732 research outputs found

    Open Source Dataset and Machine Learning Techniques for Automatic Recognition of Historical Graffiti

    Full text link
    Machine learning techniques are presented for automatic recognition of the historical letters (XI-XVIII centuries) carved on the stoned walls of St.Sophia cathedral in Kyiv (Ukraine). A new image dataset of these carved Glagolitic and Cyrillic letters (CGCL) was assembled and pre-processed for recognition and prediction by machine learning methods. The dataset consists of more than 4000 images for 34 types of letters. The explanatory data analysis of CGCL and notMNIST datasets shown that the carved letters can hardly be differentiated by dimensionality reduction methods, for example, by t-distributed stochastic neighbor embedding (tSNE) due to the worse letter representation by stone carving in comparison to hand writing. The multinomial logistic regression (MLR) and a 2D convolutional neural network (CNN) models were applied. The MLR model demonstrated the area under curve (AUC) values for receiver operating characteristic (ROC) are not lower than 0.92 and 0.60 for notMNIST and CGCL, respectively. The CNN model gave AUC values close to 0.99 for both notMNIST and CGCL (despite the much smaller size and quality of CGCL in comparison to notMNIST) under condition of the high lossy data augmentation. CGCL dataset was published to be available for the data science community as an open source resource.Comment: 11 pages, 9 figures, accepted for 25th International Conference on Neural Information Processing (ICONIP 2018), 14-16 December, 2018 (Siem Reap, Cambodia

    Approaches Used to Recognise and Decipher Ancient Inscriptions: A Review

    Get PDF
    Inscriptions play a vital role in historical studies. In order to boost tourism and academic necessities, archaeological experts, epigraphers and researchers recognised and deciphered a great number of inscriptions using numerous approaches. Due to the technological revolution and inefficiencies of manual methods, humans tend to use automated systems. Hence, computational archaeology plays an important role in the current era. Even though different types of research are conducted in this domain, it still poses a big challenge and needs more accurate and efficient methods. This paper presents a review of manual and computational approaches used to recognise and decipher ancient inscriptions.Keywords: ancient inscriptions, computational archaeology, decipher, script

    Machine Learning Algorithm for the Scansion of Old Saxon Poetry

    Get PDF
    Several scholars designed tools to perform the automatic scansion of poetry in many languages, but none of these tools deal with Old Saxon or Old English. This project aims to be a first attempt to create a tool for these languages. We implemented a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the automatic scansion of Old Saxon and Old English poems. Since this model uses supervised learning, we manually annotated the Heliand manuscript, and we used the resulting corpus as labeled dataset to train the model. The evaluation of the performance of the algorithm reached a 97% for the accuracy and a 99% of weighted average for precision, recall and F1 Score. In addition, we tested the model with some verses from the Old Saxon Genesis and some from The Battle of Brunanburh, and we observed that the model predicted almost all Old Saxon metrical patterns correctly misclassified the majority of the Old English input verses

    Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview

    Get PDF
    This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture

    StrokeStyles: Stroke-based Segmentation and Stylization of Fonts

    Get PDF
    We develop a method to automatically segment a font’s glyphs into a set of overlapping and intersecting strokes with the aim of generating artistic stylizations. The segmentation method relies on a geometric analysis of the glyph’s outline, its interior, and the surrounding areas and is grounded in perceptually informed principles and measures. Our method does not require training data or templates and applies to glyphs in a large variety of input languages, writing systems, and styles. It uses the medial axis, curvilinear shape features that specify convex and concave outline parts, links that connect concavities, and seven junction types. We show that the resulting decomposition in strokes can be used to create variations, stylizations, and animations in different artistic or design-oriented styles while remaining recognizably similar to the input font

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201
    corecore