
Fact 2.3 All infinite call sequences converge.

However, as we shall see, this does not imply that all gossip protocols terminate. In the remainder
of the paper, unless stated otherwise, we will assume the push-pull mode of communication. The reader
can easily adapt our presentation to the other modes.

K. Apt, D. Grossi & W. van der Hoek 5

2.2.3 Gossip models

The set S of all gossip situations is the set of all possible combinations of secret distributions among the
agents. As calls progress in sequence from the initial situation, agents may be uncertain about which one
of such secrets distributions is the actual one. This uncertainty is precisely the object of the epistemic
language for guards we introduced earlier.

Definition 2.4 A gossip model (for a given set A) is a tuple M = (C<ω ,{∼a}a∈A), where each ∼a⊆
C<ω ×C<ω is the smallest relation satisfying the following inductive conditions (assume the mode of
communication is push-pull):
[Base] ε ∼a ε;

[Step] Suppose c∼a d.
(i) If a 6∈ c, then c.c∼a d and c∼a d.c.

(ii) If there exists b ∈ A and c,d ∈ {ab,ba} such that c.c(root)a = d.d(root)a, then c.c∼a d.d.
A gossip model with a designated finite call sequence is called a pointed gossip model.

For the push, respectively pull, modes of communication clause (ii) needs to be modified by requiring
that for some b ∈ A, c= d= a.b or c= d= a/b, respectively.

For instance, by (i) we have ab,bc∼a ab,bd. But we do not have bc,ab∼a bd,ab since (bc,ab)(root)a

= ABC 6= ABD = (bd,ab)(root)a.
Let us flesh out the intuitions behind the above definition. Gossip models are needed in order to inter-

pret the epistemic guards of gossip protocols. Since such guards are relevant only after finite sequences
of calls, the domain of a gossip model is taken to consist only of finite sequences. Intuitively, those are
the finite sequences that can be generated by a gossip protocol. Let us turn now to the ∼a relation. This
is defined with the following intuitions in mind. First of all, no agent can distinguish the empty call
sequence from itself—this is the base of the induction. Next, if two call sequences are indistinguishable
for a, then the same is the case if (i) we extend one of these sequences by a call in which a is not involved
or if (ii) we extend each of these sequences by a call of a with the same agent (agent a may be the caller
or the callee), provided a is familiar with exactly the same secrets after each of the new sequences has
taken place—this is the induction step.2

The above intuitions are based on the following assumptions on the form of communication we
presuppose: (i) At the initial situation, as communication starts, each agent knows only her own secret
but considers it possible that the others may be familiar with all other secrets. In other words there is
no such thing as common knowledge of the fact that ‘everybody knows exactly her own secret’. (ii) In
general, each agent always considers it possible that call sequences (of any length) take place that do not
involve her. These assumptions are weaker than the ones analyzed in [3].

We state without proof the following simple fact.
Fact 2.5

(i) Each ∼a is an equivalence relation;

(ii) For all c,d ∈ C if c∼a d, then c(root)a = d(root)a, but not vice versa.
This prompts us to note also that according to Definition 2.4 sequences which make a learn the same
set of secrets may well be distinguishable for a, such as, for instance, ab,bc,ab and ab,bc,ac. In the
first one a comes to know that b knows a is familiar with all secrets, while in the second one, she comes
to know that c knows a is familiar with all secrets. Relation ∼a is so defined as to capture this sort of
‘higher-order’ knowledge.

2Notice that the definition requires a designated initial situation, which we assume to be root.

6 Epistemic Protocols for Distributed Gossip

2.2.4 Truth conditions for epistemic guards

Everything is now in place to define the truth of the considered formulas.

Definition 2.6 Let (M ,c) be a pointed gossip model with M = (C<ω ,(∼a)a∈A) and c∈C<ω . We define
the satisfaction relation |= inductively as follows (clauses for Boolean connectives are omitted):

(M ,c) |= Fa p iff p ∈ c(root)a,

(M ,c) |= Kaφ iff ∀d s.t. c∼a d, (M ,d) |= φ .

So formula Fa p is true (in a pointed gossip model) whenever secret p belongs to the set of secrets agent
a is familiar with in the situation generated by the designated call sequence c applied to the initial situa-
tion root. The knowledge operator is interpreted as customary in epistemic logic using the equivalence
relations ∼a.

2.2.5 Computations

Assume a gossip protocol P that is a parallel composition of the component programs ∗[[]ma
j=1 ψa

j → ca
j],

one for each agent a ∈ A.
Given the gossip model M = (C<ω ,{∼a}a∈A) we define the computation tree CP ⊆ C<ω of P as

the smallest set of sequences satisfying the following inductive conditions:

[Base] ε ∈ CP;

[Step] If c ∈ CP and (M ,c) |= ψa
j then c.ca

j ∈ CP. In this case we say that a transition has taken place
between c and c.ca

j , in symbols, c→ c.ca
j .

So CP is a (possibly infinite) set of finite call sequences that is iteratively obtained by performing a ‘legal’
call (according to protocol P) from a ‘legal’ (according to protocol P) call sequence.

A path in the computation tree of P is a (possibly infinite) sequence of elements of CP, denoted by
ξ = (c0,c1, . . . ,cn, . . .), where c0 = ε and each ci+1 = ci.c for some call c and i≥ 0. A computation of P
is a maximal rooted path in the computation tree of P.3

The above definition implies that a call sequence c is a leaf of the computation tree if and only if

(M ,c) |=
∧

a∈A

ma∧
j=1

¬ψ
a
j .

We call the formula ∧
a∈A

ma∧
j=1

¬ψ
a
j

the exit condition of the gossip protocol P.

Obviously computation trees can be infinite, though they are always finitely branching. Further,
note that this semantics for gossip protocols abstracts away from some implementation details of the
calls. More specifically, we assume that the caller always succeeds in his call and does not require to
synchronize with the called agent. In reality, the called agent might be busy, being engaged in another

3Note that while the sequences that are elements of the computation tree of a protocol are always finite (although possibly
infinite in number), computations can be infinite sequences (of finite call sequences).

K. Apt, D. Grossi & W. van der Hoek 7

call. To take care of this one could modify each call by replacing it by a ‘call protocol’ that implements
the actual call using some lower level primitives. We do not elaborate further on this topic.

Let us fix some more terminology. For c ∈ CP, an agent a is enabled in c if (M ,c) |=
∨ma

j=1 ψa
j and

is disabled otherwise. So an agent is enabled if it can perform a call. An agent a is selected in c if it is
the caller in the call that for some c′ determines the transition c→ c′ in ξ . Finally, a computation ξ is
called a fair computation if it is finite or each agent that is enabled in infinitely many sequences in ξ is
selected in infinitely many sequences in ξ .

We note in passing that various alternative definitions of fairness are possible; we just focus on one of
them. An interested reader may consult [2], where several fairness definitions (for instance one focusing
on actions and not on agents) for distributed programs were considered and compared.

We conclude this section by observing the following. Our definition of computation tree for protocol
P presupposes that guards ψa

j are interpreted over the gossip model M = (C<ω ,{∼a}a∈A). This means
that when evaluating guards, agents consider as possible call sequences that cannot be generated by P. In
other words, agents do not know the protocol. To model common knowledge of the considered protocol
in the gossip model one should take as the domain of the gossip model M the underlying computation
tree. However, the computation tree is defined by means of the underlying gossip model. To handle such
a circularity an appropriate fixpoint definition is needed. We leave this topic for future work.

2.3 Correctness

We are interested in proving the correctness of gossip protocols. Assume a gossip protocol P that is a
parallel composition of the component programs ∗[[]ma

j=1 ψa
j → ca

j].
We say that P is partially correct, in short correct, if in all situations sequences c that are leaves of

the computation tree of P, for each agent a

(M ,c) |=
∧

b∈A
FaB,

i.e., if for all situations sequences c that are leaves of the computation tree of P, each agent is an expert
in the gossip situation c(root).

We say furthermore that P terminates if all its computations are finite and that P fairly terminates if
all its fair computations are finite.

In the next section we provide examples showing that partial correctness and termination of the
considered protocols can depend on the assumed mode of communication and on the number of agents.
In what follows we study various gossip protocols and their correctness. We begin with the following
obvious observation.

Fact 2.7 For each protocol P the following implications (⇒) hold, where TP(x) stands for its termination
and FTP(x) for its fair termination in a communication mode x:

TP(x)⇒ FTP(x).

Protocol R3 given in Section 4 shows that none of these implications can be reversed. Moreover, it
is not the case either that for each protocol P:

TP(.)⇒ TP(push-pull),

TP(/)⇒ TP(push-pull).

8 Epistemic Protocols for Distributed Gossip

Example 2.8 Let A= {a,b,c} and define the following expression:

A ⊂ C :=
∧

I∈{A,B,C}
(FaI→ FcI)∧

∨
I∈{A,B,C}

(FcI∧¬FaI)

Expression B ⊂ C is defined analogously. Note that we denote by I the secret of agent i. Intuitively,
A ⊂ C means that agent c is familiar with all the secrets that agent a is familiar with, but not vice
versa. So c is familiar with a strict superset of the secrets a is familiar with. Further, let Exp j stand for∧

I∈{A,B,C}FjI.
Consider now the following component programs:

• for agent a: ∗[¬Ka(A ⊂ C)∧¬KaExpa→ a. c],

• for agent b: ∗[¬Kb(B ⊂ C)∧¬KbExpb→ b. c],

• for agent c: ∗[¬KcExpa∧KcExpc→ c.a []¬KcExpb∧KcExpc→ c.b].

This protocol is correct. Indeed, initially no agent is an expert, hence both guards of c are false. On
the other hand, we have (M ,ε) |=¬(A ⊂C) and (M ,ε) |=¬(B⊂C), so both (M ,ε) |=¬Ka(A ⊂C)
and (M ,ε) |= ¬Kb(B ⊂ C). Consequently, initially both a and b are enabled. If the first call is granted
to a, this agent will call c yielding the gossip situation A.B.AC. Now the guard of a is false (since a is still
familiar only with his own secret A, while c is familiar with at least A and C and a knows this). The guard
of c is still false. So now only b is enabled. After his call of c this yields the gossip situation A.B.ABC.
At this stage, only agent c is enabled and after he calls both a and b all guards become false. Moreover,
this protocol terminates. Indeed, the only computations are the ones in which first the calls a.c and b.c
take place, in any order, followed by the calls c.a and c.b, also performed in any order.

However, if we use the push-pull direction type instead of push, then the situation changes. Indeed,
after an arbitrary number of calls ac the formula ¬(A ⊂ C) is still true and hence ¬Ka(A ⊂ C) is true,
as well. Consequently, this call can be indefinitely repeated, so the protocol does not terminate. 2

3 Two symmetric protocols

In this section we consider protocols for the case when the agents form a complete graph. We study
two protocols. We present them first for the communication mode push-pull. (Partial) correctness of the
considered protocols does not depend on the assumed mode of communication.

Learn new secrets protocol (LNS) Consider the following program for agent i:

∗[[] j∈A¬FiJ→ (i, j)].

Informally, agent i calls agent j if i is not familiar with j’s secret. Note that the guards of this protocol
do not use the epistemic operator Ki, but they are equivalent to the ones that do, as ¬FiJ is equivalent to
Ki¬FiJ.

This protocol was introduced in [3] and studied with respect to the push-pull mode, assuming asyn-
chronous communication. As noted there this protocol is clearly correct. Also, it always terminates since
after each call (i, j) the size of {(i, j) ∈ A×A | ¬FiJ} decreases. The same argument shows termination
if the communication mode is pull.

However, if the communication mode is push, the protocol may fail to terminate, even fairly. To see it
fix an agent a and consider a sequence of calls in which each agent calls a. At the end of this sequence a

K. Apt, D. Grossi & W. van der Hoek 9

becomes an expert but nobody is familiar with his secret. So any extension of this sequence is an infinite
computation.

Let us consider now the possible call sequences generated by the computations of this protocol.
Assume that there are n ≥ 4 agents. By the result mentioned in the introduction in each terminating
computation at least 2n−4 calls are made.

The LNS protocol can generate such shortest sequences (among others). Indeed, let A = {a,b,c,d,
i1, . . ., in−4} be the set of agents. Then the following sequence of 2n−4 calls

(a, i1),(a, i2), . . .,(a, in−4),
(a,b),(c,d),(a,c),(b,d),
(i1,b),(i2,b), . . .,(in−4,b)

(1)

corresponds to a terminating computation.
The guards used in this protocol entail that after a call (i, j) neither the call (j, i) nor another call

(i, j) can take place, that is between each pair of agents at most one call can take place. Consequently,
the longest possible sequence contains at most n(n−1)

2 calls. Such a worst case can be generated by means
of the following sequence of calls:

[2], [3], [4], . . ., [n],

where for a natural number k, [k] stands for the sequence (1,k), (2,k), . . ., (k−1,k).4

Hear my secret protocol (HMS) Next, we consider a protocol with the following program for agent i:

∗[[] j∈A¬KiFjI→ (i, j)].

Informally, agent i calls agent j if he (agent i) does not know whether j is familiar with his secret. To
prove correctness of this protocol it suffices to note that its exit condition

∧
i, j∈A

KiFjI

implies
∧

i, j∈A FjI. To prove termination it suffices to note that after each call (i, j) the size of the set
{(i, j) | ¬KiFjI} decreases.

If the communication mode is push, then the termination argument remains valid, since after the call
i. j agent j still learns all the secrets agent i is familiar with.

However, if the communication mode is pull, then the protocol may fail to terminate, even fairly. To
see it fix an agent j and consider the calls i/ j, where i ranges over A\{ j}, arbitrarily ordered. Denote
this sequence by c. Consider now an infinite sequence of calls resulting from repeating c indefinitely. It
is straightforward to check that such a sequence corresponds to a possible computation. Indeed, in this
sequence agent j never calls and hence never learns any new secret. So for each i 6= j the formula ¬KiFjI
remains true and hence each agent i 6= j remains enabled. Moreover, after the calls from c took place
agent j is not anymore enabled. Hence the resulting infinite computation is fair.

4Other longest sequences are obviously possible, for instance: 12,13, ...,1n,23,24, ...,2n,34,35, ..,3n, ...,(n−1)n.

10 Epistemic Protocols for Distributed Gossip

4 Protocols over directed rings

In this section we consider the case when the agents are arranged in a directed ring, where n ≥ 3. For
convenience we take the set of agents to be {1,2, . . .,n}. For i ∈ {1, . . .,n}, let i⊕ 1 and i	 1 denote
respectively the successor and predecessor of agent i. That is, for i ∈ {1, . . .,n−1}, i⊕1 = i+1, n⊕1 =
1, for i ∈ {2, . . .,n}, i	1 = i−1, and 1	1 = n. For k > 1 we define i⊕ k and i	 k by induction in the
expected way. Again, when reasoning about the protocols we denote the secret of agent i ∈ {1, . . .,n}
by I. We consider four different protocols and study them with respect to their correctness and (fair)
termination.

In this set up, a call sequence over a directed ring is a (possibly infinite) sequence of calls, all being of
the same communication mode, and all involving an agent i and i⊕1. As before, we use c to denote such
a call sequence and CDR to denote the set of all call sequences over a directed ring. In this section, unless
stated otherwise, by a call sequence we mean a sequence over a directed ring. The set of all such finite
call sequences is denoted C<ω

DR . A gossip model for a directed ring is a tuple MDR = (C<ω
DR ,{∼a}a∈A),

where each ∼a⊆C<ω
DR ×C<ω

DR is as in Definition 2.4. The truth definition is as before, and the notion of a
computation tree for directed rings CP

DR ⊆ C<ω
DR of a ring protocol P is analogous to the notion defined

before. Note that by restricting the domain in MDR to C<ω
DR , the ring network—and hence who is the

successor of whom—becomes common knowledge.
When presenting the protocols we use the fact that FiJ is equivalent to KiFiJ.

Ring protocol R1 Consider first a gossip protocol with the following program for i:

∗[
n∨

j=1

(FiJ∧Ki¬Fi⊕1J)→ i3i⊕1],

where 3 denotes the mode of communication, so ., / or push-pull.
Informally, agent i calls his successor, agent i⊕1, if i is familiar with some secret and he knows that

his successor is not familiar with it.

Proposition 4.1 Let 3= .. Protocol R1 terminates and is correct.

Termination and correctness do not both hold for the other communication modes. Consider first
the pull communication mode, i.e., 3 = /. Then the protocol does not always terminate. Indeed, each
call i/ i⊕1 can be repeated. Next, consider the push-pull communication mode. We show that then the
protocol is not correct. Indeed, take

c = (1,2), (2,3), . . .,(n−1,n).

We claim that after the sequence of calls c the exit condition of the protocol is true. To this end we
consider each agent in turn.

After c each agent i, where i 6= n is familiar the secrets of the agents 1,2, . . ., i+1. Moreover, because
of the call (i, i+1) agent i knows that agent i+1 is familiar with these secrets. So the exit condition of
agent i is true.

To deal with agent n note that c∼n c.(n−2,n−1).(n−3,n−2).. . .(2,3).(1,2). After the latter call
sequence agent 1 becomes an expert. So after c agent n cannot know that agent 1 is not familiar with
some secret. Consequently, after c the exit condition of agent n is true, as well. However, after c agent 1
is not an expert, so the protocol is indeed not correct.

In what follows we initially present the protocols assuming the push-pull mode of communication.

K. Apt, D. Grossi & W. van der Hoek 11

Ring protocol R2 Consider now a gossip protocol with the following program for agent i:

∗[¬KiFi⊕1I	1→ (i, i⊕1)],

where (recall) I	 1 denotes the secret of agent i	 1. Informally, agent i calls his successor, which is
agent i⊕1, if i does not know that his successor is familiar with the secret of i’s predecessor, i.e., agent
i	1.

Proposition 4.2 If |A| ∈ {3,4} then protocol R2 is correct.

However, this protocol is not correct for five or more agents. To see it consider the sequence of calls

(1,2), (2,3), . . .,(n−1,n), (n,1), (1,2)

where n≥ 5. After it the exit condition of the protocol is true. However, agent 3 is not familiar with the
secret of agent 5.

Note that the same argument shows that the protocol in which we use ¬KiFi⊕1I∨¬KiFi⊕1I	1 instead
of ¬KiFi⊕1I	1 is incorrect, as well.

Moreover, this protocol does not always terminate. Indeed, one possible computation consists of an
agent i repeatedly calling his successor i⊕1.

Ring protocol R3 Next, consider the following modification of protocol R2 in which we use the fol-
lowing program for agent i:

∗[(¬
n∧

j=1

FiJ)∨¬KiFi⊕1I	1→ (i, i⊕1)].

Informally, agent i calls his successor, agent i⊕ 1, if i is not familiar with all the secrets or i does not
know that his successor is familiar with the secret of his predecessor, agent i	1.

This gossip protocol is obviously correct thanks to the fact that
∧n

i=1
∧n

j=1 FiJ is part of the exit
condition. However, it does not always terminate for the same reason as the previous one.

On the other hand, the following holds.

Proposition 4.3 Protocol R3 fairly terminates.

The same conclusions concerning non termination and fair termination can be drawn for the push
and the pull modes of communication. Indeed, for push it suffices to consider the sequence of calls
i . i⊕ 1, i⊕ 1 . i⊕ 2, . . ., i	 1 . i after which agent i	 1 becomes disabled, and for pull the sequence of
calls i/ i⊕1, i	1/ i, . . ., i⊕2/ i⊕3 after which agent i⊕2 becomes disabled.

Ring protocol R4 Finally, we consider a protocol that is both correct and terminates for the push-pull
mode. Consider the following program for i:

∗[
n∨

j=1

(FiJ∧¬KiFi⊕1J)→ (i, i⊕1)].

Informally, agent i calls his successor, agent i⊕1, if i is familiar with some secret and he does not know
whether his successor is familiar with it. Note the similarity with protocol R1.

Proposition 4.4 Protocol R4 terminates and is correct.

12 Epistemic Protocols for Distributed Gossip

Protocol T FT T for . FT for . T for / FT for /
LNS yes yes no no yes yes
HMS yes yes yes yes no no
R3 no yes no yes no yes
R4 yes yes yes yes no yes

Table 1: Summary of termination results.

If the communication mode is push, then the termination argument remains valid, since after the
call i . i⊕ 1 agent i⊕ 1 still learns all the secrets that agent i is familiar with and hence the above set
{(i, j) | ¬KiFi⊕1J} decreases.

If the communication mode is pull, then the protocol may fail to terminate, because after the first
call i / i⊕ 1 agent i⊕ 1 does not learn the secret of agent i and consequently the call can be repeated.
However, the situation changes when fairness is assumed.

Proposition 4.5 For the pull communication mode protocol R4 fairly terminates.

Table 1 summarizes the termination properties of the protocols considered in the paper.

5 Conclusions

The aim of this paper was to introduce distributed gossip protocols, to set up a formal framework to
reason about them, and to illustrate it by means of an analysis of selected protocols.

Our results open up several avenues for further research. First, our correctness arguments were given
in plain English with occasional references to epistemic tautologies, such as Kiφ → φ , but it should be
possible to formalize them in a customized epistemic logic. Such a logic should have a protocol inde-
pendent component that would consist of the customary S5 axioms and a protocol dependent component
that would provide axioms that depend on the mode of communication and the protocol in question.
An example of such an axiom is the formula KiFi⊕1I	 1→ FiI⊕ 1 that we used when reasoning about
protocol R2. To prove the validity of the latter axioms one would need to develop a proof system that
allows us to compute the effect of the calls, much like the computation of the strongest postconditions
in Hoare logics. Once such a logic is provided the next step will be to study formally its properties,
including decidability. Then we could clarify whether the provided correctness proofs could be carried
out automatically.

Second, generalizing further the ideas we introduced by considering directed rings, gossip protocols
could be studied in interface with network theory (see [13] for a textbook presentation). Calls can be
assumed to be constrained by a network, much like in the literature on ‘centralized’ gossip (cf. [10]) or
even have probabilistic results (i.e., secrets are passed with given probabilities). More complex properties
of gossip protocols could then be studied involving higher-order knowledge or forms of group knowledge
among neighbors (e.g., “it is common knowledge among a and her neighbors that they are all experts”),
or their stochastic behavior (e.g., “at some point in the future all agents are experts with probability p”).

Third, it will be interesting to analyze the protocols for the types of calls considered in [3]. They
presuppose some form of knowledge that a call took place (for instance that given a call between a and b
each agent c 6= a,b noted the call but did not learn its content). Another option is to consider multicasting
(calling several agents at the same time).

K. Apt, D. Grossi & W. van der Hoek 13

Finally, many assumptions of the current setup could be lifted. Different initial and final situations
could be considered, for instance common knowledge of protocols could be assumed, or common knowl-
edge of the familiarity of all agents with all the secrets upon termination could be required. Finally, to
make the protocols more efficient passing of tokens could be allowed instead of just the transmission of
secrets by means of calls.

Acknowledgments

We would like to thank Hans van Ditmarsch and the referees for helpful comments and Rahim Rameza-
nian for useful comments about Example 2.8. This work resulted from a research visit by Krzysztof Apt
to Davide Grossi and Wiebe van der Hoek, sponsored by the 2014 Visiting Fellowship Scheme of the De-
partment of Computer Science of the University of Liverpool. The first author is also a Visiting Professor
at the University of Warsaw. He was partially supported by the NCN grant nr 2014/13/B/ST6/01807.

References

[1] K. R. Apt, F. R. de Boer & E. R. Olderog (2009): Verification of Sequential and Concurrent Programs.
Springer, doi:10.1007/978-1-84882-745-5.

[2] K. R. Apt, N. Francez & S. Katz (1988): Appraising fairness in distributed languages. Distributed Computing
2(4), pp. 226–241, doi:10.1007/BF01872848.

[3] M. Attamah, H. van Ditmarsch, D. Grossi & W. Van der Hoek (2014): Knowledge and gossip. In: Proceed-
ings of ECAI’14, IOS Press, pp. 21–26.

[4] B. Baker & R. Shostak (1972): Gossips and Telephones. Discrete Mathematics 2, pp. 197–193,
doi:10.1016/0012-365X(72)90001-5.

[5] R. Bumby (1981): A Problem with Telephones. SIAM Journal of Algorithms and Discrete Methods 2, pp.
13–18, doi:10.1137/0602002.

[6] E. W. Dijkstra (1975): Guarded commands, nondeterminacy and formal derivation of programs. Communi-
cations of the ACM 18, pp. 453–457, doi:10.1145/360933.360975.

[7] R. Fagin, J. Halpern, Y. Moses & M. Vardi (1997): Knowledge-Based Programs. Distributed Computing 10,
pp. 199–225, doi:10.1007/s004460050038.

[8] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning about knowledge. The
MIT Press, Cambridge.

[9] A. Hajnal, E. C. Milner & E. Szemeredi (1972): A Cure for the Telephone Disease. Canadian Mathematical
Bulletin 15, pp. 447–450, doi:10.4153/CMB-1972-081-0.

[10] S. M. Hedetniemi, S. T. Hedetniemi & A. L. Liestman (1988): A survey of gossiping and broadcasting in
communication networks. Networks 18(4), pp. 319–349, doi:10.1002/net.3230180406.

[11] C. A. R. Hoare (1978): Communicating sequential processes. Communications of the ACM 21, pp. 666–677,
doi:10.1145/359576.359585.

[12] INMOS Limited (1984): Occam Programming Manual. Prentice-Hall International.

[13] M. O. Jackson (2008): Social and Economic Networks. Princeton University Press.

[14] R. Kurki-Suonio (1986): Towards programming with Knowledge Expressions. In: Proceedings of POPL’86,
pp. 140–149, doi:10.1145/512644.512657.

[15] J.-J. Ch. Meyer & W. van der Hoek (1995): Epistemic Logic for AI and Computer Science. Cambridge Tracts
in Theoretical Computer Science 41, Cambridge University Press, doi:10.1017/CBO9780511569852.

http://dx.doi.org/10.1007/978-1-84882-745-5
http://dx.doi.org/10.1007/BF01872848
http://dx.doi.org/10.1016/0012-365X(72)90001-5
http://dx.doi.org/10.1137/0602002
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1007/s004460050038
http://dx.doi.org/10.4153/CMB-1972-081-0
http://dx.doi.org/10.1002/net.3230180406
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/512644.512657
http://dx.doi.org/10.1017/CBO9780511569852

14 Epistemic Protocols for Distributed Gossip

[16] R. Parikh & R. Ramanujam (1985): Distributed Processing and the Logic of Knowledge. In: Logic of
Programs, LNCS 193, Springer, pp. 256–268, doi:10.1007/3-540-15648-8. Similar to JoLLI 12: 453–467,
2003.

[17] Á Seress (1986): Quick Gossiping without Duplicate Transmissions. Graphs and Combinatorics 2, pp. 363–
383, doi:10.1007/BF01788111.

[18] R. Tijdeman (1971): On a telephone problem. Nieuw Archief voor Wiskunde 3(XIX), pp. 188–192.

Proof (of Proposition 4.1)
Termination Given a call sequence c define the set

Inf (c) := {(i, j) | i, j ∈ {1, . . .,n} and (MDR,c) |= FiJ}.

After each enabled call i . i⊕ 1 in c, the set Inf (c) increases, which ensures termination since each set
Inf (·) has at most n2 elements.
Correctness Consider a leaf of the computation tree. Then the exit condition

n∧
i=1

n∧
j=1

(¬FiJ∨¬Ki¬Fi⊕1J)

is true. We proceed by induction to show that then each FiJ is true, where i, j ∈ {1, . . .,n}, and where the
pairs (i, j) are ordered as follows:

(1,1),(2,1), . . .,(n,1),

(2,2),(3,2), . . .,(1,2),

. . .,

(n,n),(1,n), . . .,(n−1,n).

So the ith row lists the pairs (j, i) with j ∈ {1, . . .,n} ranging clockwise, starting at i.
Take a pair (i, j). If i = j, then FiJ is true by assumption. If i 6= j, then consider the pair that precedes

it in the above ordering. It is then of the form (i1, j), where i = i1⊕1. By the induction hypothesis Fi1J
is true, so by the exit condition ¬Ki1¬FiJ is true.

Suppose now towards a contradiction that ¬Fi1⊕1J is true. Then i1⊕ 1 6= j. Hence by virtue of the
considered communication mode and Definition 2.4 it follows that agent ii knows that ¬Fi1⊕1J is true
since the only way for i1⊕1 to become familiar with J is by means of a call from i1. So Ki1¬FiJ is true.
This yields a contradiction. Hence FiJ is true.

So we showed, as desired, that
∧n

i=1
∧n

j=1 FiJ is true in the considered leaf. �

Proof (of Proposition 4.2) To start with,
∧n

i=1 FiI is true in every node of the computation tree. Suppose
the exit condition

∧n
i=1 KiFi⊕1I	 1 is true at a node of the computation tree (in short, true). It implies

that
∧n

i=1 Fi⊕1I	 1 is true. Fix i ∈ {1, . . .,n}. By the above FiI	 2 is true. Further, the implication
KiFi⊕1I	1→ FiI	1 is true in every node of the computation tree (remember, the agents are positioned
on a directed ring). If n = 3, this proves that

∧n
j=1 FiJ is true.

If n = 4, we note that KiFi⊕1I	1 implies that agent i⊕1 learned I	1 through a call of agent i and hence
the implication KiFi⊕1I	 1→ FiI⊕ 1 is true in every node of the computation tree, as well (remember
that the mode is push-pull). We conclude that

∧n
j=1 FiJ is true. �

http://dx.doi.org/10.1007/3-540-15648-8
http://dx.doi.org/10.1007/BF01788111

K. Apt, D. Grossi & W. van der Hoek 15

Proof (of Proposition 4.3) First, note that the following three statements are equivalent for each node c
of an arbitrary computation ξ and each agent i:

• i is disabled at c,

• (MDR,c) |= (
∧n

j=1 FiJ)∧KiFi⊕1I	1,

• a sequence of calls (i⊕2, i⊕3), (i⊕3, i⊕4), . . .,(i, i⊕1) (possibly interspersed with other calls)
has taken place in ξ before c.

Suppose now towards a contradiction that an infinite fair computation ξ exists. We proceed by case
distinction.
Case 1 Some agent becomes disabled in ξ .

We claim that if an agent i becomes disabled in ξ , then also agent i⊕1 becomes disabled in ξ . Indeed,
otherwise by fairness at some point in ξ after which i becomes disabled, agent i⊕1 calls his successor,
i⊕2, and by the above sequence of equivalences in turn becomes disabled.

We conclude by induction that at some point in ξ all agents become disabled and hence ξ terminates,
which yields a contradiction.
Case 2 No agent becomes disabled in ξ .

By fairness each agent calls in ξ infinitely often his successor. So for every agent i there exists in ξ

the sequence of calls (i⊕2, i⊕3), (i⊕3, i⊕4), . . .,(i, i⊕1) (possibly interspersed with other calls). By
the above sequence of equivalences after this sequence of calls agent i becomes disabled, which yields a
contradiction. �

Proof (of Proposition 4.4)
Termination It suffices to note that after each call (i, i⊕1) the size of the set

{(i, j) ∈ A×A | ¬KiFi⊕1J}

decreases.
Correctness Consider a leaf of the computation tree. Then the exit condition

n∧
i=1

n∧
j=1

(¬FiJ∨KiFi⊕1J)

is true. As in the case of protocol R1 we prove that it implies each FiJ is true by induction on the pairs
(i, j), where i, j ∈ {1, . . .,n}, ordered as follows:

(1,1),(2,1), . . .,(n,1),

(2,2),(3,2), . . .,(1,2),

. . .,

(n,n),(1,n), . . .,(n−1,n).

Take a pair (i, j). If i = j, then FiJ is true by assumption. If i 6= j, then consider the pair that precedes it
in the above ordering, so (i1, j), where i = i1⊕1. By the induction hypothesis Fi1J is true, so by the exit
condition Ki1FiJ is true and hence FiJ is true. �

Proof (of Proposition 4.5) Consider the following sequence of statements:

(i) i is disabled at c,

16 Epistemic Protocols for Distributed Gossip

(ii) (MDR,c) |=
∧n

j=1(FiJ→ KiFi⊕1J),

(iii) (MDR,c) |= KiFi⊕1,

(iv) a sequence of calls i	1/ i, i	2/ i	1, . . ., i/ i⊕1 (possibly interspersed with other calls) has taken
place in ξ before c.

It is easy to verify that these statements are logically related in the following way:

(i)⇔ (ii)⇒ (iii)⇒ (iv)⇒ (ii)

for each node c of an arbitrary computation ξ and each agent i. They are therefore equivalent. Suppose
now towards a contradiction that an infinite fair computation ξ exists. As in the proof of Proposition 4.3
we proceed by case distinction.
Case 1 Some agent becomes disabled in ξ .

We claim that if an agent i becomes disabled in ξ , then also i	 1 becomes disabled in ξ . Indeed,
otherwise by fairness at some point in ξ after which j becomes disabled, agent i	1 calls his successor,
i, and by the above sequence of equivalences in turn becomes disabled.

We conclude by induction that at some point in ξ all agents become disabled and hence ξ terminates,
which yields a contradiction.
Case 2 No agent becomes disabled in ξ .

By fairness each agent calls in ξ infinitely often his successor. So for every agent i there exists in ξ

a sequence of calls i	 1 / i, i	 2 / i	 1, . . ., i / i⊕ 1 (possibly interspersed with other calls). By the
above sequence of equivalences, after this sequence of calls agent i becomes disabled, which yields a
contradiction. �

	Introduction
	Gossip protocols
	Syntax
	Calls
	Epistemic guards
	Gossip protocols

	Semantics
	Gossip situations and calls
	Call sequences
	Gossip models
	Truth conditions for epistemic guards
	Computations

	Correctness

	Two symmetric protocols
	Protocols over directed rings
	Conclusions

